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SENSITIVITY OF THE STANDARD MATRIX ALGEBRAIC
EQUATION"

M. M. Konstantinov

In this paper we study the sensitivity of the standard matrix algebraic equation
AX = B. Asymptotic properties of perturbation bounds for this equation are
analyzed.

1. Introduction. In this paper we present a perturbation analysis for the standard
linear matrix algebraic equation. The estimates presented are valid both for real and
complex equations.

We denote by F*™ the space of m x n matrices over the field of real (F = R) or
complex (F = C) numbers, and R4 = [0,00). The Frobenius and the spectral norms in
F*™ are denoted as || - ||p and || - ||2, respectively. The matrix [M| = [|m;|] € R
is the absolute value of M = [m;;] € F™*™ and M ® N = [m;;N] is the Kronecker
product of the matrices M, N. We use the notation O(m) C R™*™ and U(m) € C™*™
for the multiplicative groups of real orthogonal and complex unitary m X m matrices.
The component-wise partial order relation in R™*™ is denoted by < while “:=’ stands
for ‘equal by definition’.

2. Main results. Consider the standard linear matrix equation
(1) AX = B,
where A € F™*" is a non-singular matrix, while the coefficient B and the solution
X = A7'B are m x n matrices over F. This equation gives rise to some of the most
popular and widely used perturbation bounds (norm-wise, component-wise, structured
and backward) in numerical linear algebra [1, 2]. At the same time little is known about
the tightness of these perturbation bounds. It is instructive to see how the concepts
for various types of perturbation bounds are applied to this most ‘unstructured’ linear
matrix equation.

We consider the non-trivial case B # 0 which implies X # 0. However, the results
are valid also for the case B = 0 with the exception of those connected to relative
perturbation bounds.

Let E := (6B,0A) be a perturbation in the data (B, A) and Y = X 4 06X be the
solution of the perturbed equation (A + §A)Y = B + 6B. For ||[§A|2[|A7 |2 < 1 the
matrix A + §A is non-singular and 6X = §X(E) = (A + 6A)"1(6B — §AX). Now the
forward perturbation analysis problem is to estimate the norm ||0X| or the absolute
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value |0X| of the perturbation 0X in the solution as functions of ||§A4]|, ||0B]| or |dA4],
|0 B], respectively. In the following we shall use the Frobenius norm for the perturbations
in the data and the solution.

Writing the perturbed equation as 6X = A=Y(6B — §AX) — A=16 A5 X (or using the
explicit expression for 6X) we get the following a posteriori bound, which is often used
in practice
AT I2(0 + 11X 1[204) 1
A A e e TR Pl P
where § := [0p,04]" € R% and 6z := ||6Z||p. This bound is asymptotically sharp. But
it is even asymptotically exact as shown below. We also prove that for m > 1 the bound
(2) cannot in general be exact (for definitions of exactness see the paper “On Properties
of Perturbation Bounds"by the author, P. Petkov, V. Mehrmann and D. Gu in these
Proceedings).

We shall recall here some of these definitions. Let 7 := [n1, 7] T € R? and set w(n) :=
max{dx(F): § < n}.

The bound dx < f(d), 64 € [0,a0), ap := 1/[|A7Y|2, is:

— asymptotically sharp if there exist 6B # 0, 6 A # 0 such that dx (eE) = f(ed) + o(e)
for e — 0;

— asymptotically exact if w(n) = f(n) + o(||n||) for n — 0;

—exact if f =w;

— attainable if there exists a one-dimensional manifold M such that f(n) = w(n) for
n € M with ny,n2 > 0;

— almost achievable if for every positive 7 < 1 there exists E such that dx = 7f(0).

Next the class of equations, for which the bound (2) is exact, is fully described. Note
that here the exact domain for d4 is the interval [0, ag).

