SOME SIMILAR TRIANGLES ASSOCIATED WITH A PURE TRIANGLE IN THE GALILEAN PLANE*

Adrijan Varbanov Borisov, Margarita Georgieva Spirova**

It is easy to see that the celebrated trisector theorem in Euclidean elementary geometry of Frank Morley (1860-1937) is not true in the Galilean plane Γ_{2}. In this paper we show that n-sectors of any pure triangle in Γ_{2} determine $n-1$ triangles that are similar to the given triangle with respect to the group $H_{4}{ }^{\prime \prime}$ of the similitudes of the second type.

1. Introduction. In the affine version the Galilean plane Γ_{2} is an affine plane with a special direction which may be taken coincident with the y-axis of the basic affine coordinate system $O x y[3 ;$ p.10], [5], [6]. The affine transformations leaving invariant the special direction $O y$ can be written in the form

$$
\begin{array}{ll}
\bar{x}=a_{1}+a_{2} x, & a_{2} a_{5} \neq 0 \tag{1}\\
\bar{y}=a_{3}+a_{4} x+a_{5} y, &
\end{array}
$$

where a_{1}, \ldots, a_{5} are real parameters.
In Γ_{2} a straight line is said to be isotropic (or special) if it is parallel to the special direction.

Two points P_{1} and P_{2} are called parallel if the straight line $P_{1} P_{2}$ is isotropic. Note that the transformations (1) transform the family of isotropic lines of Γ_{2} into itself.

The (oriented) distance from the point $P_{1}\left(x_{1}, y_{1}\right)$ to the point $P_{2}\left(x_{2}, y_{2}\right)$ is defined by [3; p.11], [8; p.51]

$$
\overline{P_{1} P_{2}}=x_{2}-x_{1} .
$$

Let $g_{1}: y=k_{1} x+n_{1}$ and $g_{2}: y=k_{2} x+n_{2}$ be two nonisotropic straight lines. The (oriented) angle from g_{1} to g_{2} is defined as [3; p.17-18], [8; p.54]

$$
\Varangle\left(g_{1}, g_{2}\right)=k_{2}-k_{1} .
$$

Note that in Γ_{2} any direction has unique the special direction as a perpendicular one.
It is easy to verify that the transformations (1) map a line segment into a proportional line segment and an angle into a proportional angle with the coefficients of proportionality a_{2} and $a_{2}{ }^{-1} a_{5}$, respectively. Thus they form the group H_{5} of the general similitudes in Γ_{2}.

The subgroup $H_{4}{ }^{\prime} \subset H_{5}$ determined by the conditions $a_{2}=a_{5}=\lambda \neq 0$ maps the line segments into proportional ones with the coefficient λ of proportionality, while the

[^0]angles are mapped into equal ones. $H_{4}{ }^{\prime}$ is called the group of similitudes of the first type [6], [8; p.66], or the group of equiform transformations in Γ_{2} [4].

If we put $a_{2}=1, a_{5}=\mu \neq 0$, then we obtain the subgroup $H_{4}{ }^{\prime \prime} \subset H_{5}$ which transforms the line segments into equal ones and the angles into proportional ones with the coefficient μ of proportionality. $H_{4}{ }^{\prime \prime}$ is called the group of similitudes of the second type [6], [8; p.67].
$\triangle A B C$ is called a pure triangle (or admissible triangle) if the vertices A, B and C are nonparallel points.

Let $\triangle A B C$ be a pure triangle and $\Varangle(A C, A B)=\alpha, \Varangle(B A, B C)=\beta, \Varangle(C B, C A)=\gamma$. Under these assumptions the following relations hold [3; p.22, 28], [8; p.65]:

$$
\begin{gather*}
\overline{B C}+\overline{C A}+\overline{A B}=0 \tag{2}\\
\alpha+\beta+\gamma=0 \tag{3}\\
\frac{\overline{B C}}{\alpha}=\frac{\overline{C A}}{\beta}=\frac{\overline{A B}}{\gamma} \tag{4}
\end{gather*}
$$

2. Dual numbers. Any dual number z can be written in the form [7; p.18]

$$
\begin{equation*}
z=z_{1}+\varepsilon z_{2} \tag{5}
\end{equation*}
$$

where z_{1} and z_{2} are real numbers and $\varepsilon^{2}=0$. The number z_{1} is called the modulus of the dual number z and it is denoted by $|z|$, i.e.

