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SOME DEVELOPMENTS OF KOVARIK’S APPROXIMATE
ORTHOGONALIZATION METHODS

Constantin Popa

In this paper we construct new versions of the two Kovarik’s approximate orthogonal-
ization algorithms, for the case of symmetric and positive semi-definite real matrices.
We prove that these algorithms generate sequences of matrices convergent to a ma-
trix of the same kind, but having a smaller generalized spectral condition number.
Some numerical experiments confirming these results are also presented for the nor-
mal equation associated to a collocation discretization of an integral equation of the
first kind.

1. New KOVARIK-like algorithms. Let A be an m X n real matrix. We
shall denote by o(A), p(A), (A); and A the spectrum, spectral radius, i-th row and
the transpose of A (this last one with respect to the Euclidean scalar product and the
associated norm, denoted by (-,-), | - ||, respectively). All the vectors that will appear
will be considered as column vectors. The notation || A || will be used for the spectral
norm of B and is defined by

(1) | A ll= v/p(ATA) = v/p(AAY).

Let (ax)r>0 be the sequence of real numbers defined by aj =

1 (2k)!
an apriori fixed sequence of positive integers. Then, the two approximate orthogonaliza-
tion algorithms, firstly proposed by Z. Kovarik in [4] and extended by the author in [5]
and [6], can be written as follows.

Algorithm (KOA) Set Ag = A and for k > 0 do

k Z 0 and (Qk)kzo

(2) Hk:]—AkAz, I’k:I—i—alHk—i—...—i—aquZ", Ak+1 =T A
Algorithm (KOB) set Ag = A and for & > 0 do
(3) Ky = (I — AkAZ)(I‘i’AkAZ)ila I'e =1+ Kk, Ak+1 =T A

The following results were proved in [5] and [6].

Theorem 1. Let us suppose that
() | AA® = p(AAT) = p(A"4) < 1.

Then, the sequence (Ag)r>0 generated by any of the previous algorithms (KOA) or
(KOB) converges to the matriz

(5) A = ((A497)" 4,
where by BT we denoted the Moore-Penrose pseudoinverse of the matriz B (see e.g. [1]).
386



Let us now suppose that m = n and the matrix A is symmetric and positive semi-
definite, i.e.

(6) A=A (Ar,x) >0, Vz € R".

Then, we consider the following simplified versions of the above methods.
Algorithm (KOAS) Set Ag = A and for k£ > 0 do

(7) H, =1— Ay, I’k:I—i—alHk—i—...—l—aqug’“, Ak+1:FkAk.
Algorithm (KOBS) Set Ag = A and for k > 0 do
(8) Kp=(—Ap)I + Ap) "\ Tp =1 + Kp, App1 = iAg.

The following convergence result holds.
Theorem 2. Let us suppose that
(9) | All=p(A) = p(A") < 1.

Then, the sequence (Ag)k>0 generated by any of the previous algorithms (KOAS) or
(KOBS) converges to the matric

(10) Ag = (A%)T A

Proof. From (6) it follows that it exists an orthonormal n x n matrix @ such that
(see e.g. [1])

(11) Q'AQ = Dy = diag(o1,02,...,0.,0,...,0),

(12) o(A) ={o1,02,...,04,0}, 0, >0, i=1,...,m
where 7 < n is the rank of the matrix A. Moreover, from (9) we obtain
(13) O<o;<1,Vi=1,...,m

Then, for the algorithm (KOAS) the proof of convergence follows exactly the same
steps as in [6].
For the algorithm (KOBS), using (8), (11) and the orthonormality of the matrix @ we
obtain

(14) Api1 = QD Q"
and
(15) Diyt1 = [I + (I — Dy)(I + D) Dy, Vk > 0.

Because Dy is a diagonal matrix, so will be Dy, Vk > 0. Moreover, Dy, = diag(o%k), R

aﬁk), 0,...,0) with 05“ >0,Vj=1,...,r recursively defined by

20M
(16) oM = T k>0, 0 =0, €(0,1).
J 1+ o_(k)
j
2
By analyzing the function x — %,x € (0,1), we obtain that all the sequences
T
otP) k>0,J = 1,...,7 converge to 1. Then, from (14) we get
J =
(17) lim Ay = Q diag(1,1,...,1,0,...,0) Q".

387



Thus, as in [5] we obtain the equality Ay = Q diag(1,1,...,1,0,...,0) Q', which
completes the proof. [

Remark 1. Conditions of the type (4) or (9) can be obtained by an appropriate
scaling of the entries of A (see e.g. the next section of this paper).

Remark 2. We have to observe that the convergence results from the above Theorem
2 do not hold directly from those in Theorem 1. Indeed, if A is as in (6), then so are all

1
the matrices Ay, thus, their square roots A} exist with the properties

(18) AZ = (A2) Ay = AZ A2 = A2 (A7)

But, in the construction of Aiiy in (7) or (8) the whole matrix Ay is used and not
1

only A7.

