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ON THE EXISTENCE OF NONTRIVIAL SOLUTIONS OF A
NONLINEAR FOURTH ORDER BOUNDARY VALUE
PROBLEM

Julia V. Chaparova

A result conserning the existence of infinitely many nontrivial solutions of a nonlinear
fourth order boundary value problem is proved. The task is related to the stationary
periodic solutions of Fisher—Kolmogorov and Swift—-Hohenberg equations. The latter
equations describe the phase transition phenomena in a singular Lifschitz point. A
symmetric version of the mountain pass theorem and the Hilbert spectral theorem
for self-adjoint compact operators are used.

1.Introduction. This paper deals with the existence of nontrivial solutions of the
fourth order boundary value problem

(1) u? —pu” +a(z)u—b(x)ud =0, 0<z<L,
u(0) =u" (0) =u (L) =u" (L) =0,

where a and b are positive continuous functions, and p and L are real parameters, L > 0.

The problem (1) is related to the stationary odd 2L—periodic solutions of the equation

ou 0% 0%u -

(2) EZ@—])@—FZL(JC)U—()(JC)U?’,
where
a(z), ze€l0,L], b(z), =€l0,L],
i(x):=4q a(-x), z€(=L,0), bx):=1 b(-x), ze(-L,0),
2L — periodic, ~, 2L — periodic, ~ .

Equations of the type of (2) arrise as model equations for phase transitions near a
singular Lifschitz point ([4], [10]), also for spatial patterns formation in bistable systems,
[3]. Their stationary bounded solutions (periodic, homoklinic and heteroklinic functions)
are studied in the works of Peletier & Troy [7], [8], Kalies, Kwapisz & Van der Vorst [6],
Van den Berg, Peletier & Troy [1], Habets, Sanchez, Tarallo & Terrachini [5], as well as
in Tersian & Chaparova [2], [11], [12].

We put the problem (1) in a variational setting introducing the functional

I(u):= AL <% (W + pu”? + a(z)u?) — ib(x) u4> da
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in the Sobolev space X := H? (0,L) N Hg (0, L) with the inner product

L
(u,v) ::/ (u"v" +u'v' + uwv) dx
0

and the corresponding norm

Jull := v/ (u, ).
The problem (1) is considered in case p > 0 in Tersian & Chaparova [11]. Using a
symmetric version of the mountain pass theorem ([9], Theorem 9.12) it is proved

Theorem 1. Let p > 0, and a and b be positive and continuous functions in [0, L].
The problem (1) possesses infinitely many pairs of solutions (uy, —uy) which are critical
points of the functional I, and I (u,) — 400 as n — oo.

In the present paper it is shown that (1) has infinitely many solutions (uy,, —u,) also
for —2/a1 < p <0, where a; := miny zja(z).

2. Existence results. A careful look at the proof of Theorem 1 shows that the
assumption p > 0 is used only in order the expression

L 1/2
® = ([ @ s a0 )

to be an equivalent norm in X. It is natural to ask if (3) is an equivalent norm in X for
some p < 0. The answer is given in the following

Lemma 1. Let —2\/a; < p < 0 where ay := minj zja(x). Then ||| - |||, defined by
(3) is an equivalent norm in X.

The proof of Lemma 1 relies on the well known Hilbert spectral theorem for self-
adjoint compact operators. We state it for completeness.

Theorem 2. (the Hilbert spectral theorem) Let a : H x H — R be an equivalent
scalar product in the Hilbert space H, b: H x H — R be a continuous symmertic bilinear
form such that

(1) up — u weakly in H implies b (up,un) — b(u,u),
(#3) b(u,u) >0 for u e H\ {0}.
Then the eigenvalue problem
a(u,v) = Ab(u,v), YveH
has a sequence of eigenvalues
O<A <A<

and corresponding sequence of eigenvectors (ey) such that

(]) An — +00; ( )
. : a(u,u
(47) An= M, e eynyen 1}t m;

(437) {en} is orthonormal with respect to b and orthogonal with respect to a;
(jv) {en} is an orthogonal basis in H.

As a consequence of the Theorem 2 we have
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Proposition 1. Suppose a and b are as in the Theorem 2. If
a (u,u)

min
ueH\{0} b (u,u)

)\1 =

)

then (a (u,u) — b (u, u))1/2 is an equivalent norm in H.