Consider now the problem of estimating the linear combination y = Nz + Naoxo,
where y, z; are vectors and N; are matrices of corresponding size, satisfying ||z;|2 < n;.
The general case is considered in [3]. We have ||y|l2 < est(n; N), where N = (N, Na),
est(n; N) := min{esta(n; V), ests(n; N)} and esta(1; N) == |[[N1, No][2[|nll2, ests(n; N) :=
V1T Non. Here Ny = [n;;] € RY*? is a matrix with elements n;; = || NJIN;||o. Note that
ests(1; N) < esty(n; N), where esty(1; N) := [[Nullam + [ Va|2n2-

For equation (1) we have the bound
3) Sy < est(0p,04; A, Ny)
1 —[[All264
where A == (I, @ A) ' =1, @ A tand Ny = -AX"T®1I,)=-X"T®@A L

In turn, the component-wise perturbation bound for equation (1) is obtained as
follows. Suppose that |0Z| < Az, Z = B, A, where Ay are given non-negative matrices
of corresponding size. If the spectral radius of |[A=1|A 4 is less than 1, we have

6X| = (I — |A71AL) T A |(Ap + AalX]).

The only visible difference between the classical bound (2) and the bound (3) is in
the numerator since the denominators in fact coincide in view of ||Alj2 = ||A7Y||2. The
numerator in (2) is ||[A7|2(0p + || X||264) = est1(dp,4; A, Na). On the other hand we
know that est < est3 < est; so that est is at least as good as est;. In fact, both bounds
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coincide for this case. Indeed,

Na = AX"@L)=-TA Y X "®L,)=-X"oA™",
N = [ANg|=[l,, - XT]®@A"!
and
ATNA =—(I, ®A—T)(XT ® A_l) - XT® (AAT)—l.
Hence
[Nall2 = A7 2l X l2, |ATNa|l, = AT 31X l2,
1A Nallly, = 1A 2 |[[Zn, =X ]|, = 147 l2y/1+ 1 X113
and

ests(6p,04; A, Na) = [[A7|2(65 + | X ||204) = est1(d5,64; A, Na).

We also have a bound

N /
w(77éB;6A5A7NA) = H |:A7TA:| 523 +725i
2
1 X11507
= \/5% +[1X 1362 + 632 + 722 B
The minimum of ¥ in v > 0 is achieved for 4° = || X|205/04 and is equal to est; (we

suppose that d4 > 0, since otherwise the results are trivial).

Thus all local bounds (with the exception of ests) coincide with the bound est. The
reason is that equation (1) has no specific structure.

We have shown that the bound f(¢) is asymptotically sharp. Next we shall show that
it is also asymptotically exact. Finally we shall determine the class of equations of type
(1) for which the bound is even exact.

Let
X = Q¥xR"=Qdiag(o1(X),...,06(X),0,...,0)RY,
A = UZ VY =Udiag(o1(A),...,om(A)VH
be the singular value decompositions of X and A, respectively, where k := rank(X). Let

g, 7 and u;, v; be the columns of the orthogonal matrices @), R and U, V, respectively.
Define the integers kg and £y from

(4) ko :=min{i : 0;(A) = o (A)}, Lo := max{i: 0;(X) = 01(X)}.
We have
INvec(E)|2 = Hvec_l(m,n)(Nvec(E))HF = ||A_1(5B — 5AX)HF,
where vec(E) := [vec' (§B),vec' (§A)]T and vec(B) is the column-wise vector representation

1

of the matrix B (note that the inverse vec™' of vec must contain information about the

size of the matrix arguments of vec).

Let us fix the integers ¢ € {1,...,¢p} and j € {ko,...,m}, and choose
§B = 0 (e); ®u;) RM = dpuyry,
0A = —da (e:m- ® uy) Q" = —Sau;ql,
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where e,,; is the i-th column of I,,. Then
A7y = A7 2vy, ¢HQEXRY = o1 (X)r.
Since ||[A7 |2 = 1/0,,(A) we get
INvec(E)||2

|A~ s (Sarf + 64q] QS x R™)
(05 + | X|l204) A uyrit |
= (A7 2085 + 1X]|28.) [Jv;ri' ||
= [IA7Y2(05 + 1 X[1264) = est(d; N).
Hence est(d; N) < w1(d; N), where
w1(0, N) := max{||Az+ Nazalz2: ||z]l2 < dB, [lzall2 < da}.

On the other hand est(d, N) > w1 (5, N) by construction. The last two inequalities yield
est(d, N) = w1(d, N). Thus we have proved the following result.

