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SHAPE THEOREMS FOR QUADRANGLES*

Georgi Hristov Georgiev, Radostina P. Encheva

A shape of a triangle is a complex number corresponding to an orbit of triangles under
the group of the plane direct similarities. A shape of a quadrangle is an ordered pair
of complex numbers corresponding to an equivalence class of quadrangles under the
same group. We apply the shapes of triangles for the examinations of the shapes of
quadrangles. In particular, we obtain some equalities for shapes by the use of some
geometric constructions.

Complex numbers are a power tool to study the Euclidean plane. There are several
books which consider different applications of complex number in the plane geometry (see
[5] and [9]). June Lester created a new complex analytic formalism based on a cross-ratio
and introduced the notion of a shape of a triangle. Many applications of this formalism
are considered in triangle series (see [6], [7] and [8]). The notion of shape was extended
by R. Artzy in [1]. He introduced a shape of polygons and examined some properties of
shapes of quadrangles.

In this paper, we apply shapes of triangles for examination of shapes of quadrangles.
First, we recall the basic definitions and assertions concerning shapes. According to [6],
if a, b and c are three distinct points in the Gaussian plane the number

△abc =
a− c

a − b

is called a shape of the oriented triangle. The shape △abc is real if and only if △abc

is degenerated, i.e. the points a, b and c are collinear. It is clear that △abc ∈ C \ R

for any non - degenerate triangle △abc. If p = △abc, then p′ = △bca = (1 − p)−1 and
p′′ = △cab = 1− p−1. In [6], J. Lester proves two main theorems which are a very useful
tool for calculation of shapes. We shall recall the parts of these theorems which will be
used in our proofs.

First Shape Theorem. Let a and b be distinct fixed points and let p, q and r be

three arbitrary points in the Euclidean plane. If △pab = λ,△qab = µ,△rab = ν, then

the triangle △pqr has a shape

△pqr =
(1 − µ)(λ − ν)

(1 − ν)(λ − µ)
.
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Let △abp = λ′, △abq = µ′ and △abr = ν′, then λ = 1 − 1
λ′

, µ = 1 − 1
µ′

, ν = 1 − 1
ν′

.

Using First Shape Theorem we obtain another more comfortable representation of the
shape of the triangle △pqr

(1) △pqr =

1
µ′ (

1
ν′ −

1
λ′ )

1
ν′

( 1
µ′

− 1
λ′

)
=

λ′ − ν′

λ′ − µ′
.

Second Shape Theorem. Let △abc be a non - degenerate triangle with shape △abc,

and let p, q and r be three arbitrary points. If △pcb = λ, △qac = µ and △rba = ν, then

△pqr =
λ△abc − (1 − λν)(1 − ν)−1

(1 − λµ)(1 − µ)−1△abc − 1
.

As above, if △cbp = λ′, △acq = µ′ and △bar = ν′, then λ = 1 − 1
λ′

, µ = 1 − 1
µ′

,

ν = 1 − 1
ν′ and

(2) △pqr =
(λ′ − 1)△− (λ′ + ν′ − 1)

(λ′ + µ′ − 1)△− λ′
.

See [6] for more details. Other applications of shapes are considered in [2] and [3].
According to [1], the shape of an ordered quadrangle abcd in the Gaussian plane

is the ordered pair [p, q], where p = △abc and q = △acd. We denote the shape of the
quadrangle abcd by S(abcd).

It is easy to see that similar triangles with the same orientation have the same shape,
i.e. the shape of a triangle is invariant under the group of direct plane similarities. Now
we shall prove the same assertion for quadrangles.

Proposition 1. Let abcd and a′b′c′d′ be two convex quadrangles with shapes [p, q]
and [p′, q′], respectively. Then

i. The quadrangles are similar if and only if they have the same orientation and p = p′,

q = q′.

ii. The quadrangles are antisimilar if and only if they have an opposite orientation and

p′ = p, q′ = q.

Proof. i. If abcd and a′b′c′d′ are similar, then there exists a similarity f ∈ Sim+(2)
which preserves the orientation in the plane and f(a) = a′, f(b) = b′, f(c) = c′,

f(d) = d′. Thus, △abc is similar to △a′b′c′ and △acd is similar to △a′c′d′, i. e.
p′ = p and q′ = q.

