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The first proofs of the Prime Number Theorem, given in 1896, were too long and
used difficult analytic tools. In 1980 D. J. Newman proposed a new proof, simplified
later by D. Zagier. Here following the paper of D. Zagier “Newman’s short proof
of the Prime Number Theorem” [7] we make all its argument clear for the level of
interested in analysis undergraduate students. Wide information about the Prime
Number Theorem and its proofs could be found in the papers of P. T. Bateman and
H. C. Diamond “A hundred years of prime numbers” [1] and J. Korevaar “A century
of complex Tauberian Theory” [3]. For interested readers it would be usefull to look
at the books of K. Chandrasekharan [2] and E. C. Titchmarsh [6].

1. Preliminaries. The Prime Number Theorem is the following assertion: π(x) ∼
x

log x
as x → ∞ where π(x) is the number of primes ≤ x. Recall that the notation

f(x) ∼ g(x) (“f and g are asymptotically equal”) means that lim
x→∞

f(x)

g(x)
= 1. The proof

will be present in a series of steps. A sequence of properties of the three functions

ζ(s) =
∞
∑

n=1

1

ns
, Φ(s) =

∑

p

log p

ps
, θ(x) =

∑

p≤x

log p (s ∈ C, x ∈ R).

will be proved. We always use p to denote a prime. The series defining ζ(s) (the Riemann
zeta-function) and Φ(s) are easily seen to be absolutely and locally uniformly convergent
for ℜ(s) > 1, so they define holomorphic functions in this domain. The Chebyshev
function θ(x) is a piecewise constant, monotonical increasing function with jumps at the
prime numbers: θ(pk +0)− θ(pk − 0) = log pk, where pk is the k-th prime number in the
sequence of the prime numbers arranged by increasing.

Needed information from real and complex analysis could be found in the books of
G. M. Fihtengoltz [8], B. V. Shabat [9], E. C. Titchmarsh [5] and other books on the
topic. The definition of analytic (holomorphic) function would be found in [9], p. 32, the
notion of an analytic continuation would be found in [9], Ch. II or in [5], Ch. IV.

(I). Representation of the zeta function as an infinite product (For a de-

finition of infinite product see for example [8], v. II, p. 350 or [5], Ch. I.):

ζ(s) =
∏

p

(1 − p−s)−1 for ℜ(s) > 1.
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Proof. From unique factorization each natural number has a representation of
the form n = 2r23r3 . . .. Then by the absolute convergence of the series represent-

ing ζ(s) we have ζ(s) =

∞
∑

n=1

1

ns
=

∞
∑

n=1

n−s =
∑

r2,r3,...≥0

(2r23r3 . . .)−s =
∏

p

(

∞
∑

r=0

p−rs

)

=
∏

p

1

1 − p−s
(ℜ(s) > 1). The forth equality holds as the product

∏

p

(

∞
∑

r=0

p−rs

)

=
∏

p

(

1 +
1

ps
+

1

p2s
+ . . .

)

contains all the terms of
∑

r2,r3,...≥0

(2r23r3 . . .)−s only once.

The last equality follows from the formula for the sum of the geometric series with quo-
tient p−s, which is convergent as |p−s| = p−ℜ(s) < 1 when ℜ(s) > 1. �

(II). Singularities of the zeta function for ℜ(s) > 0: ζ(s) −
1

s − 1
extends

analytically to the open half plane ℜ(s) > 0.

Proof. For ℜ(s) > 1 holds ζ(s) −
1

s − 1
=

∞
∑

n=1

1

ns
−

∫ ∞

1

1

xs
dx =

∞
∑

n=1

1

ns

∫ n+1

n

dx

−
∞
∑

n=1

∫ n+1

n

1

xs
dx =

∞
∑

n=1

∫ n+1

n

(

1

ns
−

1

xs

)

dx. The series in the right-hand side con-

verges absolutely for ℜ(s) > 0 because
∣

∣

∣

∣

∫ n+1

n

(

1

ns
−

1

xs

)

dx

∣

∣

∣

∣

=

∣

∣

∣

∣

s

∫ n+1

n

∫ x

n

du

us+1
dx

∣

∣

∣

∣

≤ max
n≤u≤n+1

∣

∣

∣

s

us+1

∣

∣

∣
=

|s|

nℜ(s)+1
. �

(III.) Inequality for the Chebyshev function θ(x): θ(x) < (4 log 2)x for x > 1.

