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The computer implementation of the Fourier method for solution of linear boundary
value problems for PDE of the mathematical physics is still an open problem. Here
the solution of this problem is sought in a combination of the Fourier method with
the Duhamel principle in a general sense. The Fourier method is to be understood
in a somewhat more general sense than it is accepted in the most textbooks. Also
the Duhamel principle is both generalized and extended to space variables. This is
done by means of general convolutions of BVP for a class of nonlocal boundary value
conditions for linear differential operators of first and second orders. Some numerical
experiments, done in the environment of the computer algebra system Mathematica

are also supplied.

1. Introduction. The Fourier method descends from the celebrated book “Théorie
Analitique de la Chaleur” (1822) of Josef Fourier [1]. Till nowadays this method is
an indispensable part of that section of applied mathematics which bears the name
of mathematical physics. The “explicit” form of the solution given by the method in
principle allows to evaluate the solution at each point, independently of the values at
other points. This is a great advantage compared with the difference methods, but from
the computational point of view it is obtained on a very high price. Indeed, in order to
use the solution in a form of a series for evaluation of the values at prescribed points, one
should accomplish two time-consuming steps: 1) to expand the boundary value functions
into series of eigenfunctions by numerical calculation of many definite integrals (say 50
or more); 2) to form the series solution and to sum it using rather big number of terms
(say several hundred) since, as a rule, it is slow convergent.

That’s why, if we are looking for a method of solution of boundary value problems
of partial differential equations, then both the difference and the Fourier methods are
unpractical as it concerns their implementation on personal computers (see Alad’ev and
Shishakov [2], p. 644).

Our aim here is to show that this obstacle to an effective computer implementation of
the Fourier method on personal computers in most cases could be overcome by a suitable
extension of the Duhamel principle. This principle had arisen almost simultaneously with
the Fourier method. In 1830 J.-M.-C. Duhamel published a big Memoire [3]. Here, in a
rather descriptive form, he had shown that the solution of the boundary value problem

∂u

∂t
=
∂2u

∂x2
, u(0, t) = 0, u(1, t) = ϕ(t), u(x, 0) = 0
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could be obtained for arbitrary ϕ(t), provided that we have the solution U(x, t) of the
same problem, but for the special choice ϕ(t) ≡ 1. It is given by the formula

(1) u(x, t) =
∂

∂t

∫ t

0

U(x, t− τ)ϕ(τ)dτ

in the strip 0 ≤ x ≤ 1, 0 ≤ t.
Using the Fourier method, we can easily find

(2) U(x, t) = x+
2

π

∞
∑

n=1

(−1)n

n
e−n2π2t sinnπx

It is desirable to extend the Duhamel principle to boundary value problems with non
homogenous initial conditions. E.g. for the BVP

ut = uxx, u(0, t) = u(π, t) = 0, u(x, 0) = f(x) in the strip 0 ≤ x ≤ π, 0 ≤ t
there is also something like the Duhamel representation (1):

(3) u(x, t) =

∫ π

0

[θ(x− y, t) − θ(x + y, t)] f(y)dy

where

(4) θ(x, t) =
1

2π
+

1

π

∞
∑

n=1

e−n2t cosnx

is the well-known θ-function (see Widder [4], p. 94). The function θ(x, t) is a solution
of the heat equation, but it is not a solution of the same BVP for special choice of f(x)
since the series for θ(x, t) diverges for t = 0. Nevertheless, representation (3) could be
used for evaluation of u(x, t) at inner points of the domain 0≤x≤π, 0≤t.

Representation (3) dates to 1913 and most likely is due to M. Gevray. As far as we
know, no other Duhamel-type representations of this sort for solutions of linear BVP for
PDE are known.

Further, we are to show that the Duhamel principle extends to the space variables
to the most BVP for PDE for which the Fourier method applies. To this end we are
to make a brief survey of the Fourier method in a somewhat more general form than it
is usually done in the most textbooks. We aim to encompass nonlocal boundary value
problems along with local ones.

