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EQUATIONS
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In this work we summarize some analytical requirements necessary to be satisfied
of difference schemes for incompressible Navier-Stokes equations. The conservation
properties of employed approximations of the differential operators which are used in
a new vectorial operator splitting scheme for solving the Navier-Stokes equations are
discussed. It is proven that the difference approximation of the advection operator
conserves square of velocity components and the kinetic energy like the differential
operator does, while pressure term conserves only the kinetic energy. AMS sub-

ject classification: Incompressible Navier-Stokes; Analytical Requirements; Stabil-
ity and Convergence of Difference Schemes.

1. Introduction. The most important problem is how to construct convergent
difference scheme. Since the convergence is a consequence of consistency and stability
thus it is necessary to choose those approximating schemes that are stable. It is naturally
to have stability in the norms of the spaces for which the original problem is stable. For
the well-posed problems of mathematical physics these are the energy spaces where the
squares of the norms express the total energy of the systems. Because of this, we have to
analyze the derivation of the energy estimations in the differential case and to construct
the scheme for which we can satisfy this derivation in the corresponding Hilbert space in
the discrete case. However, the criteria of consistency and stability become complicated
when applied to the solution of nonlinear partial differential equations. Therefore, the
difference scheme has to be conservative, namely, its conservation laws to be satisfied
identically. Then the non-linearity is not invincible task. According to [6] the conserva-
tion properties of the mass, momentum, and kinetic energy equations for incompressible
flow are specified as analytical requirements for a proper set of discrete equations. In
present work we summarize some of the analytical requirements necessary to be satis-
fied of the difference scheme. For illustration the vectorial operator splitting numerical
scheme is examined for its conservation properties and other requirements.

2. Incompressible Navier-Stokes equations. Consider the momentum equation
and the continuity equation

∂u

∂t
+ C[u] + P [u] − V [u] = 0, ∇ · u = 0(1)
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in a closed domain Ω with a piecewise smooth boundary ∂Ω. Here x = (x, y, z) ∈ Ω are
Cartesian coordinates, u = u(x) is the velocity vector,

P [u] = (Px[u], Py[v], Pz [w]) = ∇p,

where p = p(x, t) is the pressure. In the equation (1) the operator C = Cx + Cy + Cz is
a short-hand notation for the advection term. Viscous term V is V = ∆/Re, where the
Reynolds number is defined as Re = UL/ν, where U is the characteristic velocity, L –
characteristic length, ν – kinematic coefficient of viscosity.

In our consideration we assume divergence free initial condition and Dirichlet bound-
ary conditions for velocity, namely

u
∣

∣

t=0
= u0, u

∣

∣

∂Ω
= ub.(2)

3. Analytical requirements. At first, let us introduce the Hilbert space H(Ω) of
vector-functions with scalar product

(α, β) =
∑

i

(αi, βi), (αi, βi) =

∫

Ω

αi(x)βi(x)dx(3)

and the corresponding norm ‖α‖ = (α, α)1/2, which will be used later.
We summarize the following analytical requirements necessary to be satisfied of the

difference scheme:

1. Conservation properties: According to [6] we introduce

Definition 1. The term T (ϕ) is conservative if it can be written in divergence
form

T [·] = ∇ · (S[·])(4)

and it is well known that

(a) The mass is conserved a ’priori’ since the continuity equation ∇·u = 0 appears
in divergence form.

(b) The momentum is conserved ’a priori’ if the continuity equation is satisfied:
pressure and viscous terms are conservative ’a priori’; the convective term is
also conservative ’a priori’ if ∇ · u = 0.

(c) Square of a velocity component ϕ2: The advection operator conserves ϕ2 if a
skew-symmetric form

Cx[ϕ] =
1

2

[

∂(ϕu)

∂x
+ u

∂ϕ

∂x

]

, Cy[ϕ] =
1

2

[

∂(ϕv)

∂y
+ v

∂ϕ

∂y

]

, etc.(5)

is used. Here ϕ is one of the velocity components u, v, and w. For instance,
in the direction x we have

ϕ Cx[ϕ] =
ϕ

2

[

∂(ϕu)

∂x
+ u

∂ϕ

∂x

]

=
1

2

∂(ϕ2u)

∂x
·(6)

Hence, the operator Cx is conserving square of a velocity component ϕ2. It
means that under the assumption of homogenous boundary conditions we have

(Cx[ϕ], ϕ) = (Cy[ϕ], ϕ) = (Cz [ϕ], ϕ) = 0 or (C[ϕ], ϕ) = 0.(7)
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The pressure term in the momentum equation is not conservative, since

u
∂p

∂x
=
∂(up)

∂x
− p

∂u

∂x
(8)

for the velocity component u, for instance.

