
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2003

MATHEMATICS AND EDUCATION IN MATHEMATICS, 2003

Proceedings of the Thirty Second Spring Conference of

the Union of Bulgarian Mathematicians

Sunny Beach, April 5–8, 2003

SPECIAL COMPOSITIONS AND CURVATURE

PROPERTIES ON A THREE-DIMENSIONAL WEYL SPACE

Dobrinka K. Gribacheva, Georgi Z. Zlatanov

Special compositions, generated by a net in a space with a symmetric linear connection
are considered in [2]. In [4] there is introduced the prolonged covariant differentiation
of satellites of the metric tensor of a Weyl space. In this paper, the special composi-
tions, generated by a net in the 3-dimensional Weyl space are characterized in terms
of the prolonged covariant differentiation. There the form of the curvature tensor on
a 3-dimensional Weyl space and the Ricci curvatures of some tangent vectors of the
net are given.

1. Preliminaries. Let W3 be a 3-dimensional Weyl space with a metric tensor gik

and its inverse tensor gkj , i.e. gikgkj = δ
j
i , i, j, k = 1, 2, 3.

As it is well-known [5], the Weyl connection ∇ with components Γk
ij is determined by

the equation:

(1) Γk
ij =

{

k

ij

}

−
(

ωiδ
k
j + ωjδ

k
i − gijg

ksωs

)

,

where ωk is the complementary vector of W3 and
{

k
ij

}

are the Cristoffel symbols, deter-
mined by gij . There are valid the following equations:

(2) ∇kgij = 2ωkgij , ∇kgij = −2ωkgij .

Let us consider a composition W3 (X2 × X1) in W3, where X2 (dim X2 = 2), X1 (dim
X1 = 1) are the fundamental manifolds. There exists a unique position of each of the
fundamental manifolds X2 and X1 at every point p ∈ W3, which is denoted by P (X2)
and P (X1), respectively.

According to [8], W3 is the space of the composition W3 (X2 × X1), if there exists a
tensor field a

j
i of type (1,1) determined by the equations:

(3) a
j
ia

k
j = δk

i ,

(4) Nk
ij = as

i∇sa
k
j − as

j∇sa
k
i + ak

s

(

∇ia
s
j −∇ja

s
i

)

= 0,

where Nk
ij is the Nijenhuis tensor of the structure a

j
i .

Following [6], the composition W3 (X2 × X1) is called Cartesian, if the tangent section
of P (X2) and the tangent vector of P (X1) is translated parallelly in the direction of every
curve of P (X2) and P (X1). The characteristics of the Cartesian composition is:

(5) ∇ia
k
j = 0.
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A composition W3 (X2 × X1) is called Chebyshevian, if the tangent section of P (X2)
is translated parallelly in P (X1) and the tangent vector of P (X1) is translated paral-
lelly in the direction of every curve of P (X2) . The characteristic of the Chebyshevian
composition is:

(6) ∇ia
k
j −∇ja

k
i = 0.

The composition W3 (X2 × X1) is called geodesic, if the tangent section of P (X2) is
translated parallelly in the direction of every curve of P (X2) and the curve P (X1) is
geodesic. The characteristic of the geodesic composition is:

(7) ak
i ∇sa

m
k + ak

s∇kam
i = 0.

Let (v
1
, v
2
, v
3
) be a net in W3, determined by independent tangent vector fields

i
v
k

of

the curve of the net (k =1,2,3). We determine the inverse covectors
k
vi of v

k

i (k =1,2,3),

respectively, by the equations:

(8) v
i

k s
vk = δs

i ⇔ v
i

k i
vs = δk

s .

According to [4], the prolonged covariant differentiation
◦

∇ of the satellite A with
weight {p} in the Weyl space is defined by:

(9)
◦

∇
i

A = ∇iA − pωiA.

In [4] there are found the derivative equations of the directional vectors of the net:

(10)
◦

∇iv
k

s =
m

Ti
k

v
m

s,
◦

∇i

k
vs = −

k

Ti
m

v
s

m, k = 1, 2, 3.

2. Special compositions in W3. In [2] there is defined the affinor ak
i of the

composition in the Weyl space. It is determined uniquely by the net and it has the
following form in W3:

(11) ak
i = v

1

k 1
vi + v

2

k 2
vi − v

3

k 3
vi.

There is follows immediately ak
i satisfies (3) and the conditions:

(12) as
kv

1

k = v
1

s, as
kv
2

k = v
2

s, as
kv
3

k = −v
3

s.

The composition W3 (X2 × X1) is determined by ak
i , if the affinor satisfies (4). The

composition W3 (X2 × X1) is called associated to the net (v
1
, v
2
, v
3
).