I

Proposition 1. The bound (2) is asymptotically exact for all Sylvester equations of
type (1).

We are now going to find conditions for exactness of the bound (2). We consider
mainly the case n = 1 when (1) is a vector equation, since it is equivalent to n vector
equations for the columns of X.

Setting
by (7
b=| : | =U"B, y=| : | =VIX,
bin Ym
where b;,y; € F1X", we get Y4y = b, i.e.,
(5) oy =by, i=1,...,m,

where o; := 0;(A).
We look for extremal perturbations b — b+ Gy, ¥4 — ¥4 + Gx,, with ||Gp|lr < d5,
IGs.llr < da < 04, in the pair (X4, b) for which the norm of the perturbation
8y = (B4 +Gx,) Gy — Gx,y)
in the solution y = Eglb = VHX is maximum, i.e.,
w©®) = max{[|(Za+6%)7H(db—0%y)[|r : |0bllw < g, [|65]r < da}
= [[(Ba+Gs,) Gy — Gsuy)llo-

We also need the notion of an acute perturbation of a non-singular m x m matrix A.

Definition 1. A perturbation §A of A is acute in the norm || - || if ||[6A| < 1/||A~Y]
and equality in
- A
I(A+6A) | € —F =77
L—[lA=t oAl
holds.

In many applications, however, we have to estimate |(A + 6A)~!||2 as a function
of ||0A|lr. Hence this definition must be slightly modified, since the F-norm is not an
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operator norm but satisfies the inequality || AB||r < ||All2||B||lr, which yields

A+ o4y < bl
L= [[A=H2[l6A]
Definition 2. A perturbation 6A of A with ||0A|lr < om(A) is said to be F-acute if
[ A= ]l2 1

I(A+34)7" 2=

L—[|A7 |2ll0Ar — om(A) — [l0A]r"

Given 0 < a < 1/||A71|5 there are exactly m — ko + 1 different F-acute perturbations
0A with ||0A]|lr = a, namely 04 = —« ujv?, j=ko,...,m.

For the matrix ¥ 4 the F-acute perturbations are 634 = —a E;;(m, m) with kg <4 <
m, where the matrix E;;(m,n)R™>™ has a single non-zero element, equal to 0, in position
(i,4). Generically o,,—1 > o, and kg = m, i.e., there is only one F-acute perturbation
A = —aunvil.

The properties of acute perturbations strongly depend on the underlying norm. Consider
p-acute perturbations dA in the Hélder p-norm with [|6A[|, < [[A~"||!, for which

A~
T—[IA T, [PAT,
For instance, if m > 1 there are infinitely many 2-acute perturbations.
It follows from the inequalities o; > 0 and the diagonal structure of system (5) that

Gy, = 0 and that the i-th element of G, must have the sign of the corresponding
right-hand side b; provided n = 1. Moreover, Gy, must be diagonal, i.e.,

I(A +64)7H|, =

Gs, = -—diag(e1,...,em), & >0,

Gy = [nsign(bi),...,Ym sign(bm)]T7 ~v; > 0.
Hence
Sy = L + |yi|€i.
g; —&;

The extremal perturbation is now obtained as a solution of the maximization problem
m 2
Vi + lyiles
6 ———— | — max
( ) Z < g; —&;
=1
subject to the constraints

™ S Y <,
=1 =1

where d4 < om,.
Using particular examples, it may be shown that in general the bound (2) is not exact
when m > 1.

Example 1. Consider the system (5) with m = 2, n = 1 and ép = 4 = 7. The

bound (2) here is
= (142 +22) —1—.
f(n,n) ( +\/ui +y2) p—

The maximization problem (6), (7) in 7;, &; depends on five parameters o1, o2, |y1], |y2|
and 7, where o1 > 02 > 0, 0 < 1 < 02 and |y1]| + |y2| > 0. Depending on the relations
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among these parameters we have the following two cases.
First, let (01 = 02) or (01 > o9 and |y1| < |y2|) Then

n
wnm) = (L4 maxdya], [y [}) =
In this case the extremal perturbation Gy, in ¥4 is F-acute. The bound f(n,n) is exact
if and only if (01 > 09 and by = 0) or (01 =09 and by = 0).