$$
\begin{equation*}
|z|=z_{1} \tag{6}
\end{equation*}
$$

If $x=x_{1}+\varepsilon x_{2}$ and $y=y_{1}+\varepsilon y_{2}$ are two dual numbers, then the following relations hold [7; p.20]

$$
\begin{gathered}
x \pm y=\left(x_{1} \pm y_{1}\right)+\varepsilon\left(x_{2} \pm y_{2}\right), \quad x y=x_{1} y_{1}+\varepsilon\left(x_{1} y_{2}+x_{2} y_{1}\right), \\
\frac{x}{y}=\frac{x_{1}}{y_{1}}+\varepsilon \frac{x_{2} y_{1}-x_{1} y_{2}}{y_{1}^{2}}, y_{1} \neq 0,
\end{gathered}
$$

and

$$
\begin{equation*}
|-x|=-|x|,|x \pm y|=|x| \pm|y|,|x y|=|x||y|,\left|\frac{x}{y}\right|=\frac{|x|}{|y|} \tag{7}
\end{equation*}
$$

Let $z=z_{1}+\varepsilon z_{2}$ be a dual number and $z_{1} \neq 0$. Then the real number

$$
\begin{equation*}
\varphi=\frac{z_{2}}{z_{1}} \tag{8}
\end{equation*}
$$

is called the argument of the dual number z and it is denoted by $\arg z$. Using our notations (5), (6) and (8) we can write

$$
z=|z|(1+\varepsilon \varphi), \varphi=\arg z
$$

3. An identification. Following K. Strubecker [4] we can identify the points of Γ_{2} with the dual numbers, as we usually identify the points of the Euclidean plane with the complex numbers. In this case if $x=x_{1}+\varepsilon x_{2}$ and $y=y_{1}+\varepsilon y_{2}$ are two dual numbers with $y_{1} \neq x_{1}$, then they determine two nonparallel points $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ as

$$
\overline{P_{1} P_{2}}=y_{1}-x_{1}=|y-x| .
$$

Further, let a, b and c be three dual numbers that determine the pure $\triangle a b c$. By using
the formulas (2) and (4) we get

$$
\begin{equation*}
|c-b|+|a-c|+|b-a|=0, \quad \frac{|c-b|}{\alpha}=\frac{|a-c|}{\beta}=\frac{|b-a|}{\gamma} . \tag{9}
\end{equation*}
$$

4. A lemma. Now, we shall state a technical lemma that will be useful in the sequal.

Lemma 1. For any three dual numbers a, b and c determining a pure $\triangle a b c$ with angles $\Varangle(a c, a b)=\alpha, \Varangle(b a, b c)=\beta$ and $\Varangle(c b, c a)=\gamma$ the following ralation holds

$$
\begin{equation*}
\frac{a-c}{a-b}=-\frac{\beta}{\gamma}(1+\varepsilon \alpha) \tag{10}
\end{equation*}
$$

Proof. Since [8; p.281]

$$
\alpha=\arg \frac{a-c}{a-b},
$$

then

$$
\frac{a-c}{a-b}=\left|\frac{a-c}{a-b}\right|\left(1+\varepsilon \arg \frac{a-c}{a-b}\right)=\frac{|a-c|}{|a-b|}(1+\varepsilon \alpha)
$$

and using (9) we deduce (10).
5. The main result. Frank Morley (1860-1937) pioneered the notion of so-called trisector theorem in the Euclidean plane geometry around 1900, but he did not publish a proof of this theorem until 1924 when it appeared in [1] (see also [2]).

Theorem (F. Morley). The three points of intersection of the adjacent trisectors of the angles of any triangle form an equilateral triangle (Fig. 1).

Fig. 1

It is easily seen from (2) and (3) that in Γ_{2} there do not exist equilateral triangles and therefore the clasical Morley's trisector theorem is not true.

Now, we shall get another theorem like Morley's by dividing the angles in some other way.