Proof. For n ∈ N we obtain 22n = (1 + 1)2n =

(

2n

0

)

+ . . . +

(

2n

2n

)

≥

(

2n

n

)

=

=
2n.(2n − 1). . . . .(n + 1)

1.2. . . . .n
≥

∏

n<p≤2n

p = elog
Q

n<p≤2n
p = e

P
n<p≤2n

log p =

= e(
P

p≤2n
log p−

P
p≤n

log p) = eθ(2n)−θ(n), i.e. eθ(2n)−θ(n) ≤ 22n, where from θ(2n)−θ(n) ≤
log 22n = 2n log 2. Let us note that the inequality in the second row above is fulfilled
as the product in the right hand-side has as multiples prime numbers which divide the
integers in the numerator but not the denominator of the fraction in the left hand-
side. Then summing the inequalities θ(2n) − θ(n) ≤ 2n log 2 for n = 1, 2, 22, . . . , 2m−1,

we obtain: θ(2m) − θ(1) =
m
∑

r=1

(

θ(2r) − θ(2r−1)
)

< log 2
m
∑

r=1

2r < 2m+1 log 2, and as

θ(1) = 0, θ(2m) < 2m+1 log 2.

Let now x > 1 and m be a positive integer such that 2m−1 ≤ x < 2m. As θ(x) is an
increasing function from the last inequality it follows

θ(x) ≤ θ(2m) < 2m+1 log 2 ≤ 4x log 2.

From here θ(x) < 4x log 2 for x > 1, what we are to prove. �

(IV). Nonvanishing of the zeta function and analyticity of Φ(s) −
1

s − 1

forℜ(s) ≥ 1: ζ(s) 6= 0 and Φ(s) −
1

s − 1
is holomorphic for ℜ(s) ≥ 1.
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Proof. For ℜ(s) > 1, the convergence of the product in (I) implies that ζ(s) 6= 0 and

− log ζ(s) = − log
∏

p

(1 − p−s)−1 = −
∑

p

log(1 − p−s)−1 =
∑

p

log(1 − p−s)

from where it follows that the first derivatives of the first and the last terms are equal.
This means

−
ζ′(s)

ζ(s)
= {− log ζ(s)}

′
=

{

∑

p

log
(

1 − p−s
)

}′

=
∑

p

1

1 − p−s

{

1 − p−s
}′

=
∑

p

−(p−s)′

1 − p−s

=
∑

p

log p

ps − 1
=
∑

p

log p(ps − 1 + 1)

ps(ps − 1)
=
∑

p

log p

ps
+
∑

p

log p

ps(ps − 1)
= Φ(s) +

∑

p

log p

ps(ps − 1)
.

The final sum converges for ℜ(s) > 1
2 , so this fact and (II) imply that Φ(s) is equal to a

meromorphic function on ℜ(s) > 1
2 , with poles only at s = 1 and at the zeros of ζ(s). In

fact, if ζ(s) has a zero of order µ at s0, ℜs0 > 1
2 then ζ(s) = (s− s0)

µA(s), A(s0) 6= 0, A

being analytic function near s0. Thus, −
ζ′(s)

ζ(s)
= −

µ

s− s0
+

A′(s)

A(s)
. As ζ(s) has a pole at

s = 1 with a residue equal to 1 then ζ(s) =
A1(s)

s − 1
near s = 1, A1(s) = 1 + (s − 1)B(s)

with analytic function B(s) near s = 1. So we conclude that −
ζ′

ζ
(s) has a pole at s = 1

with a residue equal to 1. Let now ζ(s) have a zero of order µ at s = 1 + iα (α ∈ R,
α 6= 0) and a zero of order ν at 1 + 2iα (so µ, ν ≥ 0 by (II)). We can compute easily the
following limits:

(∗) lim
εց0

εΦ(1 + ε) = 1, lim
εց0

εΦ(1 + ε ± iα) = −µ, and lim
εց0

εΦ(1 + ε ± 2iα) = −ν.