Second, let (o1 > 02) and (|y1| > |yz2|). Here the bound f(n,n) is not exact. At the
same time the extremal perturbation in ¥4 may not be F-acute. Indeed, the maximum

norm of the perturbation dy in y for an F-acute perturbation Gy, of X4 is

v = (1+[ya])

g2

g2 77].
Suppose that (1 + |y1])o2 > (1 + |yz|)o1 and
(1 + lyr[)os — (1 + |ya[)ou

lya| = [y2]
Then, taking the perturbations in b and ¥4 as

_|m _| 0
%[O]MEA[O 0}
we obtain that the norm of the perturbation in y now is

vii= (L4 [yil)

n <

> Vo.
0'277]

Hence the extremal perturbation, for which the norm of dy is at least v, can not be
F-acute.
The following proposition reveals the role of F-acute perturbations in exact bounds.

Proposition 2. If the bound (2) is exact then every extremal perturbation G4 in A
is F-acute (this is true in the general case n > 1).

Proof. Suppose that the bound (2) is exact (f(d) = w(d)) but the extremal perturbation
G 4 in A is not acute. Then

1
A -1 S
I(A+ G < g
which yields
w(@) = |[(A+Ga) (Gp—GaX)|p < |[(A+Ga) M, IIGs — GaX|lr

—GaX 1) X||26

. G5 = GaXllr _ 95 +[1X]204 — £(0),
Om —(5,4 Om _614

i.e., the bound is not exact. This contradiction shows that G 4 must be F-acute. O
The converse statement to Proposition 2, namely that an extremal perturbation may
be F-acute while the bound (2) is not exact, is not true as demonstrated in Example 1.
Hence it is important to determine the class of equations (1), for which the bound (2)
is exact.

Proposition 3. Let n = 1. Then the perturbation bound (2) is exact if and only if
there exists an integer j € {ko, ..., m}, such that b; = ul! B = 0 fori # j (or equivalently,
such that ||u§IB||2 = ||Bll2), where ui,...,unm are the columns of the matriz U in the
singular value decomposition A = U,V of A.
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Proof. Necessity. Suppose that the bound (2) is exact. Then according to Proposition
2 the extremal perturbation Gy, in X4 is F-acute, i.e., there exists an integer j €
{ko, ..., m} such that

i/ o if i #j,
(8) 0y = o
(v + lyjl6a)/(om — ba) if i=].
Since 0; > o, for alli € {1,...,m}, then the maximum of ||dy||2 in 1, ..., Vm is achieved
for v; =0 if ¢ # j and v; = 6. Hence
0B + |y;]0a
Syll2 = |6y;| = ——=—=.
I8yl = o] = 2228

Since the bound is exact it follows from the comparison with the right-hand side of (2)
that |y;| = ||y||2- Having in mind that y; = ul!B/o; we see that y and hence B has all
but one element (in the j-th position) equal to zero.

Sufficiency. Let HU?BHQ = || B|2. Then the only non-zero element of U" B and hence
of y is in the j-th position and (8) holds. Choosing v; = 0 if ¢ # j and v; = dp we get

I8z = logy| = 200 2ot lollda _ g
i.e., the bound f(d) is reached and is thus exact. O
In the generic case kg = m Proposition 3 tells us that the bound (2) is exact if and
only if BRU = [0,...,0,%||B||2] .
Consider finally the case when the size in the perturbations is measured in 2-norm.
We have

9) [6X]l2 <

A l2(10Bll2 + | X [12[|0A]12)
L= [[A=H2]|0 Al

The bound (9) is asymptotically exact for all n > 1. Similarly to Proposition 3 we
may prove the following result.

Proposition 4. The bound (9) is exact for n =1 if and only if
HBH[uk, .. ,um]H2 = ||Bll2.

Proof. The proof is based on the use of the 2-acute perturbation 634 = diag(0, —d21,,—k+1)
in system (5). O

It follows from AX = B that || Blj2 < ||A]|2||X ||z and 1/|| X |2 < ||A||2/]| B]|2- Substituting
the last inequality in (9) yields the well known a priori relative perturbation bound

condz(A) (eg +¢€4)
x < )
1 —conda(A)ea

where ez := ||6Z||2/]| Z]|2 and conda(A) := || All2|[A71]]2.

