MATEMATUKA U MATEMATUYHECKO OBEPA3OBAHUWE, 2002
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2002
Proceedings of Thirty First Spring Conference of

the Union of Bulgarian Mathematicians
Borovets, April 3-6, 2002

SOLVING PARAMETRIC INTERVAL LINEAR SYSTEMS
BY MATHEMATICA*

Evgenija D. Popova

A Mathematica package for solving general and parametric linear systems with im-
precise data is presented. What we gain by the interaction between computer algebra
and validated computing is discussed.

1. The Problem. Consider a system of linear interval equations [A4] - x = [b],
i.e. the system of the type

(1) Zaij:cj = b1 (Z =]., .. .,Tl),
j=1

where a;;, b; can take arbitrary values from given intervals [a;;], [b;]. These systems
are common in practice, when due to measurement imprecision, approximation, or un-
certainty, the exact values of the coefficients are not known. By a solution set of such
system we mean X9 = X([4],[b]) := {z € R" | 3A € [A],3b € [b] : Az = b}. This
description of the solution set makes sense if the uncertainties in all coefficients are in-
dependent (the values of a;; and b; are not a priori related), which is not the case for
the most practical situations. The simplest example of dependencies is when the ma-
trix is symmetric or skew-symmetric. In most engineering design problems, models in
operational research, linear prediction problems, etc. [1], [2], [5], [7], usually there are
complicated dependencies between coefficients. The main reason for this dependency is
that the errors in several different coefficients may be caused by the same factor. Let us
denote all the parameters that influence the coefficients by p,, v = 1,..., k. Then the
coefficients a;;, b; depend on these parameters

k k

(2) aij(p) = Aijo + Z Aijv Dy bi(p) := Bio + Z Bivpv,

v=1 v=1
so that we have a parametric linear system A(p) -z = b(p) with affine-linear depen-
dencies in the coefficients. \;;, 3; € RFH! (i,j =1,...,n) are numerical vectors and the
parameters p, can take arbitrary values from the given intervals [p,], (v = 1,..., k). The
parametric solution set (PSS)
(3) TP =X(A(p),bp);[p)) = {zeR"|A(p) x=>b(p) for some p € [p]}

*This work was supported by the Bulgarian National Science Fund grant No. 1-903/99 and the Swiss
NSF Co-operation Agreement No. 7IP 65642.

391

is usually a subset of the symmetric solution set and the general non-parametric solution
set (GSS). Since the solution sets have a complicated structure which is difficult to find,
we look for the interval hull OY := [inf ¥, sup Y], whenever ¥ is a nonempty bounded
subset of R", or for an interval enclosure of (JX.

Below we present a Mathematica [8] package IntervalComputations’LinearSolve
which offers a variety of functions for solving parametric and non-parametric interval
linear systems. Supposing that the package is loaded, some simple examples will illustrate
the usage of these functions. The impact of computer algebra on the solution of interval
parametric problems will be discussed.

2. Exact Bounds on the Solutions. HullSolutionSet[A, b] gives the exact
interval hull of the GSS to a non-parametric interval system with numerical interval
matrix A and numerical interval vector b. The computational procedure is based on
an algorithm by J. Rohn [5] solving only 22" point linear systems. AllPoints is a
symbol, used as last optional argument for the function HullSolutionSet. Al11Points
specifies a full computational procedure and an output in the form {{hull}, {points}},
where {hull} is the interval hull and {points} is a list of the solutions to all 2" vertex
linear systems. Matrix and/or vector entries can be either intervals or elements from the
domain Real. Mathematica [8] is the only environment that supports exact and variable
precision interval arithmetic, so that all functions will produce exact interval results on
exactly specified arguments.

Rohn’s algorithm can detect a singular interval matrix.

In[2] := A =

{{Intervall[{1,2}], Intervall{3,4}]}, {Intervall[{5,6}], Interval[{7,8}]1}};
b = {Interval[{0,1}], Intervall[{0,1}]3};

In[3] := HullSolutionSet[A, b];

HullSolutionSet::sing: Singular matrix encountered.

While the algorithm, based on all possible combinations of the end-points, cannot do so
in the general case, unless some of the end-point matrices is singular.