Conversely, if p′ = p and q′ = q, then there is a similarity f ∈ Sim+(2) such that
f(a) = a′, f(b) = b′ and f(c) = c′. Suppose that f(d) = d′′. According to i., the
quadrangles abcd and a′b′c′d′′ are similar and then q = △acd = △a′c′d′ = △a′c′d′′ .

Hence, d′ = d′′ and the quadrangles abcd and a′b′c′d′ are similar.
The proof of the second assertion is the same.

The proposal of this paper is to give generalizations of the first and second shape
theorems. For this we need formulas for calculating the shapes of quadrangles when the
order of the vertices is changed.

Lemma 1. Let abcd be a convex quadrangle with shape [p, q], then

i. S(bcda) =
[

1 − pq
1 − p , 1

1 − pq

]

, S(cdab) =
[

1
1 − q ,

p − 1
p

]

,
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S(dabc) =

[

pq − 1
pq ,

p(1 − q)
1 − pq

]

.

ii. S(dcba) =

[

1 − pq
p(1 − q)

,
pq

pq − 1

]

, S(cbad) =
[

p
p − 1 , 1 − q

]

,

S(badc) =
[

1 − pq,
1 − p
1 − pq

]

, S(adcb) =
[

1
q , 1

p

]

.

Proof. Since p = a − c
a − b

and q = a − d
a − c , then △abd = a − d

a − b
= pq. Thus, △bda =

(1 − pq)−1 and △bad = 1 − pq. On the other hand, △bcd = b − d
b − c

=
(1 − pq)(b − a)

b − c
=

= (1− pq)(1− p)−1. Hence, S(bcda) = [△bcd, △bda] =
[

1 − pq
1 − p , 1

1 − pq

]

. The proof of

the rest equalities is analogous.
The first shape theorem can be extended to a formula for calculating the shape of a

quadrangle.

Figure 1

Theorem 1. Let a and b be two distinct points in the plane. For arbitrary points

ci, i = 1, 2, 3, 4, we suppose that △abci
= λi. Then, the shape of the quadrangle

c1c2c3c4 is

S(c1, c2, c3, c4) =

[

λ3 − λ1

λ2 − λ1

,
λ4 − λ1

λ3 − λ1

]

.

Proof. Since a − ci

a − b
= λi, we have ci = a − λi(a − b) (see Figure 1). Then

△c1c2c3 =
c1 − c3

c1 − c2

=
a − λ1(a − b) − a + λ3(a − b)

a − λ1(a − b) − a + λ2(a − b)
=

λ3 − λ1

λ2 − λ1

and

△c1c3c4 =
c1 − c4

c1 − c3

=
a − λ1(a − b) − a + λ4(a − b)

a − λ1(a − b) − a + λ3(a − b)
=

λ4 − λ1

λ3 − λ1

.

This completes the proof.

Theorem 2. Let abcd be a quadrangle with a shape [p, q]. On the sides of the

quadrangle abcd construct triangles △cda1, △dab1, △abc1 and △bcd1 externally

with shapes λ1, λ2, λ3 and λ4, respectively. Then the shape of the quadrangle a1b1c1d1
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is
[

p − λ1p(1 − q) − λ3

(1 − λ1)p(1 − q) + pqλ2

,
λ1p(1 − q) + (1 − λ4)(1 − p)

λ1p(1 − q) + λ3 − p

]

Proof. It follows from △cda1
= λ1, △dab1

= λ2, △abc1 = λ3 and △bcd1
= λ4 that

a1 = c − λ1(c − d), b1 = d − λ2(d − a), c1 = a − λ3(a − b) and d1 = b − λ4(b − c).

Figure 2

Hence, we find that

△a1b1c1 =
a1 − c1

a1 − b1

=
c − a − λ1(c − d) + λ3(a − b)

(1 − λ1)(c − d) + λ2(d− a)
=(3)

=
1 − (1 − λ1)△dac − λ3△adb

λ2 − (1 − λ1)△dac

.

Since △dac = 1−△adc = 1− 1
q and △adb = 1−△dab = 1

pq (see Figure 2), then replacing

in (3) we obtain the first component of the shape of the quadrangle a1b1c1d1. Similarly

△a1c1d1
=

a1 − d1

a1 − c1

=
c − b − λ1(c − d) + λ4(b − c)

c − a − λ1(c − d) + λ3(a − b)
=(4)

=
1 − λ1△cbd − λ4

1 − λ1△cbd − (1 − λ3)△bca

.

