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The first proofs of the Prime Number Theorem, given in 1896, were too long and
used difficult analytic tools. In 1980 D. J. Newman proposed a new proof, simplified
later by D. Zagier. Here following the paper of D. Zagier “Newman’s short proof
of the Prime Number Theorem” [7] we make all its argument clear for the level of
interested in analysis undergraduate students. Wide information about the Prime
Number Theorem and its proofs could be found in the papers of P. T. Bateman and
H. C. Diamond “A hundred years of prime numbers” [1] and J. Korevaar “A century
of complex Tauberian Theory” [3]. For interested readers it would be usefull to look
at the books of K. Chandrasekharan [2] and E. C. Titchmarsh [6].

1. Preliminaries. The Prime Number Theorem is the following assertion: m(x) ~

as © — oo where m(x) is the number of primes < z. Recall that the notation

f(x) ~ g(z) (“f and g are asymptotically equal”) means that lim @ = 1. The proof
z—00 g(T

will be present in a series of steps. A sequence of properties of the three functions

g(s):Z%, @(s)zzkﬁp, O(m):Zbgp (seC, z€R).

n=1 P p<z

log

will be proved. We always use p to denote a prime. The series defining ((s) (the Riemann
zeta-function) and ®(s) are easily seen to be absolutely and locally uniformly convergent
for R(s) > 1, so they define holomorphic functions in this domain. The Chebyshev
function 6(x) is a piecewise constant, monotonical increasing function with jumps at the
prime numbers: 6(p; +0) — 0(pr, — 0) = log pi, where py, is the k-th prime number in the
sequence of the prime numbers arranged by increasing.

Needed information from real and complex analysis could be found in the books of
G. M. Fihtengoltz [8], B. V. Shabat [9], E. C. Titchmarsh [5] and other books on the
topic. The definition of analytic (holomorphic) function would be found in [9], p. 32, the
notion of an analytic continuation would be found in [9], Ch. II or in [5], Ch. IV.

(I). Representation of the zeta function as an infinite product (For a de-
finition of infinite product see for example [8], v. II, p. 350 or [5], Ch. I.):
¢(s) = [T =p=)~" for R(s) > 1.

p
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Proof. From unique factorization each natural number has a representation of
the form n = 273" .... Then by the absolute convergence of the series represent-

ing ((s) we have ((s) = Z % = Znﬂ = Z (2m3™..)7° = H (ZP“)

T2,73,...20

1 = e
= H T (R(s) > 1). The forth equality holds as the product H (Zp‘”’)
P r=0

H (1 +— —|— —; +- ) contains all the terms of Z (273" ...)~* only once.

T2,73,...20
The last equahty follows from the formula for the sum of the geometric series with quo-
tient p—*, which is convergent as [p~%| = p~ %) < 1 when R(s) > 1. O

(IT). Singularities of the zeta function for R(s) > 0: ((s) —
analytically to the open half plane R(s) >

Proof. For R(s) > 1 holds ((s) Z ni */ 1 Z s /

oo n+1
1
- Z/ —dr = Z/ <— - —> dx. The series in the right-hand side con-

n=1
verges absolutely for §R )>0 because

n+1 1 n+1
[ Gez) -
(IT1.) Inequality for the Chebyshev function 0(x): 0(x) < (4log2)x for x > 1.

Proof. For n € N we obtain 22" = (1 + 1)*" = (2n) +...+ (2n) > (2n) =
0 2n n
2n.2n—1)..... (n+1) o o
S DD [T nlecysanr  (Bacosan o
n<p<2n
— o(Zpcanlogp=5,, logp) _ e?(2n)=0(n) j e, 0(2n)=0(n) < 227 where from 0(2n)—6(n) <
log 22" = 2nlog2. Let us note that the inequality in the second row above is fulfilled
as the product in the right hand-side has as multiples prime numbers which divide the
integers in the numerator but not the denominator of the fraction in the left hand-
side. Then summing the inequalities 8(2n) — 0(n) < 2nlog2 for n = 1,2,22 ... 2m~1
m m

extends
1

< max ‘ 5 ‘:l ]
n<u<n+1

ust1 nm@}H

s+1

we obtain: 0(2™) — (1) = Z (627 —0(2" 1)) < 10g222’” < 2™tl]og?2, and as
r=1

6(1) =0, 0(2™) < 2m*1log2.