In[4]
Out [4]

HullSolutionSet[A, b, AllPoints] [[1]]
{Interval([{-7,8}], Interval[{-5,5}]1%}

HullSolutionSet [Ap, bp, rls] computes the exact hull of the PSS to a parametric
system with matrix Ap, right-hand side bp and parameters varying within given numerical
intervals specified by a list of transformation rules rls. The computing method assumes
that the components of the analytic solution z(p) = A(p)~1b(p) are monotone functions
with respect to each parameter. The function itself does not check the monotonicity.
AllPoints can be used as optional argument for parametric systems, too.

Monotonicity can also be used even when the solution is not monotonic provided its
behavior is sufficiently well known. We have proven in [3] some sufficient conditions for
parametric solution set having the same quality (OXP = [O%9) as the solution set to the
corresponding non-parametric system A([p]) - z = b([p]).

392

ExactBounds [Ap, bp, rls] checks which bounds of
the PSS coincide with the bounds of the correspond- o
ing GSS. The output is in the form {{{inf-bds},
{sup-bds}}, {hull}}, wherein {inf-bds} and
{sup-bds} are lists with the numbers of the coin-
ciding bounds. The input of the parametric vectors T T 3 “
and matrices is in convenient mathematical nota- o
tions. Fig. 1 represents the parametric (gray region) - 2
and the corresponding general (dashed line) solution Fig. 1
set for the linear system of In[5].

Y w s
\
\

b=
\

In[5] :=m = {{-1, p1}, {pi+1, p2}}; v = {p3, 1/3 p3};

tr = {p1->Interval([{1,2}], p2->Interval[{-1,0}], p3->Interval [{-1,2}]};
In[6] := ExactBounds[m, v, tr]

out[6]l= {{{1,2}, {1,2}}, {Intervall[{-4/3, 8/3}], Intervall{-7/3, 14/3}]1}}

3. Computer Algebra in Proving Monotonicity. = Computer algebra saves
manual amounts, decreases the probability of blunders, and the necessity of expertise.
At present, simplification is the “killer application” of computer algebra (application that
everyone wants but only one can). Although symbolic differentiation leads to lengthly
formulas for the derivatives, the length of these formulas can be greatly reduced by
algebraic manipulations. Our next example shows how the algebraic approach can yield
sharper results, by reducing the dependency problem, in proving monotonicity of the
analytic solution x(p) = A(p)~1b(p) to parametric interval linear systems.

Consider a system arising in the analysis of a resistive electrical circuit [3]

g1+ ge —Je 0 0 0 10
—96 g2+ ge+ g7 —g7 0 0 0
0 —g7 93+ g7+ gs —98 0 = 10 |,
0 0 —9s8 ga+gs+9g9 —9o 0
0 0 0 —99 g5 + 9o 0
where the parameters are subject to tolerances [g;] = [1 —4d, 1+ 4], i = 1,...,9. We

shall prove monotonicity of the solution for different values of the tolerances 0 varying
from 1 to 10% of the nominal value. Let m denote the parametric matrix, b denote the
right-hand side vector; tr1, trb and tr10 denote the Mathematica transformation rules
specifying the parameter values corresponding to tolerances of 1,5 and 10%, resp. Then

In[10] := x= Inverse([m]~(-1) b; dx= Table[D[x[[j1], glill, {i,5},{j,9}]1;

Evaluating the derivatives for 1% tolerance intervals, Map [IntervalMemberQ[#, 0]&,
dx /. tril, {2}] shows that most of the derivatives contain zero even for small toler-
ances. Mathematica provides a variety of functions for converting expressions from one
form to another. Since x contains quotients, we have chosen to use a function making a
sum of terms into a single rational function. Together [expr] puts terms in a sum over
a common denominator, and cancels factors in the result.

In[11] := dx = Together[dx];
393

This rearrangement was sufficient to prove monotonicity of the solution for 1% tolerances.
For 5% tolerances, only the derivatives with respect to ¢[7] contain zero, and for 10%
tolerances — the derivatives with respect to g[6] and ¢[7] contain zero.

