ON THE EXISTENCE OF NONTRIVIAL SOLUTIONS OF A NONLINEAR FOURTH ORDER BOUNDARY VALUE PROBLEM *

Julia V. Chaparova

Abstract

A result conserning the existence of infinitely many nontrivial solutions of a nonlinear fourth order boundary value problem is proved. The task is related to the stationary periodic solutions of Fisher-Kolmogorov and Swift-Hohenberg equations. The latter equations describe the phase transition phenomena in a singular Lifschitz point. A symmetric version of the mountain pass theorem and the Hilbert spectral theorem for self-adjoint compact operators are used.

1.Introduction. This paper deals with the existence of nontrivial solutions of the fourth order boundary value problem

$$
\left\{\begin{array}{l}
u^{i v}-p u^{\prime \prime}+a(x) u-b(x) u^{3}=0, \quad 0<x<L \tag{1}\\
u(0)=u^{\prime \prime}(0)=u(L)=u^{\prime \prime}(L)=0,
\end{array}\right.
$$

where a and b are positive continuous functions, and p and L are real parameters, $L>0$. The problem (1) is related to the stationary odd $2 L$-periodic solutions of the equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{\partial^{4} u}{\partial x^{4}}-p \frac{\partial^{2} u}{\partial x^{2}}+\tilde{a}(x) u-\tilde{b}(x) u^{3} \tag{2}
\end{equation*}
$$

where

$$
\tilde{a}(x):=\left\{\begin{array}{c}
a(x), \quad x \in[0, L], \\
a(-x), \quad x \in(-L, 0), \\
2 L-\text { periodic, } \sim,
\end{array} \quad \tilde{b}(x):=\left\{\begin{array}{c}
b(x), \quad x \in[0, L] \\
b(-x), \quad x \in(-L, 0), \\
2 L-\text { periodic }, \sim
\end{array}\right.\right.
$$

Equations of the type of (2) arrise as model equations for phase transitions near a singular Lifschitz point ([4], [10]), also for spatial patterns formation in bistable systems, [3]. Their stationary bounded solutions (periodic, homoklinic and heteroklinic functions) are studied in the works of Peletier \& Troy [7], [8], Kalies, Kwapisz \& Van der Vorst [6], Van den Berg, Peletier \& Troy [1], Habets, Sanchez, Tarallo \& Terrachini [5], as well as in Tersian \& Chaparova [2], [11], [12].

We put the problem (1) in a variational setting introducing the functional

$$
I(u):=\int_{0}^{L}\left(\frac{1}{2}\left(u^{\prime \prime 2}+p u^{\prime 2}+a(x) u^{2}\right)-\frac{1}{4} b(x) u^{4}\right) d x
$$

[^0]in the Sobolev space $X:=H^{2}(0, L) \cap H_{0}^{1}(0, L)$ with the inner product
$$
(u, v):=\int_{0}^{L}\left(u^{\prime \prime} v^{\prime \prime}+u^{\prime} v^{\prime}+u v\right) d x
$$
and the corresponding norm
$$
\|u\|:=\sqrt{(u, u)}
$$

The problem (1) is considered in case $p>0$ in Tersian \& Chaparova [11]. Using a symmetric version of the mountain pass theorem ([9], Theorem 9.12) it is proved

Theorem 1. Let $p>0$, and a and b be positive and continuous functions in $[0, L]$. The problem (1) possesses infinitely many pairs of solutions $\left(u_{n},-u_{n}\right)$ which are critical points of the functional I, and $I\left(u_{n}\right) \rightarrow+\infty$ as $n \rightarrow \infty$.

In the present paper it is shown that (1) has infinitely many solutions $\left(u_{n},-u_{n}\right)$ also for $-2 \sqrt{a_{1}}<p<0$, where $a_{1}:=\min _{[0, L]} a(x)$.
2. Existence results. A careful look at the proof of Theorem 1 shows that the assumption $p>0$ is used only in order the expression

$$
\begin{equation*}
\|\|u\|\|:=\left(\int_{0}^{L}\left(u^{\prime \prime 2}+p u^{\prime 2}+a(x) u^{2}\right) d x\right)^{1 / 2} \tag{3}
\end{equation*}
$$

to be an equivalent norm in X. It is natural to ask if (3) is an equivalent norm in X for some $p<0$. The answer is given in the following

Lemma 1. Let $-2 \sqrt{a_{1}}<p<0$ where $a_{1}:=\min _{[0, L]} a(x)$. Then $\|\|\cdot\|$, defined by (3) is an equivalent norm in X.