E. g. let us calculate the limit lim
εց0

εΦ(1 + ε ± iα). According to the previous con-

siderations with s = 1 + ε ± iα, s0 = 1 ± iα we have: −
ζ′

ζ
(1 + ε ± iα) = −

µ

ε
+

A′

A
(1 +

ε ± iα) = Φ(1 + ε ± iα) + H(1 + ε ± iα), H(s) being analytic function for ℜs > 1
2 . So

lim
εց0

εΦ(1 + ε ± iα) = −µ.

The following inequality holds:
2
∑

r=−2

(

4

2 + r

)

Φ(1 + ε + irα) =

2
∑

r=−2

(

4

2 + r

)

∑

p

log p

p1+ε+irα

=
∑

p

log p

p1+ε

(

2
∑

r=−2

(

4

2 + r

)

p−irα

)

=
∑

p

log p

p1+ε

(

p2iα + 4piα + 6p0·iα + 4p−iα + p−2iα
)

=
∑

p

log p

p1+ε
p−2iα

(

p4iα + 4p3iα + 6p2iα + piα + p0·α
)

=
∑

p

log p

p1+ε
p−2iα

(

1 + piα
)4

=
∑

p

log p

p1+ε

[

(1 + piα)(p−iα/2)
]4

=
∑

p

log p

p1+ε

(

p−iα/2 + piα/2
)4

≥ 0

On the other hand,

2
∑

r=−2

(

4

2 + r

)

Φ(1 + ε + irα) = Φ(1 + ε − 2iα) + 4Φ(1 + ε − iα) +

6Φ(1 + ε) + 4Φ(1 + ε + iα) + Φ(1 + ε + 2iα). Then applying the limits (∗), we obtain
that 6 − 8µ − 2ν ≥ 0, so µ = 0, i.e., ζ(1 + iα) 6= 0. In this way we conclude that for
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each R > 0 there exists δ(R) > 0 such that ζ(s) is an analytic nonvanishing function in
the rectangle 1 − δ ≤ ℜs ≤ 1, |ℑs| ≤ R except for the point s = 1 where it has a simple
pole with residue equal to 1. Therefore, the same is true for Φ(s). The assertion (IV) is
verified. �

(V). Convergence of an auxiliary integral:

∫ ∞

1

θ(x) − x

x2
dx is a convergent

integral.

Proof. For ℜ(s) > 1 it is convenient first to consider the Stieltjes integral

∫ ∞

1

dθ(x)

xs

(see for example [8], v. III, p. 89). As it is known from the courses on real analysis (see
[8], v. III, p. 103):
∫ ∞

1

dθ(x)

xs
=

∞
∑

k=1

θ(pk + 0) − θ(pk − 0)

ps
k

=

∞
∑

k=1

log pk

ps
k

= Φ(s)

where p1 = 2, p2 = 3, . . . are the prime numbers arranged in an increasing order. But
after integrating by parts we obtain
∫ ∞

1

dθ(x)

xs
= s

∫ ∞

1

θ(x)

xs+1
dx = s

∫ ∞

0

e−stθ(et) dt.

So Φ(s) = s

∫ ∞

0

e−stθ(et) dt. Therefore (V) is obtained by applying the following An-

alytic Theorem to the functions f(t) = θ(et)e−t − 1 and g(z) =
Φ(z + 1)

z + 1
−

1

z
, which

satisfy its hypothesis according to (III) and (IV). Let us make the substitution s = z+1

in (IV). Then ℜs > 1 ⇐⇒ ℜz > 0 and Φ(z + 1)−
1

z
is holomorphic for ℜz ≥ 0. There-

fore, the function g(z) =
Φ(z + 1)

z + 1
−

1

z
=

1

z + 1

(

Φ(z + 1) −
1

z
− 1

)

is holomorphic for

ℜz ≥ 0. �

Analytic Theorem (of Tauberian type, Neuman [4]). Let f(t) (t ≥ 0) be a

bounded and locally integrable function and suppose that the function g(z) =

∫ ∞

0

f(t)e−ztdt

(ℜ(z) > 0) extends holomorphically to ℜz ≥ 0. Then

∫ ∞

0

f(t) dt exists (and equals

g(0)).

(VI). Asymptotical behaviour of the Chebyshev function θ(x): θ(x) ∼ x.