Theorem 1. The Weyl space W3 is a space of the composition W3 (X2 × X1) associ-
ated to net (v

1
, v
2
, v
3
) if and only if:

(13)

1

T
3

[k
3
v i] +

1

Ts
3

v
1

s 3
v [k

1
v i] +

1

Ts
3

v
2

s 3
v [k

2
v i] = 0,

2

T
3

[k
3
v i] +

2

Ts
3

v
1

s 3
v [k

1
v i] +

2

Ts
3

v
2

s 3
v [k

2
v i] = 0,

3

T
1

[k
1
v i] +

3

T
2

[k
2
v i] −

3

Ts
2

v
1

s 2
v [k

1
v i] −

3

Ts
1

v
2

s 1
v [k

2
v i] +

3

Ts
1

v
3

s 1
v [k

3
v i] +

3

Ts
2

v
3

s 2
v [k

3
v i] = 0.

170



Proof. The affinor ak
i has weight {0} and according to [4] we have:

(14)
◦

∇sa
k
i = ∇sa

k
i .

Then the condition (4) receives the form:

(15) as
i

◦

∇sa
k
j − as

j

◦

∇sa
k
i + ak

s

(

◦

∇ia
s
j −

◦

∇ja
s
i

)

= 0.

According to (10) and (11) we obtain:

(16)
◦

∇sa
k
j = 2

(

3

Ts
1

v
3

k 1
vj −

1

Ts
3

v
1

k 3
vj +

3

Ts
2

v
3

k 2
vj −

2

Ts
3

v
2

k 3
vj

)

.

Having in mind (11), (12), (16), (15) and the linear independence of v
k

i, it follows

(13). Conversely, (13) implies (15). �

We receive the following equality by contracting the last equation of (13) with v
1

s and

v
2

s:

(17)
3

Ts
1

v
2

s =
3

Ts
2

v
1

s.

Theorem 2. The composition W3 (X2 × X1) is Cartesian if and only if the coefficients
of the derivative equations satisfy the conditions:

(18)
3

Tk
1

=
1

Tk
3

=
3

Tk
2

=
2

Tk
3

= 0.

Proof. According (5), (14), (16) and the linear independence of v
k

i,
k
vi (k = 1, 2, 3),

we obtain (18). Conversely, (18) implies (5).

Since the composition in Theorem 2 is Cartesian, then the vectors v
1

k, v
2

k and v
3

k are

translated parallelly in the direction of v
3

and the vector v
3

k is translated parallelly in the

direction of v
1

and v
2
. Hence, according [3], we have the conditions:

(19) v
1

k∇kv
3

s = v
2

k∇kv
3

s = v
3

k∇kv
3

s = v
3

k∇kv
1

s = v
3

k∇kv
2

s = 0.

Using (9), (10), (18) and (19), we obtain:

Corollary 2.1. Let the composition W3 (X2 × X1) be Cartesian. There are valid the
following conditions for the non-zero coefficients of the derivative equations:

(20)
3

Tk
3

= 3ωk, ak
i

2

Tk
1

=
2

Ti
1

, ak
i

1

Tk
2

=
1

Ti
2

.

Theorem 3. The associated composition W3 (X2 × X1) to the net (v
1
, v

2
, v

3
) is Cheby-

shevian if and only if:

(21)

1

Ti
3

3
vk =

1

Tk
3

3
vi,

2

Ti
3

3
vk =

2

Tk
3

3
vi,

3

Ti
1

1
vk −

3

Tk
1

1
vi +

3

Ti
2

2
vk −

3

Ti
2

2
vk = 0.
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Proof. According (14), the condition (6) receives the form:

(22)
◦

∇ia
s
k −

◦

∇kas
i = 0.

Having in mind (16), (22) and linear independence of v
k

i, we obtain (21). We verify

immediately that (21) implies (22), which is equivalent to (6). Hence the composition is
Chebyshevian.

It is easy to prove that the coefficients
1

Tk
3

and
2

Tk
3

are collinear to
3
vk and

3

Tk
1

,
3

Tk
2

are linear dependent of
1
vk and

2
vk in the case when W3 (X2 × X1) is a Chebyshevian

composition.
A geodesic composition W3 (X2 × X1) is characterized by condition (7) and because

of (14) it is equivalent to:

(23) ak
i

◦

∇sa
m
k + ak

s

◦

∇kam
i = 0.

Having in mind (11), (16) and (23), we establish the truthfulness of the following
theorem by an analogous way of the proof of Theorem 3.

