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In this paper we construct new versions of the two Kovarik’s approximate orthogonal-
ization algorithms, for the case of symmetric and positive semi-definite real matrices.
We prove that these algorithms generate sequences of matrices convergent to a ma-
trix of the same kind, but having a smaller generalized spectral condition number.
Some numerical experiments confirming these results are also presented for the nor-
mal equation associated to a collocation discretization of an integral equation of the
first kind.

1. New KOVARIK-like algorithms. Let A be an m × n real matrix. We
shall denote by σ(A), ρ(A), (A)i and At the spectrum, spectral radius, i-th row and
the transpose of A (this last one with respect to the Euclidean scalar product and the
associated norm, denoted by 〈·, ·〉, ‖ · ‖, respectively). All the vectors that will appear
will be considered as column vectors. The notation ‖ A ‖ will be used for the spectral
norm of B and is defined by

‖ A ‖=
√

ρ(AtA) =
√

ρ(AAt).(1)

Let (ak)k≥0 be the sequence of real numbers defined by ak =
1

22k

(2k)!

(k!)2
, k ≥ 0 and (qk)k≥0

an apriori fixed sequence of positive integers. Then, the two approximate orthogonaliza-
tion algorithms, firstly proposed by Z. Kovarik in [4] and extended by the author in [5]
and [6], can be written as follows.

Algorithm (KOA) Set A0 = A and for k ≥ 0 do

Hk = I − AkAt
k, Γk = I + a1Hk + . . . + aqk

H
qk

k , Ak+1 = ΓkAk.(2)

Algorithm (KOB) set A0 = A and for k ≥ 0 do

Kk = (I − AkAt
k)(I + AkAt

k)−1, Γk = I + Kk, Ak+1 = ΓkAk.(3)

The following results were proved in [5] and [6].

Theorem 1. Let us suppose that

‖ AAt ‖= ρ(AAt) = ρ(AtA) < 1.(4)

Then, the sequence (Ak)k≥0 generated by any of the previous algorithms (KOA) or
(KOB) converges to the matrix

A∞ = ((AAt)
1

2 )+A,(5)

where by B+ we denoted the Moore-Penrose pseudoinverse of the matrix B (see e.g. [1]).
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Let us now suppose that m = n and the matrix A is symmetric and positive semi-
definite, i.e.

A = At, 〈Ax, x〉 ≥ 0, ∀x ∈ IRn.(6)

Then, we consider the following simplified versions of the above methods.

Algorithm (KOAS) Set A0 = A and for k ≥ 0 do

Hk = I − Ak, Γk = I + a1Hk + . . . + aqk
H

qk

k , Ak+1 = ΓkAk.(7)

Algorithm (KOBS) Set A0 = A and for k ≥ 0 do

Kk = (I − Ak)(I + Ak)−1, Γk = I + Kk, Ak+1 = ΓkAk.(8)

The following convergence result holds.

Theorem 2. Let us suppose that

‖ A ‖= ρ(A) = ρ(At) < 1.(9)

Then, the sequence (Ak)k≥0 generated by any of the previous algorithms (KOAS) or
(KOBS) converges to the matrix

Â∞ = (A
1

2 )+A.(10)

Proof. From (6) it follows that it exists an orthonormal n × n matrix Q such that
(see e.g. [1])

QtAQ = D0 = diag(σ1, σ2, . . . , σr, 0, . . . , 0),(11)

σ(A) = {σ1, σ2, . . . , σr, 0}, σi > 0, i = 1, . . . , r,(12)

where r ≤ n is the rank of the matrix A. Moreover, from (9) we obtain

0 < σi < 1, ∀i = 1, . . . , r.(13)

Then, for the algorithm (KOAS) the proof of convergence follows exactly the same
steps as in [6].
For the algorithm (KOBS), using (8), (11) and the orthonormality of the matrix Q we
obtain

Ak+1 = QDk+1Q
t(14)

and

Dk+1 = [I + (I − Dk)(I + Dk)−1]Dk, ∀k ≥ 0.(15)

Because D0 is a diagonal matrix, so will be Dk, ∀k ≥ 0. Moreover, Dk = diag(σ
(k)
1 , . . .,

σ
(k)
r , 0, . . . , 0) with σ

(k)
j > 0, ∀j = 1, . . . , r recursively defined by

σ
(k+1)
j =

2σ
(k)
j

1 + σ
(k)
j

, k ≥ 0, σ(0) = σj ∈ (0, 1).(16)

By analyzing the function x → 2x

1 + x
, x ∈ (0, 1), we obtain that all the sequences

(σ
(k)
j )k≥0, j = 1, . . . , r converge to 1. Then, from (14) we get

lim
k→∞

Ak = Q diag(1, 1, . . . , 1, 0, . . . , 0) Qt.(17)
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Thus, as in [5] we obtain the equality Â∞ = Q diag(1, 1, . . . , 1, 0, . . . , 0) Qt, which
completes the proof. �

Remark 1. Conditions of the type (4) or (9) can be obtained by an appropriate
scaling of the entries of A (see e.g. the next section of this paper).