Proof. Assume that for some fixed λ > 1 there are arbitrary large x with θ(x) ≥ λx.
Since θ is non-decreasing, then for x ≤ t ≤ λx ⇒ θ(t) ≥ θ(x) ≥ λx and we have
∫ λx

x

θ(t) − t

t2
dt ≥

∫ λx

x

λx − t

t2
dt =

∫ λ

1

λ − t

t2
dt = C(λ) = λ − 1 − log λ > 0

for such x, contradicting (V). Thus, limx→∞

θ(x)

x
≤ λ, ∀λ > 1. So limx→∞

θ(x)

x
≤ 1.

Similarly, the inequality θ(x) ≤ λx with 0 < λ < 1 would imply
∫ x

λx

θ(t) − t

t2
dt ≤

∫ x

λx

λx − t

t2
dt =

∫ 1

λ

λ − t

t2
dt = C(λ) = −λ + 1 + log λ < 0.

We get again a contradiction for λ fixed and x big enough, hence lim
x→∞

θ(x)

x
≥ 1. �
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Proof of the Prime Number Theorem. The Prime Number Theorem follows
easily from (VI), since for any ε > 0 θ(x) =

∑

p≤x

log p ≤
∑

p≤x

log x = π(x) log x, and

θ(x) ≥
∑

x1−ε<p≤x

log p ≥
∑

x1−ε<p≤x

(1 − ε) log x = [(1 − ε) log x]
[

π(x) − π(x1−ε)
]

≥ [(1 −

ε) log x][π(x) − x1−ε]. Indeed, π(x) ≥
θ(x)

log x
⇒ limx→∞

π(x)
x

log x

≥ lim
x→∞

θ(x)

x
= 1, while

θ(x)

x
≥ (1 − ε)

log x

x

[

π(x) − x1−ε
]

⇒ 1 = lim
x→∞

θ(x)

x
≥ (1 − ε)limx→∞

π(x)
x

log x

.

Letting ε → 0 we obtain the desired result. �

Proof of the Analytic Theorem. For T > 0 set gT (z) =

∫ T

0

f(t)e−zt dt. This is

clearlya holomorphic function for all z. We must show that limT→∞ gT (0) = g(0).
Let R be large and fixed and let C be the boundary of the region {z ∈ C : |z|

≤ R,ℜ(z) ≥ −δ}, where δ > 0 is small enough (depending on R) so that g(z) is holo-
morphic in the region and on C. Then the Cauchy theorem (cf. [9], p. 128 or [5], Ch.
II) can be applied to the holomorphic on the domain with boundary C function h(z)

= (g(z)− gT (z))ezT

(

1 +
z2

R2

)

(the origin 0 is contained in the domain). Indeed, by the

Cauchy theorem the following equalities hold:

(∗∗) g(0)−gT (0) = h(0) =
1

2πi

∫

C

h(z)
dz

z
=

1

2πi

∫

C

(g(z)−gT (z))ezT

(

1 +
z2

R2

)

dz

z
.

Let us consider now the following parts of the curve C and estimate the last integral
in (**) on them:

-

6

�
�

�

)

]


q

?

C ′
= C+ ∪ C1 ∪ C4 ∪ C3

C = C+ ∪ C1 ∪ C2 ∪ C3

R

C+
C1

C3

C2C4

−δ

On the semicircle C+ = C ∩ {ℜ(z) > 0} the integrand of (**) is bounded by 2 B
R2 ,

where B = maxt≥0 |f(t)|, because

|g(z) − gT (z)| =

∣

∣

∣

∣

∫ ∞

T

f(t)e−zt dt

∣

∣

∣

∣

≤ B

∫ ∞

T

|e−zt| dt =
Be−ℜ(z)T

ℜ(z)
(ℜ(z) > 0)

and

∣

∣

∣

∣

ezT

(

1 +
z2

R2

)

1

z

∣

∣

∣

∣

=
∣

∣

∣
eℜ(z)T eiℑ(z)T

∣

∣

∣

∣

∣

∣

∣

R2 + z2

R2

1

z

∣

∣

∣

∣

= eℜ(z)T

∣

∣

∣

∣

zz + z2

zR2

∣

∣

∣

∣

= eℜ(z)T

∣

∣

∣

∣

z + z

R2

∣

∣

∣

∣

= eℜ(z)T

∣

∣

∣

∣

2ℜ(z)