From △cbd =
(q − 1)p
1 − p and △bca = (1 − p)−1, replacing in (4) we get the second

component of the shape of the quadrangle a1b1c1d1 and this completes the proof.

Some particular cases of Theorem 2 are used in [3] to solve of some problems from
[4].

Theorem 3. Let abcd be a quadrangle with a shape [p, q]. Let ac ∩ bd = m,

ab ∩ cd = k and bc ∩ ad = l. Then

i. △abm = p.
Im pq

|p|2Im q + Im p
, △bcm =

1 − pq
1 − p .

Im p
|p|2Im q + Im p

,

△cdm = 1
1 − q .

|p|2Im q + Im p − Im pq

|p|2Im q + Im p
, △dam =

(

1 − 1
pq

)

.
|p|2Im q

|p|2Im q + Im p
,
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△abl =
pIm pq − |p|2Im q

Im pq − |p|2Im q
;

ii. △mkl =
q.Im p(|p|2Im q + Im p) − Im pq(Im pq − |p|2Im q)

q.Im p(|p|2Im q + Im p) − Im pq(|p|2Im q + 2Im p − Im pq)
.

Im p − Im pq

Im pq − |p|2Im q
;

iii. The shape of the quadrangle mkld is [△mkl, △mld], where

△mld =
q.(|p|2Im q + Im p) − Im pq

p.Im q(|p|2Im q + Im p) − Im pq(Im p + 2|p|2Im q − Im pq)
.(|p|2Im q − Im pq).

Figure 3

Proof. Applying the First Shape Theorem for the triangles △abb, △abd and △abm

with shapes 1, pq and △abm, respectively we find that

△bdm =
△abm − 1

pq − 1
.

Since b, d, m are collinear (see Figure 3),then △bdm = △bdm. Hence

(5)
△abm − 1

pq − 1
=

△abm − 1

pq − 1
.

Similarly, applying the First Shape Theorem for the triangles △aba, △abc and △abm

with shapes 0, p and △abm, respectively and using that the points a, c, m are collinear
we get

(6)
△abm

p
=

△abm

p
.

From (5) and (6), eliminating △abm we find the first equality in i. The shapes of the
triangles △bcm, △cdm and △dam are obtained from the shape of the triangle △abm

by cycling the vertices of the quadrangle abcd and Lemma 1. Applying the first equality

in i. for the quadrangle bacd with a shape
[

1 − p,
1 − pq
1 − p

]

we get

△bal = (1 − p).
Im pq

Im pq − |p|2Im q
. Using that △abl = 1 − △bal we find the last equality

in i. Denote △abm = λ1, △cbk = λ2 and △acl = λ3. Hence m = a− λ1(a − b),
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k = c − λ2(c − b) and l = a− λ3(a − c), and replacing in △mkl = m − l
m − k

we find that

(7) △mkl =
λ3p − λ1

(1 − λ2)p + λ2 − λ1

.

It follows from the second equality in i. for the quadrangles acbd and bacd with shapes
[

1
p , pq

]

and
[

1 − p,
1 − pq
1 − p

]

that

△cbk = λ2 =
p(1 − q)

p − 1
.

Im p

Im p − Im pq
(8)

△acl = λ3 = q.
Im p

Im pq − |p|2Im q
.(9)

Replacing (8), (9) and the first equality from i in (7) we get ii..
The last assertion in iii. follows from the First Shape Theorem for the triangles △abm,

△abl and △abd with shapes △abm, △abl and △abd = pq, respectively.
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ШЕЙП ТЕОРЕМИ ЗА ЧЕТИРИЪГЪЛНИЦИ

Георги Христов Георгиев, Радостина П. Енчева

Шейп на триъгълник е комплексно число, съответстващо на орбитата от три-

ъгълници под действието на групата на подобностите в равнината, запазващи

ориентацията. Шейп на четириъгълник е наредена двойка от комплексни чис-

ла, съответствуваща на еквивалентен клас от четириъгълници по отношение на

същата група. Прилагаме шейпове на триъгълници за изучаване на шейпове на

четириъгълници. В частност получаваме тъждества за шейпове чрез използване

на накои геометрични конструкции.
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