The proof of Lemma 1 relies on the well known Hilbert spectral theorem for selfadjoint compact operators. We state it for completeness.

Theorem 2. (the Hilbert spectral theorem) Let $a: H \times H \rightarrow \mathbf{R}$ be an equivalent scalar product in the Hilbert space $H, b: H \times H \rightarrow \mathbf{R}$ be a continuous symmertic bilinear form such that
(i) $u_{n} \rightarrow u$ weakly in H implies $b\left(u_{n}, u_{n}\right) \rightarrow b(u, u)$,
(ii) $b(u, u)>0$ for $u \in H \backslash\{0\}$.

Then the eigenvalue problem

$$
a(u, v)=\lambda b(u, v), \quad \forall v \in H
$$

has a sequence of eigenvalues

$$
0<\lambda_{1} \leq \lambda_{2} \leq \ldots
$$

and corresponding sequence of eigenvectors $\left(e_{n}\right)$ such that
(j) $\quad \lambda_{n} \rightarrow+\infty$;
(jj) $\quad \lambda_{n}=\min _{u \in\left\{e_{1}, e_{2}, \ldots, e_{n-1}\right\}^{\perp}} \frac{a(u, u)}{b(u, u)}$;
(jjj) $\left\{e_{n}\right\}$ is orthonormal with respect to b and orthogonal with respect to a;
(jv) $\left\{e_{n}\right\}$ is an orthogonal basis in H.
As a consequence of the Theorem 2 we have

Proposition 1. Suppose a and b are as in the Theorem 2. If

$$
\lambda_{1}:=\min _{u \in H \backslash\{0\}} \frac{a(u, u)}{b(u, u)}>1,
$$

then $(a(u, u)-b(u, u))^{1 / 2}$ is an equivalent norm in H.

Proof of Lemma 1. Consider the eigenvalue problem: find $(\lambda, u) \in \mathbf{R} \times X, u \neq 0$ such that

$$
\begin{equation*}
\int_{0}^{L}\left(u^{\prime \prime} \phi^{\prime \prime}+a(x) u \phi\right) d x=\lambda \int_{0}^{L}(-p) u^{\prime} \phi^{\prime} d x, \quad \forall \phi \in X . \tag{4}
\end{equation*}
$$

Let (λ, u) be a solution of (4). Since

$$
\int_{0}^{L} u^{\prime} \phi^{\prime} d x=-\int_{0}^{L} u^{\prime \prime} \phi d x, \quad \forall \phi \in X
$$

by (4) it follows that there exists the second weak derivative of $u^{\prime \prime}$ belonging to $L^{2}(0, L)$, and

$$
\begin{gather*}
u^{i v}+a(x) u=\lambda p u^{\prime \prime} \quad \text { a.e. in }(0, L), \\
u(0)=u^{\prime \prime}(0)=u(L)=u^{\prime \prime}(L)=0 . \tag{5}
\end{gather*}
$$

We put

$$
x=L t, \quad 0<t<1
$$

in (5) and denote

$$
v(t):=u(L t), \quad \bar{a}(t)=a(L t) .
$$

Thus (5) has the equivalent form

$$
\begin{gather*}
\frac{1}{L^{4}} v^{i v}+\bar{a}(x) v=\lambda p \frac{1}{L^{2}} v^{\prime \prime} \quad \text { a.e. in }(0,1), \tag{6}\\
v(0)=v^{\prime \prime}(0)=v(1)=v^{\prime \prime}(1)=0 .
\end{gather*}
$$

Multiplying the equation in (6) by $\psi \in \bar{X}:=H^{2}(0,1) \cap H_{0}^{1}(0,1)$ and integrating it in $(0,1)$, we obtain

$$
\begin{equation*}
\int_{0}^{1}\left(\frac{1}{L^{4}} v^{\prime \prime} \psi^{\prime \prime}+\bar{a}(t) v \psi\right) d t=\lambda \int_{0}^{1}(-p) \frac{1}{L^{2}} v^{\prime} \psi^{\prime} d t, \quad \forall \psi \in \bar{X} \tag{7}
\end{equation*}
$$

Hence $(\lambda, u) \in \mathbf{R} \times X$ is a solution of (4) if and only if $(\lambda, v(t):=u(L t)) \in \mathbf{R} \times \bar{X}$ is a solution of (7).