R2

∣

∣

∣

∣

= eℜ(z)T 2ℜ(z)

R2
.
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Hence the contribution to g(0)− gT (0) from the integral over C+ is bounded in absolute
value by B

R . For the integral over C− = C ∩ {ℜ(z) < 0} we look at g(z) and gT (z)
separately. Let us denote C′

− = C′ ∩ {ℜ(z) < 0}.
Since gT is entire, we have:
∫

C1∪C2∪C3

gT (z)ezT

(

1 +
z2

R2

)

dz

z
=

∫

C′
−

gT (z)ezT

(

1 +
z2

R2

)

dz

z

as

∫

C2

gT (z)ezT

(

1 +
z2

R2

)

dz

z
=

∫

C4

gT (z)ezT

(

1 +
z2

R2

)

dz

z
.

So the integral over C′
− is bounded in absolute value by 2π B

R by exactly the same
estimate as before since

|gT (z)| =

∣

∣

∣

∣

∣

∫ T

0

f(t)e−zt dt

∣

∣

∣

∣

∣

≤ B

∫ T

0

|e−zt| dt ≤
Be−ℜ(z)T

|ℜ(z)|
(ℜ(z) < 0).

Fix R > 0. Then the remaining integral over C− tends to 0 according to Lebesgue
dominated convergence theorem (cf. [5], Chapter X, 10.5). In fact, |ezT | ≤ 1 for ℜz ≤ 0
and |ezT | → 0 for T → ∞ when ℜz < 0. Since the set {z : ℜz = 0, z ∈ C−} = {±iR} has
a mesure 0, then everything is settled. Hence limT→∞|g(0) − gT (0)| ≤ 2B

R . Since R > 0

is arbitrary we conclude that

∫ ∞

0

f(t) dt exists and equals to g(0), what we wanted to

prove. �

Corollary of the Prime Number Theorem. If {pn} is the incresing sequence of

the prime numbers, then pn ∼ n log n.

Proof. Indeed, π(x) ∼
x

log x
means that lim

x→∞

π(x)
x

log x

= lim
x→∞

π(x) log x

x
= 1. Hence

lim
x→∞

(log π(x) + log log x − log x) = 0 and lim
x→∞

log π(x)

log x

= lim
x→∞

log π(x) + log log x − log x

log x
+ lim

x→∞

log x

log x
− lim

x→∞

log log x

log x
= 0 + 1 − 0 = 1. Mul-

tiplying the first and the third limits above, we obtain lim
x→∞

π(x) log π(x)

x
= 1. Putting

here x = pn, as it is fulfilled π(x) = n, we obtain lim
n→∞

n logn

pn
= 1, i.e. pn ∼ n log n.

Let us note also that the assertion in this corollary is equivalent to the Prime Number
Theorem (c.f. [2]). �
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ЗА ЕДНО КРАТКО АНАЛИТИЧНО ДОКАЗАТЕЛСТВОТО НА

ТЕОРЕМАТА ЗА ПРОСТИТЕ ЧИСЛА

Лилия Николова Апостолова, Калин Петров Павлов

Първите доказателства на теоремата за простите числа са дадени през 1896 го-
дина. Те са много дълги и използват тежък аналитичен апарат. През 1980 година
D. J. Newman дава ново доказателство, опростено по-късно от D. Zagier. В тази
статия, следвайки статията на D. Zagier „Кратко доказателство на Нюман на те-
оремата за простите числа“, (Amer. Math. Monthly, 104 (1997), 705-708), правим
изложението достъпно за интересуващи се от математически анализ (знанията,
получавани през първите 3 години от обучението на студентите по математи-
ка са достатъчни). Обширна информация за теоремата за простите числа може
да се намери в статиите на P. Bateman и K. Diamond „Сто години теорема
за простите числа“, (Amer. Math. Monthly, 103 (1996), 729-741) и на J. Kore-
vaar “Столетие на комплексната Тауберова теория” (Bull. Amer. Math. Soc., 39

(2002), 475-531). За интересуващите се препоръчваме също книгите на K. Chan-
darasekhan „Въведение в аналитичната теория на числата“ и на E. C. Titchmarsh
„Теория на Римановата Дзета функция“.
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