Theorem 4. The associated composition W3 (X2 × X1) to the net (v
1
, v

2
, v

3
) is geodesic

if and only if:

(24) ak
i

1

Tk
3

=
1

Ti
3

, ak
i

2

Tk
3

=
2

Ti
3

, ak
i

3

Tk
1

= −
3

Ti
1

, ak
i

3

Tk
2

= −
3

Ti
2

,

i.e.
1

Tk
3

,
2

Tk
3

belong to P (X2) and
3

Tk
1

,
3

Tk
2

are collinear to covector
3
vk.

3. The curvature tensor of W3. There is known [3], the curvature tensor is
expressed by the Ricci tensor and the metric tensor for every 3-dimensional Riemannian
manifold. Let K l

ijk. be the curvature tensor of (W3, gij , ωk) determined by the Cristoffel

symbols
{

k
ij

}

. Let Kjk and K = gijKij be the Ricci tensor and the scalar curvature,

respectively. Since the connection ∇̃ for
{

k
ij

}

is Riemannian, then the curvature tensor

K l
ijk. has the following form [3, p.282]:

(25) K s
ijk. = gjkKs

i − gikKs
j + Kjkδs

i − Kikδs
j −

K

2

(

gjkδs
i − gikδs

j

)

,

where Ks
i = gsmKim.

Theorem 5. Let (W3, g, ω) be 3-dimensional Weyl space and ∇ be the Weyl connec-
tion of W3. Then the curvature tensor R s

ijk. of ∇ satisfies the condition:

(26) R s
ijk. =

1

3

{

(gjkSim − gikSjm) gms + Sjkδs
i − Sikδs

j + (Sji − Sij) δs
k

}

,

where Sjk = 2Rjk + Rkj −
3R

4
gjk, R = gijRij – the scalar curvature.

Proof. Having in mind [5] and (1) for R l
ijk. and tensor K l

ijk. we have:

R l
ijk. = K l

ijk. − ∇̃iT
l

jk + ∇̃jT
l

ik + T l
isT

s
jk − T l

jsT
s

ik ,

where T l
jk = ωjδ

?l
k + ωiδ

?l
j − gjkglmωm.

Using (2), the last equation has the following form:

(27) R l
ijk. = K l

ijk. +
(

∇̃jωi − ∇̃iωj

)

δl
k + Mjkδl

i − Mikδl
j + gjkM l

i. − gikM l
j.,
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where Mjk = ∇̃jωk + ωjωk −
1

2
gjkωsωs, M l

j. = glkMjk.

According to (1) and the identity for the curvature tensor of a Weyl space [5], i.e.
Ri

ski = −2n∇[sωk], we have the following equality for n = 3

(28) ∇jωi −∇iωj = ∇̃jωi − ∇̃iωj =
Rji − Rij

3
.

Then, by contracting i and l in (27), we obtain the form of the Ricci tensor and the
scalar curvature:

(29) Kjk =
2

3
Rjk +

1

3
Rkj − Mjk − gjkgisMis, R = K + 4gisMis.

The equalities (28), (25), (29) and (27) imply (26). �

There is known [7], the Ricci curvature in direction the unit vector field vk is
R (v, v) = Rijv

ivj with respect to gij .

Theorem 6. Let W3 (X2 × X1) be a Cartesian composition. Then the Ricci curvature
in the direction of the vector v

3

k is zero.

Proof. The condition (20) for Cartesian composition implies
◦

∇jv
3

s = 3ωjv
3

s. Since the

vector v
3

s has weight {−1}, according to (9) and the last equation, we obtain

∇jv
3

s = 2ωjv
3

s. The integrability conditions of the last equation are:

(30) ∇i∇jv
3

s −∇j∇iv
3

s = R s
ijk. v

3

k.

We obtains the left side of (30), by using of (28), and the right side of (30) – by using
of (26). After some calculation, we obtain Rjkv

3

jv
3

k = 0, i.e. the Ricci curvature in the

direction of v
3

k is zero.
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СПЕЦИАЛНИ КОМПОЗИЦИИ В ТРИМЕРНО ВАЙЛОВО
ПРОСТРАНСТВО. СВОЙСТВА НА ТЕНЗОРА НА КРИВИНА

Добринка К. Грибачева, Георги Зл. Златанов

Специални композиции, породени от мрежа в пространство със симетрична ли-
нейна свързаност се изучават в [2]. В [4] се въвежда продължено ковариантно
диференциране на спътниците на метричния тензор на Вайлово пространство.
В тази работа с помощта на продълженото ковариантно диференциране се ха-
рактеризират специални композиции, породени от мрежа в тримерно Вайлово
пространство. Намерен е вида на тензора на кривина на тримерно Вайлово прос-
транство и кривините на Ричи на някои от допирателните вектори на линиите
на мрежата.
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