2. A survey of the Fourier method, intended for linear boundary value
problems. First of all, we are to describe the class of PDE to which our extension of
the Fourier method applies. We consider a single PDE of the form

(5)

m
∑

k=1

Pk

(

∂

∂tk

)

u =

n
∑

l=1

Ql

(

∂2

∂x2
l

)

u+ F (x, t),

where Pk, k = 1, . . . ,m and Ql, l = 1, . . . , n are polynomials with constant coefficients
of the corresponding operators and F (x, t) in the right-hand side is a function of m+ n
variables (x, t) = (x1, . . . , xn; t1, . . . , tm). The domain G in which the solution is sought
is supposed to be a Cartesian product of intervals. For the simplicity sake, we assume
that

G = {(x1, . . . , xn; t1, . . . , tm) : 0 ≤ xl ≤ 1, l = 1, . . . , n; 0 ≤ tk, k = 1, . . . ,m}
In order to describe the boundary value conditions for the problems we could treat by
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the Fourier method, let us suppose that m non-zero linear functionals χk, k = 1, . . . ,m
in C [0,∞) and n non-zero linear functionals Φl, l = 1, . . . , n in C1 [0, 1] are given. The
functionals χk and Φl can be given by Stieltjes integrals:

χk {f} =
∫ Tk

0
f(τ)dαk(τ) and Φl {f} = γlf(1) +

∫ 1

0
f

′

(ξ)dβl(ξ)
with γk = const, 0 ≤ Tk ≤ ∞, where αk and βl are functions with bounded variation.

We consider the equation (5) with the following boundary value conditions:

∂2ju

∂x2j
l

∣

∣

∣

∣

∣

xl=0

= φ
(j)
l (x1, . . . , xl−1, xl+1, . . . , xn; t1, . . . , tm),

(6) Φl

{

∂2ju

∂x2j
l

}

= ψ
(j)
l (x1, . . . , xl−1, xl+1, . . . , xn; t1, . . . , tm),

j = 0, 1, 2, . . . ,degQl − 1, l = 1, 2, . . . , n

where the functional Φl is applied “partially” to xl only, and with the initial conditions

(7) χk

{

∂iu

∂tk

}

= f
(i)
k (x1, . . . , xn; t1, . . . , tk−1, tk+1, . . . , tm)

i = 0, 1, 2, . . . ,degPk − 1, k = 1, 2, . . . ,m,

where χ is applied partially to tk only, and φ
(j)
l , ψ

(j)
l and f

(i)
k are given functions of the

indicated variables.
Further, for the simplicity sake, we restrict our considerations to three simplest cases

of the equation (5): a) the heat equation ut = uxx + F (x, t); b) the wave equation
utt = uxx + F (x, t); c) the potential equation uxx + uyy = F (x, y).

In the cases a) and b) we take the domain G to be the strip {0 ≤ x ≤ 1, 0 ≤ t} , and
in c) we take for G the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b.

In order BVP (5)-(7) to be solved by the Fourier method we solve the following two
elementary BVP:

1. The general spectral problem for the differentiation operator:

(8)
dy

dt
− µy = f, χ {y} = 0,

where χ is an arbitrary linear functional on C [0,∞). As it is well known, χ has a finite
support (by a result of L. Schwartz). Assume supp χ ⊂ [0, T ]. Till 1974 it remained
unnoticed the following generalization of the Duhamel convolution

(9) (f
(t)
∗ g)(t) = χτ

{
∫ t

τ

f(t+ τ − σ)g(σ)dσ

}

The solution y = Lµf determines the resolvent operator Lµ of the spectral problem
(8). The values of µ for which (8) has no solution form the spectrum of spectral problem
considered. This spectrum is either void (a Cauchy problem), or enumerable (a nonlocal
spectral problem). It consists of a sequence of distinct eigenvalues µ1, µ2, . . . , µk, . . ..
Each eigenvalue µk, k = 1, 2, . . . has its own multiplicity κk.

To each of these eigenvalues it corresponds a projection operator

(10) Pk {f} =
1

2πi

∫

Γk

Lµfdµ, k = 1, 2, . . . ,

where Γk is a simple contour containing the eigenvalue µk only. The operators Pk, k =
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1, 2, . . . are called Riesz’ projectors on the name of F. Riesz. They play a role similar to
that of the finite Fourier transform

(11) Fn {f} =

∫ 1

0

f(t)e−intdt, n = 0,±1,±2, . . .

in the interval [0, 1]. In fact, for χ {f} = f(1) − f(0) we have Pn {f} = Fn {f} eint.