Similarly, the viscous term in the equation for u satisfies

u∆u = u∇2u = ∇ · (u∇u) − (∇u)2(9)

or, in other words, it is not conservative as well.

(d) Kinetic energy K
def
= 1

2
(u2 + v2 + w2): It follows from (7) that the operator

C[u] = 1

2
u[∇ · (uu) + u · ∇u] conserves the kinetic energy K, i.e.

u · C[u] =
1

2
u · [∇ · (uu) + u · ∇u] =

1

2
[∇ · (uu2)].(10)

The pressure term is energy conservative if the continuity equation is satisfied

u · ∇p = ∇ · (up) − p(∇ · u) = ∇ · (up),(11)

while the viscous term is not conservative

u · ∆u = u · ∇2u = ∇ · (u∇u) − (∇u)2(12)

because of the kinetic energy dissipation – the second term in the right-hand
side of (12).

2. Compatibility condition for Poisson equation for pressure, see [1, 7], should be
satisfied if the numerical method uses a Poisson equation for pressure instead of
the continuity equation

∫

Ω

Fpdx =

∮

∂Ω

∂p

∂n
ds,

where Fp is right hand side for pressure equation, n is the outward normal to the
boundary contour ∂Ω.

3. Commutativity of Laplacian operator ∆ and divergence operator ∇.

4. Consistency between gradient and divergence operators
∫

Ω

[u · ∇p+ p(∇ · u)]dx =

∮

∂Ω

pvnds

should be satisfied as well. For instance, the consistency is necessary in order to
obtain skew-symmetric operator P . The mutually consistent discretizations of op-
erators gradient and divergence with a first-order truncation error on non-staggered
grids are derived in [7]. In the case of such grids the use of standard central dif-
ference approximation for gradient leads to the same approximation for divergence
and yields for the discretization of pressure Laplace operator an extended stencil
and checker-board effect. On staggered grid the consistency between gradient and
divergence operators is not difficult to be satisfied.

The satisfaction of (1)–(5) leads to strong L2 stability of the scheme. Therefore,
the purpose is to derive difference scheme that satisfies the above requirements in
a discrete sense.
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4. Difference operators and their properties. For the case under consideration
the flow occupies the region with rectilinear boundaries in cartesian coordinates. The
grid is staggered for u in x-direction, for v in y-direction, and for w in z-direction.
For boundary conditions involving derivatives this allows one to use central differences
with second-order of approximation on two-point stencils. The number of main grid
lines (which are, in fact, the p-grid lines) in the x-, y- and z-directions are respectively
Nx, Ny, and Nz. The coordinates of the grid points are (xi, yj, zk) for i = 1, . . . , Nx,
j = 1, . . . , Ny, k = 1, . . . , Nz. The spacings are given by hp

x,i = xi+1−xi, i = 1, . . . , Nx−1,
hp

y,j = yj+1−yj , j = 1, . . . , Ny −1, and hp
z,k = zk+1−zk, k = 1, . . . , Nz −1. The spacings

for the function u in direction x are defined as follows

hu
x,1 = hp

x,1, h
u
x,i = (hp

x,i + hp
x,i−1

)/2 for i = 2, . . . , Nx − 1, and hu
x,Nx

= hp
x,Nx−1

.

Similarly the spacings for v in direction y and for w in direction z are defined

hv
y,1 = hp

y,1, h
v
y,j = (hp

y,j + hp
y,j−1)/2 for j = 2, . . . , Ny − 1 hv

y,Ny
= hp

y,Ny−1
,(13)

hw
z,1 = hp

z,1, h
w
z,k = (hp

z,k + hp
z,k−1

)/2 for k = 2, . . . , Nz − 1 hw
z,Nz

= hp
z,Nz−1

.(14)

The pressure is sampled at the points labelled by “•”; function u – at “◦”; function v –
at “∗”, and function w – at “⋄”. The following notations are used:

pi,j,k = p(xi, yj, zk), ui,j,k = u(xi − hp
x,i−1/2, yj, zk),(15)

vi,j,k = v(xi, yj − hp
y,j−1/2, zk), wi,j,k = w(xi, yj , zk − hp

z,k−1
/2).(16)