Since

$$
\int_{0}^{1} v^{\prime 2} d t=-\int_{0}^{1} v v^{\prime \prime} d t \leq \frac{1}{2} \int_{0}^{1} v^{2} d t+\frac{1}{2} \int_{0}^{1} v^{\prime \prime 2} d t
$$

for every $v \in \bar{X}$ it follows that

$$
\left(\int_{0}^{1}\left(\frac{1}{L^{4}} v^{\prime \prime 2}+\bar{a}(t) v^{2}\right) d t\right)^{1 / 2}
$$

is an equivalent norm in \bar{X}. The compact embedding of \bar{X} in $C^{1}[0,1]$ yields that (7) satisfies the hypotheses of the Theorem 2. From $(j j)$, for the first eigenvalue $\lambda_{1}(L)$ of 152
(7) we have

$$
\lambda_{1}(L)=\min _{v \in \bar{X} \backslash\{0\}} \frac{\int_{0}^{1}\left(\frac{1}{L^{4}} v^{\prime \prime 2}+\bar{a}(t) v^{2}\right) d t}{\int_{0}^{1}(-p) \frac{1}{L^{2}} v^{\prime 2} d t} .
$$

The function

$$
\varphi_{v}(L):=\frac{\int_{0}^{1}\left(\frac{1}{L^{4}} v^{\prime \prime 2}+\bar{a}(t) v^{2}\right) d t}{\int_{0}^{1}(-p) \frac{1}{L^{2}} v^{\prime 2} d t}
$$

is continuously differentiable in $(0, \infty)$, and

$$
\varphi_{v}^{\prime}(L)=\frac{-\frac{2}{L^{3}}(-p)\left(\int_{0}^{1} v^{\prime 2} d t\right)}{\left(\int_{0}^{1}(-p) \frac{1}{L^{2}} v^{\prime 2} d t\right)^{2}}\left[\frac{1}{L^{4}}\left(\int_{0}^{1} v^{\prime \prime 2} d t\right)-\int_{0}^{1} \bar{a}(t) v^{2} d t\right]
$$

Thus $\varphi_{v}(L)$ has a global minimum at $L=\bar{L}_{v}:=\left(\left(\int_{0}^{1} v^{\prime \prime 2} d t\right) /\left(\int_{0}^{1} \bar{a}(t) v^{2} d t\right)\right)^{1 / 4}$, $\varphi_{v}(L)$ decreases in $\left(0, \bar{L}_{v}\right)$ and increases in $\left(\bar{L}_{v}, \infty\right), \lim _{L \rightarrow 0} \varphi_{v}(L)=+\infty$, and $\lim _{L \rightarrow \infty} \varphi_{v}(L)=\int_{0}^{1} \bar{a}(t) v^{2} d t$. Then

$$
\begin{aligned}
\varphi_{v}(L) & \geq \frac{\int_{0}^{1}\left(\frac{1}{L_{v}^{4}} v^{\prime \prime 2}+\bar{a}(t) v^{2}\right) d t}{\int_{0}^{1}(-p) \frac{1}{L_{v}^{2}} v^{\prime 2} d t} \\
& =\frac{2\left(\int_{0}^{1} \bar{a}(t) v^{2} d t\right)^{1 / 2}\left(\int_{0}^{1} v^{\prime \prime 2} d t\right)^{1 / 2}}{(-p) \int_{0}^{1} v^{\prime 2} d t} \\
& >\frac{2 \sqrt{a_{1}}\left(\int_{0}^{1} v^{2} d t\right)^{1 / 2}\left(\int_{0}^{1} v^{\prime \prime 2} d t\right)^{1 / 2}}{2 \sqrt{a_{1}} \int_{0}^{1} v^{\prime 2} d t}
\end{aligned}
$$