In[12]
Out[12]

SameQ[Sequence @@ Denominator /@ dx[[7]]]
True

Out [12] shows that all the components of dx [[7]] have the same denominator. A simple
view shows that the expression of the denominator involves only summation of nonzero
intervals with equal signs. That is why, it is necessary to rearrange and evaluate only
the numerators. Simplify tries to find the simplest form of an expression by applying
various standard algebraic transformations.

In[13] := Sign /@ Simplify[Numerator /@ dx[[7]]1] /. trb
Out[13] = {1,1,-1,-1,-1}

In[14] := Sign /@ Simplify[Numerator /@ dx[[6]]] /. trl0
Out[14] = {-1,1,1,1,1}

Applying Simplify was not enough to prove monotonicity of the solution with respect
to g[7] for 10% tolerances. Getting expressions into the form we want is something of
an art. In most cases, it is best simply to experiment, trying different transformations
until you get what you want.

In[18] := t = Simplify[Numerator /@ dx[[7]]];

In[19] := t[[1]] === t[[1,1]] t[[1,2]1] ¢([1,3]11(CtlC[1,4,11] + t[[1,4,2]1])
Out[19] = True
In[20] := (t[[1,1]11 +t[[1,2]1 +([[1,3]]

(t[[1,4,1]1] + Apart[Expand[t[[1,4,2]1], g[811)) /. tri0
Out[20] = Interval[{21.1054, 1653.77}]

Simplify helps us to reveal the structure of an expression (In[19]) and to identify terms
involving summands with different signs (t [[1,4,2]1]). In expressions with several vari-
ables, we can use Apart [expr, var] to do partial fraction decompositions with respect
to different variables. Apart with respect to g[8] turned out to be sufficient to prove
the monotonicity.

The above example demonstrates the advantage of symbolic differentiation plus al-
gebraic manipulation versus automatic differentiation (AD) in proving monotonicity. It
is possible to reduce the dependency problem by minimizing the occurrences of vari-
ables. There is no need to evaluate the range of the function (as in AD) but only the
derivatives. Sometimes, it is even sufficient to evaluate only a part of the derivatives
expression. Beside getting sharper results, this approach is more flexible. It could also
generate effective codes with respect to runtime and memory cost.

2. Iterative Solvers. GeneralSolve[A, b, opts] and DependencySolve [Ap,
bp, rls, opts] are functions for iterative enclosure of the GSS, resp. the PSS. Both
functions are based on the iterative methods by Rump [8]. Several options (opts) can be
used to control the computational process. WorkingPrecision specifies the number of
digits to use in internal computations and can be Exact, $MachinePrecision (default),

394

or user specified. EnclosureRefinement requires an additional refinement of the enclo-
sure. SharpnessEstimation requires computing of component-wise inner approximation
of the solution set in order to estimate the degree of sharpness of the outer enclosure.

SharpnessEstimation is unique for our implementation and requires loading of a
Mathematica package for generalized interval arithmetic [5]. Inner estimations can be
computed by using interval operations with inward rounding but the overloading concept
of some programming environments hampers the convenient implementation of these
operations. That is why, most of the interval packages/environments do not support
inwardly rounded interval arithmetic and thus the possibility to estimate the degree of
sharpness of the enclosures or to compute a minimum set of the solutions instead of an
enclosure. Due to the algebraic properties of the arithmetic on proper and improper
intervals, [5] supports inwardly rounded interval arithmetic at no additional cost.

A key feature of the algorithm for enclosing the PSS is a sharp enclosure of Z =
R (b(p) — A(p)Z) for p € [p], where R is the mid-point of A([p]) and Z is the solution
of the mid-point system. A sharp enclosure can be obtained if every parameter occurs
at most once in every component of Z, that is provided by the formula

n
(4) 2 = () ARy (B =&})l i=1,....n
gl=1
The formula can be derived either by hand for each particular parametric system, or
automatically by algebraic simplification in a suitable computer algebra environment.
Even we have obtained the computing formula (4) somehow, the implementation of the
corresponding iterative method in an environment not supporting symbolic entries would
require input of n(k + 1)(n + 1) numerical values corresponding to the numerical vectors
Xij; Bi (see (2)). The latter would be an exhaustive human effort especially for large
systems and complicated dependencies. An advantage of the symbolic manipulation en-
vironment of Mathematica is the ability to use symbolic mathematical notations to input
the parametric matrix and the right-hand side, and to derive the necessary computing
formula of the algorithm automatically, regardless of the particular parametric problem.
Our package provides also a function ExpressionToMatrix[data, pars] converting
a symbolic matrix (or vector) data which components are affine-linear expressions in
given parameters pars into a 3-dimensional (resp. 2-dim) numerical matrix of the coef-
ficients c;,,. The latter could be then exported into a data file to be used by any other
programming environment.