Let now = > 1 and m be a positive integer such that 2m~1 < x < 2™. As 0(z) is an
increasing function from the last inequality it follows

0(z) < 0(2™) < 2™ og2 < 4xlog2.
From here 0(z) < 4zlog?2 for x > 1, what we are to prove. O
1

s—1

(IV). Nonvanishing of the zeta function and analyticity of ®(s) —

for R(s) > 1: ((s) #0 and D(s) —
132
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Proof. For 8‘%( ) > 1, the convergence of the product in (I) implies that (s) # 0 and
—log((s :flognlf ) Zloglf 1:Zlog(lfp
P

from where it follows that the first derlvatlves of the first and the last terms are equal.
This means
¢(s) ' 1 R )
—= = {-log((s)} = { ) log(1—p~°) p = -y =)
log p logp(p® —1+1) logp log p log p
= = =3 22N B () 4+ Y ———.
Zp -1 Z p(p*—1) zp: p* zp:ps(psfl) ) Zp:ps(psfl)
The final sum converges for R(s) > 1, so this fact and (II) imply that ®(s) is equal to a
meromorphic function on R(s) > 1, with poles only at s = 1 and at the zeros of {(s). In
fact, if ((s) has a zero of order y at so, Rso > 3 then ((s) = (s — s0)" A(s), A(sg) #0, A
d(s) po Als)

bei lytic functi . Thus, — =— . A h le at
eing analytic function near sg us, 0s) pa— + As) s ((s) has a pole a

s = 1 with a residue equal to 1 then ((s) = Al—(sl) near s = 1, A1(s) = 1+ (s — 1)B(s)

!
with analytic function B(s) near s = 1. So we conclude that —Z(s) has a pole at s =1

with a residue equal to 1. Let now ((s) have a zero of order p at s = 1+ ia (o € R,
a # 0) and a zero of order v at 1+ 2ic (so p, v > 0 by (ITI)). We can compute easily the
following limits:
(¥*) lime®(1+¢)=1, lime®P(1+e+tia)=—p, and limeP(1l+ e+ 2ia) = —v.
e\0 e\0 e\0

E. g. let us calculate the limit li\rn0 e®(1 + € £ icr). According to the previous con-
€

! A/
siderations with s = 1+ & £+ i, sp = 1 £ i we have: —%(1 +etia)= —H + I(l +

etia) =P(1+etia)+ H(l+exia), H(s) being analytic function for §Rs > 5. So
h{%s@(l +etia) = —p.

The following inequality holds:
2

2
4 . 4 logp
Z (2 i 7“> @(1 +e+ Z’I’Oé) = Z <2 + 7«) ; p1+6+i7'oz

r=—2 r=—2

I 4 . I . ) ) ) )
L B A I L

p p

1ogp _ - . . . logp o, o4
72 1+E 2 4wz+4p3wz+6p2wz +pwz +p0 a) :Zp1+5p 2icv (1 +pw¢)
p

2 —1 4 10 P i X 4
Z pite [ P m)} - Zplie (P “/2+pw‘/2) >0
P

p

4
On the other hand, Z ( )@(1 +e+4ira) = (1 + e — 2ia) +4P(1 4+ ¢ — ia) +
= 2+r
60(1+¢)+4P(1 + ¢+ ia) + (1 + € + 2ia). Then applying the limits (), we obtain
that 6 — 8 — 2v > 0, so p = 0, i.e., (1 4+ ia) # 0. In this way we conclude that for
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each R > 0 there exists §(R) > 0 such that ((s) is an analytic nonvanishing function in
the rectangle 1 — 6 < s < 1, |Ss| < R except for the point s = 1 where it has a simple
pole with residue equal to 1. Therefore, the same is true for ®(s). The assertion (IV) is
verified. [

©o(x) -z

5>— dx 1s a convergent

(V). Convergence of an auxiliary integral: /
1 l‘

integral.
°° df(x)

IS

Proof. For (s) > 1 it is convenient first to consider the Stieltjes integral /
1
(see for example [8], v. III, p. 89). As it is known from the courses on real analysis (see

8], v. III, p 103)

/°° ikaJrO 0(pr. — 0) Zlogspk:@(s)

k=1 Pk k=1 Pk
where p; = 2,ps = 3,... are the prime numbers arranged in an increasing order. But
after integrating by parts we obtain

o0 (o) (o)
/ M = s/ 9(_32 dx = s/ e 50 (el) dt.
TR 1 z° 0

So ®(s) = s/ e *'0(e") dt. Therefore (V) is obtained by applying the following An-

