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ON THE EXISTENCE OF NONTRIVIAL SOLUTIONS OF A

NONLINEAR FOURTH ORDER BOUNDARY VALUE

PROBLEM
*

Julia V. Chaparova

A result conserning the existence of infinitely many nontrivial solutions of a nonlinear
fourth order boundary value problem is proved. The task is related to the stationary
periodic solutions of Fisher–Kolmogorov and Swift–Hohenberg equations. The latter
equations describe the phase transition phenomena in a singular Lifschitz point. A
symmetric version of the mountain pass theorem and the Hilbert spectral theorem
for self-adjoint compact operators are used.

1.Introduction. This paper deals with the existence of nontrivial solutions of the
fourth order boundary value problem

(1)

{

uiv − pu′′ + a (x)u− b (x) u3 = 0, 0 < x < L,
u (0) = u′′ (0) = u (L) = u′′ (L) = 0,

where a and b are positive continuous functions, and p and L are real parameters, L > 0.
The problem (1) is related to the stationary odd 2L−periodic solutions of the equation

(2)
∂u

∂t
=
∂4u

∂x4
− p

∂2u

∂x2
+ ã (x)u− b̃ (x) u3,

where

ã (x) :=







a (x) , x ∈ [0, L] ,
a (−x) , x ∈ (−L, 0) ,

2L− periodic, ∼,
b̃ (x) :=







b (x) , x ∈ [0, L] ,
b (−x) , x ∈ (−L, 0) ,
2L− periodic, ∼ .

Equations of the type of (2) arrise as model equations for phase transitions near a
singular Lifschitz point ([4], [10]), also for spatial patterns formation in bistable systems,
[3]. Their stationary bounded solutions (periodic, homoklinic and heteroklinic functions)
are studied in the works of Peletier & Troy [7], [8], Kalies, Kwapisz & Van der Vorst [6],
Van den Berg, Peletier & Troy [1], Habets, Sanchez, Tarallo & Terrachini [5], as well as
in Tersian & Chaparova [2], [11], [12].

We put the problem (1) in a variational setting introducing the functional

I (u) :=

∫ L

0

(

1

2

(

u′′2 + pu′2 + a (x)u2
)

− 1

4
b (x)u4

)

dx
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in the Sobolev space X := H2 (0, L) ∩H1
0 (0, L) with the inner product

(u, v) :=

∫ L

0

(u′′v′′ + u′v′ + uv) dx

and the corresponding norm

‖u‖ :=
√

(u, u).

The problem (1) is considered in case p > 0 in Tersian & Chaparova [11]. Using a
symmetric version of the mountain pass theorem ([9], Theorem 9.12) it is proved

Theorem 1. Let p > 0, and a and b be positive and continuous functions in [0, L].
The problem (1) possesses infinitely many pairs of solutions (un,−un) which are critical
points of the functional I, and I (un) → +∞ as n→ ∞.

In the present paper it is shown that (1) has infinitely many solutions (un,−un) also
for −2

√
a1 < p < 0, where a1 := min[0,L] a (x) .

2. Existence results. A careful look at the proof of Theorem 1 shows that the
assumption p > 0 is used only in order the expression

(3) |||u||| :=

(

∫ L

0

(

u′′2 + pu′2 + a (x)u2
)

dx

)1/2

to be an equivalent norm in X. It is natural to ask if (3) is an equivalent norm in X for
some p < 0. The answer is given in the following

Lemma 1. Let −2
√
a1 < p < 0 where a1 := min[0,L] a (x) . Then ||| · |||, defined by

(3) is an equivalent norm in X.

The proof of Lemma 1 relies on the well known Hilbert spectral theorem for self-
adjoint compact operators. We state it for completeness.

Theorem 2. (the Hilbert spectral theorem)Let a : H×H → R be an equivalent
scalar product in the Hilbert space H, b : H×H → R be a continuous symmertic bilinear
form such that

(i) un → u weakly in H implies b (un, un) → b (u, u) ,
(ii) b (u, u) > 0 for u ∈ H \ {0} .
Then the eigenvalue problem

a (u, v) = λb (u, v) , ∀v ∈ H

has a sequence of eigenvalues

0 < λ1 ≤ λ2 ≤ ...

and corresponding sequence of eigenvectors (en) such that

(j) λn → +∞;

(jj) λn = minu∈{e1,e2,...,en−1}
⊥

a (u, u)

b (u, u)
;

(jjj) {en} is orthonormal with respect to b and orthogonal with respect to a;
(jv) {en} is an orthogonal basis in H.

As a consequence of the Theorem 2 we have
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Proposition 1. Suppose a and b are as in the Theorem 2. If

λ1 := min
u∈H\{0}

a (u, u)

b (u, u)
> 1,

then (a (u, u) − b (u, u))
1/2

is an equivalent norm in H.

Proof of Lemma 1. Consider the eigenvalue problem: find (λ, u) ∈ R×X, u 6= 0
such that

(4)

∫ L

0

(u′′φ′′ + a (x) uφ) dx = λ

∫ L

0

(−p)u′φ′dx, ∀φ ∈ X.