Remark 3. If D = diag(1,1,...,1,0,...,0) is from (17) the following result holds
with respect to the ”quasi-orthonormality” of the rows of A,
(19) <(A00)ia (Aoo)j> = (D(Q)% (Q)]>a Vi,j=1,...,n
(for the proof see [5]).

The equalities (19) tell us that, if A would be invertible, then D = I and A would
have orthonormal rows. In the general case, we can obtain only an improvement of the
values of the angles between the rows of A (for A, these values become ”closer” to 90°;

see the numerical experiments in [5] and [6]). We also obtain an improvement of the
generalized spectral condition number of A, defined by (see also (11))

max{o;,1 <j<r}
min{c;,1 <j <r}’

(20) ka(A) =

which for the matrix Ao, from (10) obviously has the ”ideal” value

(21) ka(Aso) = 1.
2. Applications to normal equations. We come back now to the general case

of a rectangular m x n real matrix B,m # n and, for ¢ € IR™ we consider the linear
least-squares problem: find x* € IR™ such that

(22) || Bz* — ¢ ||=min{|| Bx — ¢ ||,z € R"}.
It is well known (see e.g. [1]) that (22) is equivalent with the associated normal equation
problem: find z* € IR™ such that

(23) B'Bzx* = B'c.

If we denote by A the n x n matrix from (23), i.e.

(24) A=B'B

and we define

(25) A=—L i
A oo

(with || A ||ec= maxj<i<n Z?Zl |(A;;|) we obtain that A is a symmetric and positive semi-
definite matrix, also satisfying the assumption (9). Thus, by applying few steps of one of
the algorithms (KOAS) or (KOBS) to the matrix A we shall obtain an approximation
of Ay, having a better condition number (defined by (20)) than the original matrix A.
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This can much improve the behavior of both direct and iterative methods for solving
(22) through (23).

Remark 4. In order to don’t modify the set of solutions for (22) (or (23)) we must
apply transformations similar to (7) and (8) also to the right hand side of (23) (see [3]),
i.e. b0 = Btc and

(26) Hy=1-Ay, To=I+aHy+...+agH, bF =Tb"

(27) K= (I —Ap)(I + Ap) T =1 + Ky, bFH =10k

We considered in our tests the first kind integral equation: find z € L?([0,1]) such
that

1

(25) Tals) = [ K(s,t)althde = y(s), s € 0,1],
0
with the elements
1
29 s)=s , k(s,t)= ——, s,te€]0,1].
Then, for given m and n and the points s;,7 =1,...,m and 75,5 = 1,...,n, defined by
i—1 j—1

30 P = i = .
(30) s m—1 g n—1

we discretized the problem (27) following the collocation technique described in [2]. In
this way we obtained a least-squares problem as (22), with a full rank but ill-conditioned
matrix B. We constructed the matrix A as in (24)-(25) and applied to it the algorithm
(KOBS). In Table 1 we present (for the case m=16, n=8) the values of ky(Aj) for
different values of k. Then we fixed ko(Ay) = 1.15 (see the eight column in Table 1) and,
for different values for m and n we determined the numbers of iteration for obtaining it.
The corresponding values are presented in Table 2.

Remark 5. We observe the good improvement of k2(Ay) in Table 1 and also the fact
that the numbers of iterations from Table 2 are (almost) independent on the dimensions m
and n. Similar results were obtained with the algorithm (KOAS), with g, = N, Vk >0
and different values of N > 1. All the numerical experiments have been performed with
the numerical linear algebra software OCTAVE, free available on the Internet.

Table 1.
k 0 10 20 30 40 50 60 70
kQ(Ak) 1016 | 10 | 1011 | 108 | 10° | 10% | 1.15 | 1.0001

Table 2.
m n Number of iterations
16 8 61
32 16 60
64 32 62
128 | 64 62
256 | 128 63
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HOBU BEPCUU HA METO/I1 HA KOBAPUK 3A IIPUBJIN2KEHA
OPTOI'OHAJIN3AIINA

Koucrantun ITona

Koncrpyupanu ca HOBM BepCHM Ha JBa ajropurbma Ha KoBapuk 3a npubsiukeHa
OPTOTOHAJIM3AIUS HA CAMETPUYHU W MOJIOKUTEHO MOJYONPEIeIEHN PEaTHA MATPHU-
nu. JlokazaHo e, 4e Te3u aJrOPUTMU MOPAXKIAT PEJIUIM OT MATPHUIU, CXOMAIN KbM
MaTpUIA OT ChIUsI THUI, HO C MO-MaJKO OOOBIEHO CIEKTPATHO YUCTIO Ha 00yCI0Be-
uoct. [IpejcTaBeny ca YUCIEHN KCIIEPUMEHTH, KOUTO TIOTBbPIKIABAT TE3U PE3YITATH
B CJlydasl Ha HOPMAJHO yPDABHEHMeE, [IOJy9YeHO OT KOJOKAIMOHHA JIMCKPETH3AIUsl 3a
HWHTErPAJIHO yPABHEHUE OT I'bPBU PEJI.
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