0
P 1
alytic Theorem to the functions f(t) = 6(e’)e™* — 1 and g(z) = % — —, which
P

satisfy its hypothesis according to (III) and (IV). Let us make the substitution s = z+1
1

in (IV). Then Rs > 1 <= Rz > 0 and ®(z+ 1) — — is holomorphic for Rz > 0. There-
z

P(z+1) 1 1

fore, the function g(z) = ——— — — =
z+1 z z+1
Rz>0. O

Analytic Theorem (of Tauberian type, Neuman [4]). Let f(t) (t > 0) be a

1
<<I>(z +1)— i 1) is holomorphic for

bounded and locally integrable function and suppose that the function g(z) = f(t)e *tdt
0

oo
(R(z) > 0) extends holomorphically to Rz > 0. Then / f(t) dt exists (and equals
0

9(0)).
(VI). Asymptotical behaviour of the Chebyshev function (z): 6(z) ~ x.

Proof. Assume that for some fixed A > 1 there are arbitrary large « with 6(z) > Ax.
Since 6 is non-decreasing, then for z <t < Ax = 0(t) > 6(z) > Az and we have

Az Az A
o(t) —t A —t A—t
/ (2 dt>/ ‘Tt dt = i =C(0) =X~ 1-logA>0
x x 1

O@)  \ WA > 1. So Ty 28
x
Similarly, the inequality 8(z) < Az with 0 < )\ < 1 would imply

T O(t) —t \r —t a—t
/ ®) dtg/ AL / —C(\) = A+ 1+logh<0.
A t2 e 12 a2

x

for such x, contradicting (V). Thus, lim,_, o —— <1.

0
We get again a contradiction for A fixed and = big enough, hence lim ﬂ >1. O
z—oo L
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Proof of the Prime Number Theorem. The Prime Number Theorem follows
easily from (VI), since for any ¢ > 0 6(z) = Zlogp < Zlogx = 7(z)logz, and

p<z p<z
0(x) > Z logp > Z (1 —¢e)logz = [(1 —¢e)loga] [w(z) — m(z' )] > [(1 -
zl-e<p<zx zl-e<p<zx
¢)logz][r(z) — x'~¢]. Indeed, 7(zx) > blx) = lim, ﬂgﬂx) > lim b(z) = 1, while
log x =00 T
log x
0(x) log x - . B(x) — 7(x)
— > (1- - € 1= 1 >(1— 1 T—00 .
. > ( ) . [w(z) T }ﬁ Jim - > ( e)lim —
logz

Letting € — 0 we obtain the desired result. O
T

Proof of the Analytic Theorem. For T > 0 set gr(z) = / f(t)e *"dt. This is

clearlya holomorphic function for all z. We must show that 1imT_(,)Oo gr(0) = ¢(0).

Let R be large and fixed and let C be the boundary of the region {z € C : |z|
< R,R(z) > —d}, where § > 0 is small enough (depending on R) so that g(z) is holo-
morphic in the region and on C. Then the Cauchy theorem (cf. [9], p. 128 or [5], Ch.

IT) can be applied to the holomorphic on the domain with boundary C function h(z)
2

= (g(2) — g7(2))e*T <1 + Z—> (the origin 0 is contained in the domain). Indeed, by the

R2

Cauchy theorem the following equalities hold:
(+) @—mﬂm—i/wﬂ~i/um(mﬂ1ﬁf%
IO = = oni J. " T T omi J OV TIT R2) %

Let us consider now the following parts of the curve C' and estimate the last integral
in (**) on them:

C/:C+U01UC4U03

Cl_ Cy
Cy C2| R
! C=C,UC,UCy,UCy
_6: /}
|
|
|

On the semicircle Cy = C N {R(z) > 0} the integrand of (**) is bounded by 2%,
where B = max;>¢ |f(t)|, because

0 _ o B Be—%(z)T
l9(2) — gr(2)| = ‘/ F(t)e ™ dt‘ < B/ le™| dt = RG) (R(z) > 0)
2T 1 r R2+ 21 Z+ 2
2T z _ | R()T i ()T < _ R()T |RFT R
nd (67 (14 35 ) 5| = [rmeor| | Bt < e | S
_ 7 |22 s | 2R | per 2R()
o 2 | R2 | R2
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Hence the contribution to g(0) — gr(0) from the integral over C is bounded in absolute
value by £. For the integral over C_ = C N {R(z) < 0} we look at g(z) and gr(z)
separately. Let us denote C” = C" N {R(z) < 0}.