Since Lµ is the convolutional operator Lµ = {eµt/E(µ)} ∗ , where E(µ)
= χτ {e

µτ}, i.e. Lµf(t) = {eµt/E(µ)} ∗ f(t), then the Riesz projectors (10) can be
considered as the convolution operators

(12) Pk {f} =

{

−
1

2πi

∫

Γk

eµt

E(µ)
dµ

}

∗ f = ϕk ∗ f

too. Here ϕk is a quasi-polynomial of the form ϕk(t) = eµkt
∑κk−1

j=0 akjt
j

where κk is the multiplicity of the eigenvalue µk.

According to a theorem, due to L. Schwartz and A. F. Leontiev (see Dimovski and
Petrova [5]), if supp χ = [0, T ], then the relations Pk {f} = 0, k = 1, 2, . . . imply f = 0
on [0, T ]. In other words, the system of Riesz projectors (10) is total in C [0, T ].

2. A nonlocal (in general) spectral problem for the square d2/dx2 of the differentiation
operator d/dx:

(13)
d2z

dx2
+ λ2z = f, z(0) = 0, Φ {z} = 0,

where Φ is an arbitrary linear functional on C1 [0, 1] such that 1 ∈ supp Φ. Till 1976 (see
Dimovski [5]) it was not known the following convolution intrinsically connected with
the spectral problem (13):

(14) (f
(x)
∗ g)(x) = −

1

2
Φξ ◦

∫ ξ

0

[
∫ η

x

f(η + x− ζ)g(ζ)dζ −

∫ η

−x

f1(η − x− ζ)g1(ζ)dζ

]

dη

where f1(x) = f(|x|)sign x and g1(x) = g(|x|)sign x are the odd continuations of the
functions f(x) and g(x). It is a commutative and associative operation in C [0, 1], such
that the resolvent operator R−λ2 determined as the solution z = R−λ2f of the BVP (13)
can be represented as the convolution operator

(15) R−λ2f =

{

sinλx

λG(λ)

}

(x)
∗ {f(x)} ,

where G(λ) = Φξ {sinλξ/ξ}. The roots of G(λ) are the eigenvalues of (13). Let these
distinct eigenvalues be −λ2

n, n = 1, 2, . . . and κ′

n be their respective multiplicities.

The Riesz projectors of (13) are the operators

(16) Qn {f} =
1

πi

∫

γ′

k

λR−λ2fdλ

where γ′k, k = 1, 2, . . . , is a contour containing λk only.

In 1989 N. Bozhinov [7] proved that a necessary and sufficient condition for the totality
of the Riesz projectors (16) of (13) is the requirement the right endpoint 1 of the segment
[0, 1] to belong to the support of the functional Φ, i.e. 1 ∈ supp Φ. In particulary, Φ
could be a functional of the form Φ {f} = αf ′(1) + βf(1).

The convolution (14) allows the Riesz projectors to be represented as convolution
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operators of the form

(17) Qn {f} = ψn ∗ f with ψn(x) =

∫

γ′

n

sinλx

λG(λ)
dλ,

where γ′n is a small contour around λn, which does not contain any other λk with k 6= n.
If −λ2

n is a simple eigenvalue, i.e. if κn = 1, then ψn(x) is the eigenfunction

ψn(x) = 2 sinλnx/λnG
′(λn).

Each of the operators Qn is a projector of C [0, 1] onto the κn-dimensional space
of the corresponding eigenfunction sinλnx and the associated eigenfunctions x cosλnx,
x2 sinλnx, x

3 cosλnx, . . . , x
2k−1 cosλnx or x2k sinλnx with [κn/2] = k in the cases of

even or odd κn, respectively.
Let f ∈ C2 [0, 1]. Then, looking on Qn {f} = fn, n = 1, 2, . . . as on an analogon of the

finite Fourier transform (see Dimovski and Petrova [6], pp. 94-100), we state the most
important operational property of the transform (17).

Theorem 1. If f ∈ C2 [0, 1], then for fn = ψn ∗ f it holds

(18) (f ′′)n = (fn)
′′

− f(0) [(Qn1)′′ − ψn] − Φ {f}ψn .