Since

$$
\int_{0}^{1} v^{\prime 2} d t=-\int_{0}^{1} v v^{\prime \prime} d t \leq\left(\int_{0}^{1} v^{2} d t\right)^{1 / 2}\left(\int_{0}^{1} v^{\prime \prime 2} d t\right)^{1 / 2}
$$

for every $v \in \bar{X}$ we deduce that

$$
\varphi_{v}(L)>1
$$

for every $L \in(0, \infty)$ and $v \in \bar{X} \backslash\{0\}$. Hence, for the first eigenvalue $\lambda_{1}(L)$ of (7) we obtain

$$
\lambda_{1}(L)=\min _{v \in \bar{X} \backslash\{0\}} \varphi_{v}(L)>1
$$

for every $L \in(0, \infty)$. By Proposition 1 and the equivalence of (7) and (4) we conclude
that

$$
\left(\int_{0}^{L}\left(u^{\prime \prime 2}+p u^{\prime 2}+a(x) u^{2}\right) d x\right)^{1 / 2}
$$

is an equivalent norm in X.
Following the steps of the proof of Theorem 2 in [11], by Lemma 1 it can be proved
Theorem 3. Let $p>-2 \sqrt{a_{1}}$ where $a_{1}:=\min _{[0, L]} a(x)$. Then the problem (3) possesses infinitely many pairs of solutions $\left(u_{n},-u_{n}\right)$ which are critical points of the functional I, and $I\left(u_{n}\right) \rightarrow+\infty$ as $n \rightarrow \infty$.

REFERENCES

[1] J. Van den Berg, L. Peletier, W. Troy. Global branches of multi-bump periodic solutions of the Swift-Hohenberg equation. Arch. Rational Mech. Anal., 158 (2001), 91-153.
[2] J. Chaparova. Existence and numerical approximations of periodic solutions of semilinear fourth order differential equations. J. Math. Anal. Appl., (2002), in press.
[3] G. Dee and W. Saarloose. Bistable systems with propagating fronts leading to pattern formation. Phys. Rev. Lett., 60 (1988), 2641-2644.
[4] R. Hornreich, M. Luban, S. Shtrikman. Critical behavior at the onset of \vec{k}-space instability on the λ line. Phys. Rev. Lett., 35, 25 (1975), 1678-1681.
[5] P. Habets, L. Sanchez, M. Tarallo, S. Terracini. Heteroclinics for a class of fourth order conservative differential equations, (to appear).
[6] W. Kalies, J. Kwapisz, R. Van der Vorst. Homotopy classes for stable connections between Hamiltonian saddle-focus equilibria. Commun. Math. Phys., 193 (1998), 337-371.
[7] L. A. Peletier, W.C. Troy. Spatial patterns described by the extended Fisher-Kolmogorov equation: periodic solutions.SIAM J. Math. Anal., 28, 6 (1997), 1317-1353.
[8] L. A. Peletier, W.C. Troy. A topological shooting method and the existence of kinks of the extended Fisher-Kolmogorov equation. Topol. Methods Nonlinear Anal. ,6 (1995), 331-355. [9] P. Rabinowitz. Minimax methods in critical point theory with applications for differential equations. In: CBMS Regional Conference, 1984.
[10] J. Swift, P. Hohenberg. Hydrodynamic fluctuations at the convective instability. Phys. Rev. A, 15 (1977), 319-328.
[11] S. Tersian, J. Chaparova. Periodic and homoclinic solutions of extended Fisher-Kolmogorov equations. J. Math. Anal. Appl., 260 (2001), 490-506.
[12] S. Tersian, J. Chaparova. Periodic and homoclinic solutions of some semilinear sixthorder differential equations. J. Math. Anal. Appl., 272 (2002), 223-239.

Julia Vancheva Chaparova
Matematical analysis dept.
University of Rousse
Studentska 8, 7017 Rousse
e-mail: chaparova@ecs.ru.acad.bg

ВЪРХУ СЪЩЕСТВУВАНЕТО НА НЕТРИВИАЛНИ РЕШЕНИЯ НА НЕЛИНЕЙНА ГРАНИЧНА ЗАДАЧА ОТ ЧЕТВЪРТИ РЕД

Юлия Чапарова

Доказан е резултат за съществуване на безбройно много нетривиални решения на нелинейна гранична задача от четвърти ред. Задачата е свързана с намиране на стационарни периодични решения на уравнения на Фишер-Колмогоров и Суифт-Хохенберг, описващи процеси на фазови преходи в особена точка на Лифшиц. Използвани са симетрична теорема за хребета от теорията на критичните точки, както и спектрална теорема за линейните самоспрегнати компактни оператори в хилбертови пространства.

[^0]: *The work is supported by the Grant MM 904/99 from the Bulgarian Research Foundation and the Grant 2002-PF-03 from the University of Rousse.