In[22] :=m = {{2, gl1] + g[2]}, {Sqrt[2] - t + 1, g[2]1}};
ExpressionToMatrix[m, {t, g[1], gl[2]1}]

Out[22] = {{{2,0,0,0}, {0,0,1,1}}, {{1+Sqrt[2],-1,0,0}, {0,0,0,1}}}

In[23] := Export["data.dat", Flatten[N[Out[22]], 1]]

Interval Gauss-Seidel iteration for parametric linear systems is introduced in [2] for
improving the enclosures, obtained by the iterative method, whenever they are not
good enough. Functions GaussSeidelIteration performing the corresponding iterative
process for general non-parametric and for parametric interval linear systems, are pro-
vided by the package. In case of parametric systems, generalized interval arithmetic [4]
should be used to eliminate the dependency problem in generating the expressions for the
parametric Gauss-Seidel operator. Some numerical experiments, performed by the above

395

functions, are presented in [2].

5. Conclusion. Approaching to linear systems with uncertain parameters, the in-
tegration of symbolic and self-validating numerical computation is shown. Key features
of symbolic-algebraic computations are used for convenient input and handling of para-
metric problems. The power of Mathematica to support rigorous exact and/or variable
precision interval computations, the functionality of a generalized interval arithmetic
package for computing inner approximations and reducing the dependency problem, as
well as the tools provided by the presented interval problem solving package, make a suit-
able environment for efficient solving of real-life parametric problems with uncertainty.

We gave only a short overview of the possibilities, which follow from coupling various
techniques of computation. A complete description of the package with many numerical
examples illustrating its usage will be put on the Web soon.

REFERENCES

[1] B.R. BARMISH. New Tools for Robustness of Linear Systems. McMillan, N.Y., 1994.

[2] E. POPOVA. On the Solution of Parametrised Linear Systems. In: W. KRAEMER et al. (Eds.):
Scientific Computing, Validated Numerics, Interval Methods, Kluwer Acad. Pub., 2001, 127-138.
[3] E. Popova. Quality of the Solution Sets of Parameter-Dependent Interval Linear Systems.
ZAMM (to appear).

[4] E. Popova, CH. ULLRICH. Directed Interval Arithmetic in Mathematica: Implementation
and Applications. TR 96-3, U. Basel, 1996, 1-56. (www.math.bas.bg/ epopova/directed.html)
[6] S.S. Rao, L. BERKE. Analysis of Uncertain Structural Systems Using Interval Analysis.
AIAA Journal, Vol. 35, No. 4, 1997, 727-735.

[6] J. ROHN. Systems of Linear Interval Equations. LAA 126 (1989), 39-78.

[7] S. RumpP. Verification Methods for Dense and Sparse Systems of Equations. In: J. HERZBER-
GER (Ed.): Topics in Validated Computations. Elsevier Science B. V., 1994, 63-135.

[8] S. WoLFRAM. The Mathematica Book, 4th ed., Wolfram Media/Cambridge U. Press, 1999.

Institute of Mathematics and Informatics
Bulgarian Academy of Sciences

Acad. G. Bonchev Str., bl. 8

113 Sofia, Bulgaria

e-mail: epopova@iph.bio.bas.bg

PEIIIABAHE HA ITAPAMETPUYHU UHTEPBAJIHU JINHENHN
CUCTEMMUM C MATHEMATICA

Esrenus /1. IlommoBa

IIpencraBen e makeT 3a pelaBaHe Ha MAPAMETPUYHHU U OOIIM MHTEPBAJIHU JIUHEWHHI
cucremu B cucremara Mathematica. Pasriexxgar ce npenMyIecrBara 0T KOMOUHIpa-
HETO Ha KOMITIOTbPHO-AJNeOPUYHU C WHTEPBAJTHO-APUTMETHIHN METOJIH.

396