In the special case κn = 1, i.e. of a simple eigenvalue, we have

(19) (f ′′)n = −λ2
nfn − f(0)

[

(Qn {1})′′ −
2 sinλnx

λnG′(λn)

]

− Φ {f}
2 sinλnx

λnG′(λn)
.

As an inversion formula the identity f(x) =
∑

∞

n=1 fn(x) could be used. It is true,
when the series is uniformly convergent. If not, then always an Abel-type summation
method (see Bozhinov [8]) is available.

The use of transformation (16) or (17) for the solution of the BVP we are looking
for, proceeds in the traditional manner. Denote un(x, t) = Qnu, Fn(x, t) = QnF . Then
applying (16) on the equation

∂u

∂t
=
∂2u

∂x2
+ F (x, t),

we get ∂un/∂t=∂
2un/∂x

2+Fn(x, t). Applying (16) on the “initial” condition χτ{u(x, τ)}
= f(x), we obtain χτ {un} = fn, where fn = Qnf . Further we find un in a unique way.
At last, the solution is written as u(x, t) =

∑

∞

i=1 un(x, t).
Here we can skip the details, since our aim is to propose an alternative of the Fourier

method. The only fact, we need further and which can be proven by the generalized
Fourier method from this section, is the uniqueness of the solution of BVP (7).

Theorem 2. If 1 ∈ supp Φ, then BVP (7) have a unique solution, if and only

if µm + λ2
n 6= 0 for all m,n ∈ N, i.e. iff there is no dispersion relation of the form

µm + λ2
n = 0.

The condition 1 ∈ supp Φ ensures the totality of projectors (16). The totality of the
projectors (12) is not required.

3. A two-variate operational calculus. Since we aim to avoid the shortcomings
of the Fourier method, we should propose a substitute for it. Such a substitute are various
operational calculi, intended for boundary value problems. Having on disposal multivari-
ate convolutions, we may use the direct algebraic approach, similar to the approach of J.
Mikusinski to the classical Heaviside operational calculus. Nevertheless, a better escape
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is to use an algebraic construction, based on multipliers fractions, instead of convolution
fractions, as it is done by Mikusinski. Here only elements of such an operational calculus
are outlined. For more details in a special case, see Chobanov and Dimovski [9].

The starting point is a convolution in C(∆) where ∆ = [0, 1]× [0,∞).

Theorem 3. Let Φ be a non-zero linear functional on C1 [0, 1] and Φ̃ be the compo-

sition of Φ by the integration operator
∫ x

0 , i.e.

(20) Φ̃ {f} = Φξ

{
∫ x

0

f(ξ)dξ

}

and χ be a linear functional on C [0,∞). Then the bilinear operation on C(∆):

(21) (f ∗ g)(x, t) = χτ Φ̃ξ {h(x, t; ξ, τ)} ,

with

h(x, t; ξ, τ) = −
1

2

∫ t

τ

[

∫ ξ

x

f(ξ + x− η, t− τ)g(η, τ)dη −

−

∫ ξ

−x

f(|ξ − x− η|, t− τ)g(|η|, τ)sgn(ξ − x− η)ηdη

]

dτ

is a commutative and associative operation in C(∆). The resolvent operators Lµ and

R−λ2 are multipliers of the algebra [C(∆), ∗] and it holds the relation

(22) LµR−λ2f =

{

eµt sinλt

E(µ)λG(λ)

}

∗ f .

Here we skip the proof, since it follows the lines of a corresponding proof in Chobanov
and Dimovski [9].

For the constructing of a corresponding operational calculus, it is convenient to sup-
pose that µ = 0 and λ = 0 are not eigenvalues of the spectral problems (8) and (13).
This is not an essential restriction, but it allows to avoid some technical troubles.

Basic roles in our operational calculus play the operators l = L0 and L = R0. Written
explicitly as

(23) lu =

∫ t

0

u(x, τ)dτ − χτ

{
∫ τ

0

u(x, σ)dσ

}

/χ {1}

(24) Lu =

∫ x

0

(x − ξ)u(ξ, t)dξ −
x

Φ {ξ}
Φξ

{

∫ ξ

0

(ξ − η)u(η, t)dη

}

,

it is immediately seen that they are right inverse operators of the operators ∂/∂t and
∂2/∂x2 respectively.