Remark 2. We have to observe that the convergence results from the above Theorem
2 do not hold directly from those in Theorem 1. Indeed, if A is as in (6), then so are all

the matrices Ak thus, their square roots A
1

2

k exist with the properties

A
1

2

k = (A
1

2

k )t, Ak = A
1

2

k A
1

2

k = A
1

2

k (A
1

2

k )t.(18)

But, in the construction of Ak+1 in (7) or (8) the whole matrix Ak is used and not

only A
1

2

k .

Remark 3. If D̃ = diag(1, 1, . . . , 1, 0, . . . , 0) is from (17) the following result holds
with respect to the ”quasi-orthonormality” of the rows of Â∞

〈(Â∞)i, (Â∞)j〉 = 〈D̃(Q)i, (Q)j〉, ∀i, j = 1, . . . , n(19)

(for the proof see [5]).

The equalities (19) tell us that, if A would be invertible, then D̃ = I and Â∞ would
have orthonormal rows. In the general case, we can obtain only an improvement of the
values of the angles between the rows of A (for Â∞ these values become ”closer” to 90◦;
see the numerical experiments in [5] and [6]). We also obtain an improvement of the
generalized spectral condition number of A, defined by (see also (11))

k2(A) =
max{σj , 1 ≤ j ≤ r}
min{σj , 1 ≤ j ≤ r} ,(20)

which for the matrix Â∞ from (10) obviously has the ”ideal” value

k2(Â∞) = 1.(21)

2. Applications to normal equations. We come back now to the general case
of a rectangular m × n real matrix B, m 6= n and, for c ∈ IRm we consider the linear
least-squares problem: find x∗ ∈ IRn such that

‖ Bx∗ − c ‖= min{‖ Bx − c ‖, x ∈ IRn}.(22)

It is well known (see e.g. [1]) that (22) is equivalent with the associated normal equation
problem: find x∗ ∈ IRn such that

BtBx∗ = Btc.(23)

If we denote by Ã the n × n matrix from (23), i.e.

Ã = BtB(24)

and we define

A =
1

‖ Ã ‖∞
Ã(25)

(with ‖ Ã ‖∞= max1≤i≤n

∑n

j=1 |(Ãij |) we obtain that A is a symmetric and positive semi-
definite matrix, also satisfying the assumption (9). Thus, by applying few steps of one of
the algorithms (KOAS) or (KOBS) to the matrix A we shall obtain an approximation
of Â∞ having a better condition number (defined by (20)) than the original matrix A.
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This can much improve the behavior of both direct and iterative methods for solving
(22) through (23).

Remark 4. In order to don’t modify the set of solutions for (22) (or (23)) we must
apply transformations similar to (7) and (8) also to the right hand side of (23) (see [3]),
i.e. b0 = Btc and

Hk = I − Ak, Γk = I + a1Hk + . . . + aqk
H

qk

k , bk+1 = Γkbk.(26)

Kk = (I − Ak)(I + Ak)−1, Γk = I + Kk, bk+1 = Γkbk.(27)

We considered in our tests the first kind integral equation: find x ∈ L2([0, 1]) such
that

Tx(s) =

∫ 1

0

k(s, t)x(t)dt = y(s), s ∈ [0, 1],(28)

with the elements

y(s) = s , k(s, t) =
1√

1 + s2t2
, s, t ∈ [0, 1].(29)

Then, for given m and n and the points si, i = 1, . . . , m and τj , j = 1, . . . , n, defined by

si =
i − 1

m − 1
, τj =

j − 1

n − 1
.(30)

we discretized the problem (27) following the collocation technique described in [2]. In
this way we obtained a least-squares problem as (22), with a full rank but ill-conditioned
matrix B. We constructed the matrix A as in (24)-(25) and applied to it the algorithm
(KOBS). In Table 1 we present (for the case m=16, n=8) the values of k2(Ak) for
different values of k. Then we fixed k2(Ak) = 1.15 (see the eight column in Table 1) and,
for different values for m and n we determined the numbers of iteration for obtaining it.
The corresponding values are presented in Table 2.

Remark 5. We observe the good improvement of k2(Ak) in Table 1 and also the fact
that the numbers of iterations from Table 2 are (almost) independent on the dimensions m

and n. Similar results were obtained with the algorithm (KOAS), with qk = N, ∀k ≥ 0
and different values of N ≥ 1. All the numerical experiments have been performed with
the numerical linear algebra software OCTAVE, free available on the Internet.

Table 1.

k 0 10 20 30 40 50 60 70
k2(Ak) 1016 1014 1011 108 105 103 1.15 1.0001

Table 2.

m n Number of iterations
16 8 61
32 16 60
64 32 62
128 64 62
256 128 63
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НОВИ ВЕРСИИ НА МЕТОДИ НА КОВАРИК ЗА ПРИБЛИЖЕНА

ОРТОГОНАЛИЗАЦИЯ

Константин Попа

Конструирани са нови версии на два алгоритъма на Коварик за приближена

ортогонализация на симетрични и положително полуопределени реални матри-

ци. Доказано е, че тези алгоритми пораждат редици от матрици, сходящи към

матрица от същия тип, но с по-малко обобщено спектрално число на обуслове-

ност. Представени са числени експерименти, които потвърждават тези резултати

в случая на нормално уравнение, получено от колокационна дискретизация за

интегрално уравнение от първи ред.
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