Proof of Lemma 1. Consider the eigenvalue problem: find (A, u) € RxX, u # 0
such that

L L
(4) / (u'¢" + a(x)ugp)dr = )\/ (—p)u'¢'dx, Vo€ X.
0 0
Let (A, u) be a solution of (4). Since

L L
/ u'¢d dr = —/ u’¢dr, Vo€ X,
0 0

by (4) it follows that there exists the second weak derivative of v belonging to L? (0, L),
and
(5) u? +a(x)u=Apu” a.e in (0,L),

w(0) =u" (0) =u(L)=u"(L)=0.
We put

z=Lt, 0<t<l1
in (5) and denote
v(t):=u(Lt), a(t)=a(Lt).

Thus (5) has the equivalent form

1"

1 . 1
— v +a(z)v= )\pﬁv

(6) 7 a.e. in (0,1),
v(0)=2"(0)=v(1)=2"(1)=0.

Multiplying the equation in (6) by v € X := H?(0,1) N H} (0,1) and integrating it
in (0,1), we obtain
! 1 "1 — ! 1 /o070 \
(7) ; ﬁvw +a(t)vy | dt=A | (—p)ﬁvwdt, Vi e X.
Hence (A\,u) € RxX is a solution of (4) if and only if (\,v () := u (Lt)) € RxX is a
solution of (7).

Since

1 1 1 /1 11
/ v2dt = 7/ v dt < —/ v2dt + = / "2 dt
0 0 2 /o 2o

for every v € X it follows that

([ (o) a)

is an equivalent norm in X. The compact embedding of X in C*[0,1] yields that (7)
satisfies the hypotheses of the Theorem 2. From (jj), for the first eigenvalue Ay (L) of
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(7) we have

The function

is continuously differentiable in (0, 00), and

vy (L) = _% - (/0 Uadt) [% (Al v”2dt> Ald(t) ﬁﬁ} .

1 1 2 ?
0 (fp)ﬁv dt

B ) 1/4
Thus ¢, (L) has a global minimum at L = L, = ((fo U”2dt) / (j;) a(t) v2dt)) :

400, and

¢y (L) decreases in (0,L,) and increases in (L,,o0), Ilimo wy (L)
lim ¢, (L) = fol a (t) v2dt. Then

L—oo

fol (E%v”Q +a(t) 122) dt

v (L) =
® ( ) fol (_p) %%’Uadt

/2

2 (fo al(t) v2dt) v (fol v”2dt) 1

(—p) fol v2dt

@ (Jy v2ar) i (Jy v2ar) i |

2/ar [} v2dt
1
(/ ’U”th)
0
oy (L) > 1

1 1 1
/ V2dt = 7/ v dt < (/ v2dt>
0 0 0
for every v € X we deduce that

for every L € (0,00) and v € X \ {0}. Hence, for the first eigenvalue \; (L) of (7) we
obtain

Since

1/2 1/2

A (L) = i v (L) >1
HE = Bl o )

for every L € (0,00). By Proposition 1 and the equivalence of (7) and (4) we conclude
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that

. 1/2
</ (u”? + pu” + a (z) u?) dx)
0

is an equivalent norm in X.
Following the steps of the proof of Theorem 2 in [11], by Lemma 1 it can be proved

Theorem 3. Let p > —2,/a1 where a; := minjg rja(x). Then the problem (3)
possesses infinitely many pairs of solutions (un, —uy) which are critical points of the
functional I, and I (u,) — +00 as n — oo.
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BBbPXY CBIIECTBYBAHETO HA HETPUBUWAJIHU PEINTEHUA HA
HEJIMHEMTHA TPAHUYHA 3AJTAYA OT YETBBPTU PE/L

FOnusa Yamaposa

JlokazaH e pe3ysTar 3a CbIECTByBaHe Ha 6€30pOHHO MHOI'O HETPHUBHAJIHU PEIICHUsT
Ha HEJIMHEHHA IDAHUYHA 33Jlada OT YEeTBbDPTH peJl. 3ajadara € CBbpP3aHa C HAMU-
paHe Ha CTAIMOHAPHU NEPUOAMIHU pelleHusi Ha ypasHenus Ha Puriep-Kosmoropos
n Cyundr-Xoxenbepr, onucsaiy nporecu Ha ($Ha30BH IPEXOayu B 0cobeHa TOYKA Ha
JIndmun,. Nsnon3sanu ca cumeTprdHa TeopeMa 3a XpebeTa OT TeoOpusATa Ha KPUTHI-
HUTE TOYKHU, KAKTO U CIIEKTPAJIHA TeopeMa 3a JIMHEHHNUTE CAMOCIIPErHATH KOMIAKTHHI
oIepaTopy B XHJIOGEPTOBU IIPOCTPAHCTBA.
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