It is clear also that

(25) lu = {1}
(t)
∗ u, Lu = {x}

(x)
∗ u,

where
(t)
∗ and

(x)
∗ denote the convolutions (9) and (14), respectively.

Having in our disposal the convolution (21), we consider the space C(∆) with the
linear operations in it and the operation ∗ as a commutative and associative algebra
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[C(∆), ∗] without annihilators. The role of the last condition is explained in Dimovski
[5].

The operators l and L have the properties

l(f ∗ g) = (lf) ∗ g and L(f ∗ g) = (Lf) ∗ g

Definition. A linear operator A : C(∆) → C(∆) is said to be a multiplier of the

convolution algebra [C(∆), ∗], iff the identity A(f ∗g) = (Af)∗g for arbitrary f, g ∈ C(∆)
holds.

All multipliers of the convolution algebra [C(∆), ∗] form a commutative algebra M .
Obviously, the algebra M contains a subalgebra, isomorphic to the algebra [C(∆), ∗]. It
contains also a subalgebra, isomorphic to the field of constants of C(∆)(R or C). Hence
M can be considered as an algebra on the same field of constants as [C(∆), ∗]. After
Mikusinski, we say that the constants in M are the numerical operators. If a ∈ R, then
[a] is the numerical operator, determined by a. It acts on a f ∈ C(∆) in the following
way: [a] f = {af(x, t)}, i.e. it multiplies f by a. Hence, we may assume that R ⊂M . It
is convenient also to introduce two other kinds of multipliers.

Definition. If ϕ(t) ∈ C [0,∞), then the operator [ϕ(t)]x = ϕ
(t)
∗ is said to be a

numerical operator with respect to x. In a similar way, if f(x) ∈ C [0, 1] then by [f(x)]t

we denote the operator [f(x)]t = f
(x)
∗ and it is called a numerical operator with respect

to t.

Both [ϕ(t)]x and [f(x)]t belong to the ring M of the multipliers of the convolution
algebra [C(∆), ∗].

Let us denote by N the multiplicative subset of M consisting of the non-zero non-
divisors of zero in M .

Due to the isomorphism of [C(∆), ∗] with the subring of M consisting of the operators
of the form f∗, f ∈ C(∆), further we consider C(∆) as a part of M , identifying f∗ and
f .

The decisive step is the extension of the ring of M to a bigger ring, the multipliers
fractions ring M. In the general algebra courses it is used the denotation M = N−1M .
More important is to note that M consists of fractions of the form A/B with A ∈ M
and B ∈ N . The identity operator of M is also an element of M. We denote it simply
by 1.

Basic elements of M from the point of view of our operational calculus are
1

l
= s,

1

L
= S

In a sense, the elements s and S could be considered as algebraic substitutes of the
differential operators ∂/∂t and ∂2/∂x2. But even for u ∈ C2(∆) the expressions su and
Su do not coincide with ∂u/∂t and ∂2u/∂x2.

Theorem 4. Let u ∈ C2(∆). Then

(26)
∂u

∂t
= su− [χτ {u(x, τ}]t ,

(27)
∂2u

∂x2
= Su− S {u(0, t)(1 − Φ {1}x)} − [Φξ {u(ξ, t)}]x

123



The identities (26) and (27) are the key for applications of the operational calculus
developed to BVP like (7).

4. Operational calculus approach to BVP (5)–(7). By means of (26) and (27)
BVP (5)–(7) for the heat equation ∂u/∂t = ∂2u/∂x2 reduces to the single equation

(28) (s− S)u = [f(x)]t
in M. It remains only to divide (28) by s− S and to obtain

(29) u =
1

s− S
[f(x)]t

as its solution in M. But this is possible only when the element s− S is not a divisor of
zero in M. This follows from the uniqueness theorem for BVP (5)–(7) (Theorem 2).

Solution (29), represented in the form

u = S
1

s− S

1

S
[f(x)]t

allows to interpret u as an element of C(∆). Since 1/S = [x]t, then

1

s− S

1

S
=

1

s− S
[x]t

is the solution of problem (7) for the special choice f(x) = x. Denoting this solution by
Ω(x, t), solution (29) obtains the Duhamel-type representation

(30) u(x, t) =
∂2

∂x2

{

Ω(x, t)
(x)
∗ f(x)

}

Initially, we supposed that Φ ∈ (C1 [0, 1])∗. But if we restrict our considerations to
functionals Φ on C [0, 1] only, then formula (30) could be simplified further.