Let (λ, u) be a solution of (4). Since
∫ L

0

u′φ′dx = −
∫ L

0

u′′φdx, ∀φ ∈ X,

by (4) it follows that there exists the second weak derivative of u′′ belonging to L2 (0, L) ,
and

(5)
uiv + a (x) u = λpu′′ a.e. in (0, L) ,
u (0) = u′′ (0) = u (L) = u′′ (L) = 0.

We put

x = Lt, 0 < t < 1

in (5) and denote

v (t) := u (Lt) , ā (t) = a (Lt) .

Thus (5) has the equivalent form

(6)

1

L4
viv + ā (x) v = λp

1

L2
v′′ a.e. in (0, 1) ,

v (0) = v′′ (0) = v (1) = v′′ (1) = 0.

Multiplying the equation in (6) by ψ ∈ X̄ := H2 (0, 1) ∩H1
0 (0, 1) and integrating it

in (0, 1) , we obtain

(7)

∫ 1

0

(

1

L4
v′′ψ′′ + ā (t) vψ

)

dt = λ

∫ 1

0

(−p) 1

L2
v′ψ′dt, ∀ψ ∈ X̄.

Hence (λ, u) ∈ R×X is a solution of (4) if and only if (λ, v (t) := u (Lt)) ∈ R×X̄ is a
solution of (7).

Since
∫ 1

0

v′2dt = −
∫ 1

0

vv′′dt ≤ 1

2

∫ 1

0

v2dt+
1

2

∫ 1

0

v′′2dt

for every v ∈ X̄ it follows that
(
∫ 1

0

(

1

L4
v′′2 + ā (t) v2

)

dt

)1/2

is an equivalent norm in X̄. The compact embedding of X̄ in C1 [0, 1] yields that (7)
satisfies the hypotheses of the Theorem 2. From (jj) , for the first eigenvalue λ1 (L) of
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(7) we have

λ1 (L) = min
v∈X̄\{0}

∫ 1

0

(

1

L4
v′′2 + ā (t) v2

)

dt

∫ 1

0

(−p) 1

L2
v′2dt

.

The function

ϕv (L) :=

∫ 1

0

(

1

L4
v′′2 + ā (t) v2

)

dt

∫ 1

0

(−p) 1

L2
v′2dt

is continuously differentiable in (0,∞) , and

ϕ′
v (L) =

− 2

L3
(−p)

(
∫ 1

0

v′2dt

)

(

∫ 1

0
(−p) 1

L2
v′2dt

)2

[

1

L4

(
∫ 1

0

v′′2dt

)

−
∫ 1

0

ā (t) v2dt

]

.

Thus ϕv (L) has a global minimum at L = L̄v :=
((

∫ 1

0 v
′′2dt

)

/
(

∫ 1

0 ā (t) v2dt
))1/4

,

ϕv (L) decreases in
(

0, L̄v

)

and increases in
(

L̄v,∞
)

, lim
L→0

ϕv (L) = +∞, and

lim
L→∞

ϕv (L) =
∫ 1

0 ā (t) v2dt. Then

ϕv (L) ≥
∫ 1

0

(

1
L̄4

v

v′′2 + ā (t) v2
)

dt
∫ 1

0
(−p) 1

L̄2
v

v′2dt

=
2
(

∫ 1

0
ā (t) v2dt

)1/2 (
∫ 1

0
v′′2dt

)1/2

(−p)
∫ 1

0
v′2dt

>
2
√
a1

(

∫ 1

0
v2dt

)1/2 (
∫ 1

0
v′′2dt

)1/2

2
√
a1

∫ 1

0
v′2dt

.

Since
∫ 1

0

v′2dt = −
∫ 1

0

vv′′dt ≤
(
∫ 1

0

v2dt

)1/2(∫ 1

0

v′′2dt

)1/2

for every v ∈ X̄ we deduce that

ϕv (L) > 1

for every L ∈ (0,∞) and v ∈ X̄ \ {0} . Hence, for the first eigenvalue λ1 (L) of (7) we
obtain

λ1 (L) = min
v∈X̄\{0}

ϕv (L) > 1

for every L ∈ (0,∞) . By Proposition 1 and the equivalence of (7) and (4) we conclude
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that
(

∫ L

0

(

u′′2 + pu′2 + a (x) u2
)

dx

)1/2

is an equivalent norm in X.
Following the steps of the proof of Theorem 2 in [11], by Lemma 1 it can be proved

Theorem 3. Let p > −2
√
a1 where a1 := min[0,L] a (x) . Then the problem (3)

possesses infinitely many pairs of solutions (un,−un) which are critical points of the
functional I, and I (un) → +∞ as n→ ∞.
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ВЪРХУ СЪЩЕСТВУВАНЕТО НА НЕТРИВИАЛНИ РЕШЕНИЯ НА
НЕЛИНЕЙНА ГРАНИЧНА ЗАДАЧА ОТ ЧЕТВЪРТИ РЕД

Юлия Чапарова

Доказан е резултат за съществуване на безбройно много нетривиални решения

на нелинейна гранична задача от четвърти ред. Задачата е свързана с нами-

ране на стационарни периодични решения на уравнения на Фишер-Колмогоров

и Суифт-Хохенберг, описващи процеси на фазови преходи в особена точка на

Лифшиц. Използвани са симетрична теорема за хребета от теорията на критич-

ните точки, както и спектрална теорема за линейните самоспрегнати компактни

оператори в хилбертови пространства.
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