Theorem 1. Let $\triangle A B C$ be a pure triangle in Γ_{2} and $\Varangle(A C, A B)=\alpha, \Varangle(B A, B C)=$ $\beta, \Varangle(C B, C A)=\gamma$. If
(i) $p_{1}, p_{2}, \ldots, p_{n-1}$ are straight lines through the vertex A such that $\Varangle\left(A C, p_{1}\right)=$ $\Varangle\left(p_{1}, p_{2}\right)=\cdots=\Varangle\left(p_{n-1}, A B\right)=\frac{\alpha}{n} ;$
(ii) $q_{1}, q_{2}, \ldots, q_{n-1}$ are straight lines through the vertex B such that $\Varangle\left(B A, q_{1}\right)=$ $\Varangle\left(q_{1}, q_{2}\right)=\cdots=\Varangle\left(q_{n-1}, B C\right)=\frac{\beta}{n} ;$
(iii) $r_{1}, r_{2}, \ldots, r_{n-1}$ are straight lines through the vertex C such that $\Varangle\left(C B, r_{1}\right)=$ $\Varangle\left(r_{1}, r_{2}\right)=\cdots=\Varangle\left(r_{n-1}, C A\right)=\frac{\gamma}{n} ;$
(iv) $q_{n-k} \cap r_{k}=A_{k}, r_{n-k} \cap p_{k}=B_{k}, p_{n-k} \cap q_{k}=C_{k}$, then $\triangle A_{k} B_{k} C_{k}, k=1, \ldots, n-1$, are similar to the given $\triangle A B C$ with respect to the group $H_{4}{ }^{\prime \prime}$ of the similitudes of the second type.

Proof. Denote by a, b, c, a_{k}, b_{k} and c_{k} the corresponding dual numbers of the points A, B, C, A_{k}, B_{k} and C_{k}, respectively. Since $p_{1}, p_{2}, \ldots, p_{n-1}$ are nonisotropic straight lines, then the triangle $\triangle A_{k} B C$ is pure and using Lemma 1 , we can write

$$
\frac{a_{k}-c}{a_{k}-b}=\frac{\beta}{\gamma}\left(-1+\varepsilon \frac{k}{n} \alpha\right)
$$

and therefore

$$
\begin{equation*}
a_{k}=\frac{n(b \beta+c \gamma)-\varepsilon k b \alpha \beta}{n(\beta+\gamma)-\varepsilon k \alpha \beta} \tag{11}
\end{equation*}
$$

Applying (6), (7) and (9) to (11) we find

$$
\begin{aligned}
\left|a_{k}\right|= & \frac{|n(b \beta+c \gamma)-\varepsilon k b \alpha \beta|}{|n(\beta+\gamma)-\varepsilon k \alpha \beta|}=\frac{|n(b \beta+c \gamma)|}{|n(\beta+\gamma)|}=\frac{|b \beta+c \gamma|}{-\alpha}=-|b| \frac{\beta}{\alpha}-|c| \frac{\gamma}{\alpha}= \\
& =-|b| \frac{|a-c|}{|c-b|}-|c| \frac{|b-a|}{|c-b|}=\frac{-|b||a|+|b||c|-|c||b|+|c||a|}{|c-b|}=|a|
\end{aligned}
$$

i.e.

$$
\begin{equation*}
\left|a_{k}\right|=|a| . \tag{12}
\end{equation*}
$$

By arguments similar to the ones used above we also establish the equalities

$$
\begin{equation*}
\left|b_{k}\right|=|b|,\left|c_{k}\right|=|c| \tag{13}
\end{equation*}
$$

From (12) and (13) it follows

$$
\left|a_{k}-b_{k}\right|=|a-b|,\left|b_{k}-c_{k}\right|=|b-c|,\left|c_{k}-a_{k}\right|=|c-a|
$$

and applying (9), we get

$$
\begin{equation*}
\frac{\alpha_{k}}{\alpha}=\frac{\beta_{k}}{\beta}=\frac{\gamma_{k}}{\gamma}=\lambda \tag{14}
\end{equation*}
$$

Formula (14) shows that $\triangle A_{k} B_{k} C_{k}$ can be obtained from $\triangle A B C$ by a similitude of the second type with the coefficient λ of proportionality [8; p.66-67].

From (12) and (13) it follows immediately:
Corollary 1. The points of n-tuples $\left(A, A_{1}, \ldots, A_{n-1}\right),\left(B, B_{1}, \ldots, B_{n-1}\right)$ and $\left(C, C_{1}, \ldots, C_{n-1}\right)$ are parallel, respectively.

In the case $n=2$ we obtain an interesting characteristic of the bisectors of the angles in any pure triangle.

Corollary 2. For any pure triangle in Γ_{2} the three intersection points of the bisectors of the angles in the triangle form a triangle that is similar to the given triangle with respect to the group $H_{4}{ }^{\prime \prime}$ of the similitudes of the second type (Fig. 2).