For the second derivatives standard three point difference approximations are em-
ployed, which inherit the negative definiteness of the respective differential operators.
The first derivatives for pressure at the mesh-point labelled by “◦”, “∗”, and “⋄” are
approximated in the following way:

P h
x [u]

∣

∣

∣

∣

◦

=
pi,j,k − pi−1,j,k

hp
x,i−1

, P h
y [v]

∣

∣

∣

∣

∗

=
pi,j,k − pi,j−1,k

hp
y,j−1

, P h
z [w]

∣

∣

∣

∣

⋄

=
pi,j,k − pi,j,k−1

hp
z,k−1

·(17)

The skew-symmetric difference approximation of the advection term was proposed by
Arakawa [2] for the ψ−ω formulation for ideal flows. A similar idea in primitive variables
was elaborated in [5] with a special reference to the operator-splitting schemes. In [3, 4]
we consider second order conservative approximations of the non-linear operators on a
uniform staggered mesh. For instance, on a non-uniform staggered mesh, we employ the
following conservative approximations for the nonlinear terms in the momentum equation
for velocity component u with respect to direction x

Ch
x [u] =

(

∂(u2)

∂x
−
u

2

∂u

∂x

) ∣

∣

∣

∣

◦

=
um

i+1/2,j,kui+1,j,k − um
i−1/2,j,kui−1,j,k

hu
x,i + hu

x,i−1

,(18)

where um
i+1/2,j,k = (um

i+1,j,k + um
i,j,k)/2, um

i−1/2,j,k = (um
i,j,k + um

i−1,j,k)/2, etc. The differ-

ences for nonlinear terms in the equations for v and w are similar to (18).

It can be proven that the defined approximations of the nonlinear advection terms
preserve their skew-symmetric property. The following statement is valid

Lemma 1. Let appropriate (homogenous, periodic, etc.) boundary conditions are
acknowledged and the scalar product is

(α, β)
def
=

∑

i,j,k

αi,j,kβi,j,kh̄
f
x,ih̄

f
y,jh̄

f
z,k ,(19)
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where h̄f
x,i = (hf

x,i +hf
x,i−1)/2, h̄f

y,j = (hf
y,j +hf

y,j−1)/2, h̄f
z,k = (hf

z,k +hf
z,k−1

)/2, and
f = u, v, w, or p. Then the equalities hold true

(Ch
x [f ], f) = 0, (Ch

y [f ], f) = 0, (Ch
z [f ], f) = 0.(20)

Hence the defined approximations of the nonlinear terms on a non-uniform staggered
grid preserve their skew-symmetric property. It follows immediately that:

Theorem 1. Under the assumptions of Lemma 1, the following relations are satisfied
(Ch[u], u) = (Ch[v], v) = (Ch[w], w) = 0.

From the above theorem it follows (Ch[u], u) + (Ch[v], v) + (Ch[w], w) = 0, hence

Corollary 1. The advection term is energy conservative.

Similarly, it is not difficult to be proven (taking into account the approximation of the
divergence operator) that the pressure term approximation conserves the kinetic energy
K in the case of uniform grids. Under the assumptions of Lemma 1 the following relation
is satisfied

(P h
x [u], u) + (P h

y [v], v) + (P h
z [w], w) = 0,(21)

and the result can be summarized in the next

Theorem 2. The pressure term is energy conservative if the grid is uniform.

The conclusion is that under not so restrictive assumptions the chosen approximations
of the differential equations and boundary conditions satisfy the formulated requirements
to difference schemes for incompressible flows. The difference scheme is strongly stable
in solving higher Reynolds number flows which is demonstrated in [4].
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НЯКОИ ИЗИСКВАНИЯ ОТНОСНО ДИФЕРЕНЧНИ СХЕМИ ЗА

НЕСВИВАЕМИ УРАВНЕНИЯ НА НАВИЕ-СТОКС

Росица Маринова, Хидеаки Айзо, Тадаясуu Таканаши

В тази работа са обобщени някои аналитични изисквания, които диференчните

схеми за несвиваемите уравнения на Навие-Стокс е необходимо да удовлетворя-

ват. Обсъдени са консервативните свойства на апроксимациите на диференциал-

ните оператори, които са използвани в една нова схема на векторно разцепване на

оператора за решаване на уравненията на Навие-Стокс. Доказано е, че диферен-

чната апроксимация на конвектния оператор запазва консервативните свойства

на квадрата на компонентите на скоростта и кинетичната енергия, както това е

изпълнено за диференциалния оператор, докато членът на налягането запазва

само кинетичната енергия.
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