Theorem 5. If Φ ∈ (C [0, 1])∗ and Ω(x, t) is the solution of BVP (7) for f(x) = x,
then solution (29) can be represented in the form

(31) u(x, t) = −
1

2

∂

∂x
Φξ

{

∫ ξ

x

Ω(ξ + x− η, t)f(η)dη +

+

∫ ξ

−x

Ω(|ξ − x− η|, t)f(|η|)sgn(ξ − x− η)ηdη

}

.

Example 1. The “Samarskii–Ionkin problem” (see Dimovski, Spiridonova [10]). It
has the form:

ut = uxx, u(0, t) = 0,
∫ 1

0 u(x, τ)dτ = 0, u(x, 0) = f(x)

We have BVP (7) with Φ {f} =
∫ 1

0
f(ξ)dξ. Then

Ω(x, t) =
∞
∑

n=1

{−2x cos 2nπx+ 8πnt sin 2nπx} e−4n2π2t

and

(32) u(x, t) = −2

∫ x

0

Ω(x− ξ, t)f(ξ)dξ −

∫ 1

x

Ω(1 + x− ξ, t)f(ξ)dξ
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+

∫ 1

−x

Ω(1 − x− ξ, t)f(|ξ|)sgnξdξ,

This representation of u(x, t) is very convenient for computer implementation. A
visualization of the numerical solution computed by means of the computer algebra
system Mathematica [12] is shown on Fig. 1. It is preceded by the graph of the function
f(x).
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Fig. 1

Now we will consider the possibility to use similar representations for equations of
higher order.

Example 2. Consider the equation of a free supported beam (see Farlow [11]):

∂2u

∂t2
= −

∂4u

∂x4
, 0 < x < 1, 0 < t <∞,

with the initial-boundary value conditions:

u(0, t) = 0, uxx(0, t) = 0, u(1, t) = 0, uxx(1, t) = 0

u(x, 0) = f(x), ut(x, 0) = g(x)
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Using the series solution in Farlow [11] we obtain

(33) u(x, t) =

∞
∑

n=1

[

an sin(nπ)2t+ bn cos(nπ)2t
]

sinnπx

where

an =
2

(nπ)2

∫ 1

0

g(x) sin(nπx)dx, bn = 2

∫ 1

0

f(x) sin(nπx)dx, n = 1, 2, 3, . . .

Further, we consider the case when f(x) ≡ 0. Then from the simplified representation
(31), we obtain

(34) u(x, t) = −
1

2

∫ 1

x

Ωx(1 + x− ξ, t)g(ξ)dξ +
1

2

∫ 1

−x

Ωx(1 − x− ξ, t)g(|ξ|)sgnξdξ
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where

Ωx(x, t) =
2

π2

∞
∑

n=1

((−1)n−1/n2) sin(nπ)2t cosnπx

Representation (34) is convenient for computer calculation of the solution. On Fig. 2
the relief of the solution is shown, together with the graph of the chosen function g(x).

The computations and the solution visualization are made in the environment of the
computer algebra system Mathematica again. A comparison of the numerical solution
of the problem with the exact solution was made. Accuracy of order 10−7 was achieved
when the series for Ωx is truncated at the 20th term.
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МЕТОДЪТ НА ФУРИЕ И ПРОБЛЕМЪТ ЗА НЕГОВАТА

КОМПЮТЪРНА РЕАЛИЗАЦИЯ

Иван Димовски, Маргарита Спиридонова

Компютърната реализация на метода на Фурие за решаване на гранични задачи

за ЧДУ е все още открит проблем. Тук решението на този проблем се търси в

съчетаването на метода на Фурие с принципа на Дюамел в обобщен смисъл. В

основата на предложеното разширение на принципа на Дюамел и за простран-

ствени променливи са общите конволюции за широк клас гранични задачи за

линейни диференциални оператори от I и II ред. Извършени са числени експе-

рименти с помощта на системата за компютърна алгебра Mathematica.
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