Since gr is entire, we have:

2\ dz 22\ dz
a1 (4 2 _:/ (g 2\ &
Lo o (1455) = [ o (14 55) 5
2 2
2T z dz T z dz
as /Cz gr(z)e <1+§> 7/C4gT(z)e <1+ﬁ> —

So the integral over C” is bounded in absolute value by QW% by exactly the same

estimate as before since
T
< B/ edr < 25 (%(z) < 0),
0

T —zt
|| sweta e

Fix R > 0. Then the remaining integral over C_ tends to 0 according to Lebesgue
dominated convergence theorem (cf. [5], Chapter X, 10.5). In fact, [e*T| < 1 for Rz <0
and |e*T| — 0 for T — oo when Rz < 0. Since the set {z: Rz =0,z € C_} = {£iR} has
a mesure 0, then everything is settled. Hence limp_.o0|g(0) — g7(0)] < 22. Since R >0

Be—%(z)T
lgr(2)| =

o0
is arbitrary we conclude that / f(t) dt exists and equals to ¢g(0), what we wanted to
0
prove. (I

Corollary of the Prime Number Theorem. If {p,} is the incresing sequence of
the prime numbers, then p, ~ nlogn.

1
Proof. Indeed, m(x) ~ means that lim ﬂ-gcx) = lim m(@)logx = 1. Hence
10g:c r—oo _ % T —00 x
log x
1
lim (log7(x) 4+ loglogx —logz) =0 and  lim log m(x)
T—00 z—oo logx
1 log 1 —1 1 log 1
= lim ogm(z) +loglogz — logz + lim 08T _ lim 08 08T _ 0+1—-0=1. Mul-
z—00 log z z—oo loger z—oo logax
1
tiplying the first and the third limits above, we obtain lim M = 1. Putting
r—00 i
nlogn

here © = p,, as it is fulfilled 7(x) = n, we obtain lim
n—oo

=1, i.e. p, ~ nlogn.

Let us note also that the assertion in this corollary is equivglent to the Prime Number
Theorem (c.f. [2]). O
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3A EJJHO KPATKO AHAJIMTNYHO JOKASATEJICTBOTO HA

TEOPEMATA 3A ITPOCTUTE YUCJIA

JInnuss HukosoBa AnocrosioBa, Kamun Ilerpos IlaBsios

II'bpBuTE MOKa3aTE/NCTBA HA TEOpeMaTa 3a IIPOCTUTE YucCJIa ca jajeHu mnpe3 1896 ro-
guna. Te ca MHOIO JTbJIMM U U3II0JI3BAT TEX'bK aHauTu4eH anapatr. [Ipe3 1980 roguna
D. J. Newman &aBa HOBO JOKa3aTeJICTBO, OIIPOCTEHO IO-KbCHO oT D. Zagier. B Tazm

craTus, cilenBaliku craruaTa Ha D. Zagier . KpaTtko nokasaresnctso Ha Hroman Ha Te-
opemara 3a npocrure yucaa’, (Amer. Math. Monthly, 104 (1997), 705-708), nupaBum
M3JI02KEHUETO JIOCTBITHO 38 MHTEPECYBAIH C€ OT MATEMATUYECKU aHan3 (3HAHUATA,

[IOJIyYaBaH! IIpe3 I'bDBUTE 3 TOAMHHU OT OOYyYEHHETO Ha CTYJEHTHUTE II0 MaTeMaTHh-
Ka ca jgocrarbann). ObmupHa nHdOpMaIUs 38 TeopeMaTa 3a HPOCTUTE YUC/Ia MOMKE
na ce Hamepu B craruute Ha P. Bateman m K. Diamond ,Cto romuuu Teopema
3a npocrure dncaa’, (Amer. Math. Monthly, 103 (1996), 729-741) u na J. Kore-
vaar “Crosierne na komiuiekcuara TayGeposa Teopusa’ (Bull. Amer. Math. Soc., 39
(2002), 475-531). 3a uHTEpecyBaluTe ce npenopbuBame cbijo Kaurure Ha K. Chan-
darasekhan ,,BoBesenne B ananurnunara reopus Ha yuciara“ u na E. C. Titchmarsh

»leopusi Ha Pumanosara /I3eTa dpyHkms“.
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