Unfortunately, in general the bound (10) is not even asymptotically sharp —
this is the price of deleting the ‘a posteriori’ quantity ||X||2.

(10)

The asymptotically exact (and hence asymptoticaly sharp) relative perturbation bound
here is

(11) ex <
68

condq(A) (Bep +¢€4)
1 —conda(A)ea




where
o Bl Bl
[All2[[ X2 [[All2l| A~ B2
Since [|A™"Bllz < [|A7"|[2]| Bl|2 we have
1/conda(A) <60 < 1.

Thus, if: conds(A) is large, 0 is close or equal to 1/conds(A) and €4/ep is small, then
the a priori bound (10) may be arbitrarily larger than the true a posteriori
bound (11).

0 1 0
where € > 0 is a small parameter. The exact relative perturbation in X isex = 2¢/(1—¢).
The a priori bound (10) here takes the form

Example2.LetA:{1 g],B:{O}andéA:{o 052:|7éB:|:g:|,

_1+e

T 1-¢’

while the true a posteriori bound (11) is reduced to

2e

1—e¢

(and is even exact for this particular case). We see that the ratio of the two bounds
Qaple)  14¢€
ou(e) 2

tends to infinity as ¢ tends to zero.

ex < aple) :

ex < pul(e) =

It follows from the above considerations that the bound (10) is asymptotically exact
(for all n > 1) if and only if § = 1, which is equivalent to
(12) 1Bllz = [|All2[| X |2 = [|All2][ A7 B]2.
This condition may be reformulated as follows.

Proposition 5. Set mg := max{i : 0;,(A) = 01(A)}. The bound (10) is asymptotically
exact for any n > 1 if and only if one of the following alternative conditions holds:

1. A = aQ, where 0 # a € R and Q € O(m) when mg = m in the real case, and
A = aQ, where 0 £ a € C and Q € U(m) in the complex case;

2. uZ-HB =0 for i > mg when mg < m.

Proof. 1. In the real case we have my = m if and only if A = a@, where @ € O(m).
In this case X = QT B/a and || X |2 = || B||2/|a|. The complex case is treated similarly.
Since [|Alls = |a| we have ||Bl|s = [|A]|2[|X[]2.

2. Consider the transformed system (5). The condition (12) is equivalent to ||b]|3 =
IZAll3]ly||3 which in turn gives

mo m ||b||2 mo m
SolbdE ot X TR =Y B X
i=1 i=mo+1 ¢ i=1 i=mo+1

Since 01 > Opmg4+1 > - -+ > Oy it follows that b; = U?B =0 fori>mg. O
Combining Propositions 3 and 5 we also get the following necessary and sufficient
condition for exactness of the bound (10).
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Proposition 6. The bound (10) is exact if and only if A = aQ, where 0 # o € R
and Q € O(m) in the real case, and A = aQ, where 0 # o € C and Q € U(m) in the
complex case.

At the same time the relative bound (11) is exact together with the absolute bound
(9) under the weaker condition of Proposition 4. When A is a scalar multiple of an
orthogonal or unitary matrix as in the condition of Proposition 6 then ky = 1 and the
condition of Proposition 4 holds.

3. Conclusions. We have analyzed perturbation bounds for the standard linear
matrix equation from the viewpoint of their sharpness and exactness. The above results
depend on the norm used. For Holder p-norms with p # 2 the conditions for various types
of exactness of the perturbation bounds will be different.
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YYCTBUTEJIHOCT HA CTAHJAPTHOTO JINMHEMTHO MATPUYHO
YPABHEHUE

M. M. KouncranTuHos

Usyyena e 4dycTBUTENHOCTTA HA CTAHIAPTHOTO MATPUYHO AJT€OPUYIHO ypaBHEHUE
AX = B. Anajmsupanu ca aCUMIOTOTHUYHUTE CBOWCTBA HA NEPTYypPOALMOHHUTE I'pa-
HUITM 32 TOBa ypaBHEHUE.
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