In the case $n=3$ we get a Morley like theorem:
Corollary 3. For any pure $\triangle A B C$ in Γ_{2} the corresponding intersection points A_{1}, B_{1}, C_{1} and A_{2}, B_{2}, C_{2} of the trisectors of the angles in $\triangle A B C$ form $\triangle A_{1} B_{1} C_{1}$ and $\triangle A_{2} B_{2} C_{2}$ that are similar to the given $\triangle A B C$ with respect to the group $H_{4}{ }^{\prime \prime}$ of the similitudes of the second type (Fig. 3).

Further, using the duality principle in Γ_{2} we can state:

Fig. 2

Fig. 3

Theorem 2. Let $\triangle A B C$ be a pure triangle in Γ_{2} and $\overline{B C}=a, \overline{C A}=b, \overline{A B}=c$. If
(i) $P_{1}, P_{2}, \ldots, P_{n-1}$ are points on the side $B C$ such that $\overline{B P_{1}}=\overline{P_{1} P_{2}}=\cdots=$ $\overline{P_{n-1} C}=\frac{a}{n}$;
$\overline{(\text { ii) }} Q_{1}, Q_{2}, \ldots, Q_{n-1}$ are points on the side $C A$ such that $\overline{C Q_{1}}=\overline{Q_{1} Q_{2}}=\cdots=$ $\overline{Q_{n-1} A}=\frac{b}{n}$;
(iii) $R_{1}, R_{2}, \ldots, R_{n-1}$ are points on the side $A B$ such that $\overline{A R_{1}}=\overline{R_{1} R_{2}}=\cdots=$ $\overline{R_{n-1} B}=\frac{c}{n}$;
(iv) $Q_{n-k} R_{k}=a_{k}, \quad R_{n-k} P_{k}=b_{k}, \quad P_{n-k} Q_{k}=c_{k}$, then $\triangle a_{k} b_{k} c_{k}, k=1, \ldots, n-1$, are similar to the given $\triangle A B C$ with respect to the group $H_{4}{ }^{\prime}$ of the similitudes of the first type.

REFERENCES

[1] F. Morley. Mathematical Association of Japan for Secondary Mathematics, 6, Dec. 1924.
[2] F. Morley. Extensions of Clifford's theorem. Amer. J. Math. 51 (1929), 469.
[3] H. Sachs. Ebene Isotrope Geometrie. Vieweg-Verlag, Wiesbaden, 1987.
[4] K. Strubecker. Äquiforme Geometrie der isotropen Ebene. Arch. d. Math., 3 (1952), 145-153.
[5] K. Strubecker. Geometrie in einer isotropen Ebene I-III. Math.-Naturwiss. Unterricht, 15 (1962-63), No 7, 297-306; No 8, 343-351; No 9, 385-394.
[6] Н. М. Макарова. Геометрия Галилея-Ньютона I-III. Уч. Зап. Орехово-Зуевского пединститута, 1 (1955), No 1, 83-95; 7 (1957), No 2, 5-27; 7 (1957), No 2, 29-59.
[7] И. М. Яглом. Комплексные числа и их применение в геометрии. М., Физматгиз, 1963.
[8] И. М. Яглом. Прицип относительности Галилея и неевклидова геометрия. М., Наука, 1969.

Adrijan Varbanov Borisov
Dept. of Descriptive Geometry
Univ. of Architecture,
Civil Eng. and Geodesy
1, Christo Smirnenski Blvd.
1421 Sofia, Bulgaria
e-mail: adribor_fgs@uacg.bg
Margarita Georgieva Spirova
Fac. of Math. and Inform.
Shumen University
"Episkop Konstantin Preslavski"
115, Alen Mak Str.
9712 Shumen, Bulgaria
e-mail: margspr@fmi.shu-bg.net

НЯКОИ ПОДОБНИ ТРИЪГЪЛНИЦИ, СВЪРЗАНИ С ЕДИН ЧИСТ ТРИЪГЪЛНИК В ГАЛИЛЕЕВАТА РАВНИНА

Адриян Върбанов Борисов, Маргарита Георгиева Спирова

Лесно се вижда, че знаменитата теорема на Франк Морли (1860-1937) за трисектрисите в евклидовата елементарна геометрия не е вярна в галилеевата равнина Γ_{2}. В тази статия показваме, че n-сектрисите на всеки чист (допустим) триъгълник в Γ_{2} определят $n-1$ триъгълника, които са подобни на дадения триъгълник относно групата $H_{4}^{\prime \prime}$ на подобностите от втори тип.

[^0]: *AMS Subject Classification: 51M99
 ${ }^{* *}$ The second autor was partially supported by Shumen University under Contract 12/14.03.02

