MATEMATИKA И MATEMATИЧЕСКО ОБРАЗОВАНИЕ, 2003 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2003 Proceedings of the Thirty Second Spring Conference of the Union of Bulgarian Mathematicians Sunny Beach, April 5–8, 2003

SPECIAL COMPOSITIONS AND CURVATURE PROPERTIES ON A THREE-DIMENSIONAL WEYL SPACE

Dobrinka K. Gribacheva, Georgi Z. Zlatanov

Special compositions, generated by a net in a space with a symmetric linear connection are considered in [2]. In [4] there is introduced the prolonged covariant differentiation of satellites of the metric tensor of a Weyl space. In this paper, the special compositions, generated by a net in the 3-dimensional Weyl space are characterized in terms of the prolonged covariant differentiation. There the form of the curvature tensor on a 3-dimensional Weyl space and the Ricci curvatures of some tangent vectors of the net are given.

1. Preliminaries. Let W_3 be a 3-dimensional Weyl space with a metric tensor g_{ik} and its inverse tensor g^{kj} , i.e. $g_{ik}g^{kj} = \delta_i^j$, i, j, k = 1, 2, 3.

As it is well-known [5], the Weyl connection ∇ with components Γ_{ij}^k is determined by the equation:

(1)
$$\Gamma_{ij}^{k} = \left\{ \begin{matrix} k \\ ij \end{matrix} \right\} - \left(\omega_{i} \delta_{j}^{k} + \omega_{j} \delta_{i}^{k} - g_{ij} g^{ks} \omega_{s} \right),$$

where ω_k is the complementary vector of W_3 and ${k \atop ij}$ are the Cristoffel symbols, determined by g_{ij} . There are valid the following equations:

(2)
$$\nabla_k g_{ij} = 2\omega_k g_{ij}, \quad \nabla_k g^{ij} = -2\omega_k g^{ij}.$$

Let us consider a composition $W_3(X_2 \times X_1)$ in W_3 , where X_2 (dim $X_2 = 2$), X_1 (dim $X_1 = 1$) are the fundamental manifolds. There exists a unique position of each of the fundamental manifolds X_2 and X_1 at every point $p \in W_3$, which is denoted by $P(X_2)$ and $P(X_1)$, respectively.

According to [8], W_3 is the space of the composition $W_3(X_2 \times X_1)$, if there exists a tensor field a_i^j of type (1,1) determined by the equations:

(3)
$$a_i^j a_j^k = \delta_i^k$$

(4)
$$N_{ij}^k = a_i^s \nabla_s a_j^k - a_j^s \nabla_s a_i^k + a_s^k \left(\nabla_i a_j^s - \nabla_j a_i^s \right) = 0,$$

where N_{ij}^k is the Nijenhuis tensor of the structure a_i^j .

Following [6], the composition $W_3(X_2 \times X_1)$ is called Cartesian, if the tangent section of $P(X_2)$ and the tangent vector of $P(X_1)$ is translated parallelly in the direction of every curve of $P(X_2)$ and $P(X_1)$. The characteristics of the Cartesian composition is:

(5)
$$\nabla_i a_j^k = 0.$$

169

A composition $W_3(X_2 \times X_1)$ is called Chebyshevian, if the tangent section of $P(X_2)$ is translated parallelly in $P(X_1)$ and the tangent vector of $P(X_1)$ is translated parallelly in the direction of every curve of $P(X_2)$. The characteristic of the Chebyshevian composition is:

(6)
$$\nabla_i a_j^k - \nabla_j a_i^k = 0$$

The composition $W_3(X_2 \times X_1)$ is called geodesic, if the tangent section of $P(X_2)$ is translated parallelly in the direction of every curve of $P(X_2)$ and the curve $P(X_1)$ is geodesic. The characteristic of the geodesic composition is:

(7)
$$a_i^k \nabla_s a_k^m + a_s^k \nabla_k a_i^m = 0.$$

Let $\begin{pmatrix} v, v, v \\ 1, 2, 3 \end{pmatrix}$ be a net in W_3 , determined by independent tangent vector fields $\overset{i}{v}_k$ of the curve of the net (k = 1, 2, 3). We determine the inverse covectors $\overset{k}{v}_i$ of $\overset{i}{v}_i$ (k = 1, 2, 3), respectively, by the equations:

(8)
$$v_i^k \overset{s}{v}_k = \delta_i^s \Leftrightarrow v_i^k \overset{i}{v}_s = \delta_s^k.$$

According to [4], the prolonged covariant differentiation $\overset{\circ}{\nabla}$ of the satellite A with weight $\{p\}$ in the Weyl space is defined by:

In [4] there are found the derivative equations of the directional vectors of the net:

(10)
$$\hat{\nabla}_{i}v^{s} = \frac{m}{l_{i}}v^{s}, \quad \hat{\nabla}_{i}v^{k}_{s} = -\frac{k}{m}v^{m}, \quad k = 1, 2, 3.$$

2. Special compositions in W_3 . In [2] there is defined the affinor a_i^k of the composition in the Weyl space. It is determined uniquely by the net and it has the following form in W_3 :

(11)
$$a_i^k = v_1^k v_i^1 + v_2^k v_i^2 - v_3^k v_i^3.$$

There is follows immediately a_i^k satisfies (3) and the conditions:

(12)
$$a_k^s v_1^k = v_1^s, \quad a_k^s v_2^k = v_2^s, \quad a_k^s v_3^k = -v_3^s.$$

The composition $W_3(X_2 \times X_1)$ is determined by a_i^k , if the affinor satisfies (4). The composition $W_3(X_2 \times X_1)$ is called associated to the net $(\underbrace{v}, \underbrace{v}, \underbrace{v})$.

Theorem 1. The Weyl space W_3 is a space of the composition $W_3(X_2 \times X_1)$ associated to net (v, v, v) if and only if:

$$\begin{aligned} & \prod_{3}^{1} [_{k} \overset{3}{v}_{i}] + \prod_{3}^{1} v^{s} \overset{3}{v}_{[k} \overset{1}{v}_{i}] + \prod_{3}^{1} v^{s} \overset{3}{v}_{[k} \overset{2}{v}_{i}] = 0, \\ (13) & \prod_{3}^{2} [_{k} \overset{3}{v}_{i}] + \prod_{3}^{2} v^{s} \overset{3}{v}_{[k} \overset{1}{v}_{i}] + \prod_{3}^{2} v^{s} \overset{3}{v}_{[k} \overset{2}{v}_{i}] = 0, \\ & \prod_{3}^{3} [_{k} \overset{1}{v}_{i}] + \prod_{2}^{3} [_{k} \overset{2}{v}_{i}] - \prod_{2}^{3} v^{s} \overset{2}{v}_{[k} \overset{1}{v}_{i}] - \prod_{3}^{3} v^{s} \overset{1}{v}_{[k} \overset{2}{v}_{i}] = 0, \\ & \prod_{1}^{3} [_{k} \overset{1}{v}_{i}] + \prod_{2}^{3} [_{k} \overset{2}{v}_{i}] - \prod_{2}^{3} v^{s} \overset{2}{v}_{[k} \overset{1}{v}_{i}] - \prod_{1}^{3} v^{s} \overset{1}{v}_{[k} \overset{2}{v}_{i}] + \prod_{3}^{3} v^{s} \overset{1}{v}_{[k} \overset{3}{v}_{i}] + \prod_{2}^{3} v^{s} \overset{2}{v}_{[k} \overset{3}{v}_{i}] = 0. \end{aligned}$$

170

Proof. The affinor a_i^k has weight $\{0\}$ and according to [4] we have:

(14)
$$\overset{\circ}{\nabla}_{s}a_{i}^{k}=\nabla_{s}a_{i}^{k}.$$

Then the condition (4) receives the form:

(15)
$$a_i^s \overset{\circ}{\nabla}_s a_j^k - a_j^s \overset{\circ}{\nabla}_s a_i^k + a_s^k \left(\overset{\circ}{\nabla}_i a_j^s - \overset{\circ}{\nabla}_j a_i^s \right) = 0.$$

According to (10) and (11) we obtain:

(16)
$$\overset{\circ}{\nabla}_{s}a_{j}^{k} = 2\left(\overset{3}{\underset{1}{T_{s}}} v_{s}^{k} \overset{1}{v}_{j}^{1} - \overset{1}{\underset{3}{T_{s}}} v_{j}^{k} \overset{3}{v}_{j}^{1} + \overset{3}{\underset{2}{T_{s}}} v_{s}^{k} \overset{2}{v}_{j}^{2} - \overset{2}{\underset{3}{T_{s}}} v_{s}^{k} \overset{3}{v}_{j}^{2}\right).$$

Having in mind (11), (12), (16), (15) and the linear independence of v_k^i , it follows (13). Conversely, (13) implies (15). \Box

We receive the following equality by contracting the last equation of (13) with v_1^s and v_2^s :

(17)
$$\begin{array}{c} \overset{3}{T}_{s} v^{s} = \overset{3}{T}_{s} v^{s} \\ \overset{3}{T}_{s} v^{s} = \overset{3}{T}_{s} v^{s} \\ \end{array}$$

Theorem 2. The composition $W_3(X_2 \times X_1)$ is Cartesian if and only if the coefficients of the derivative equations satisfy the conditions:

(18)
$$\begin{array}{c} \overset{3}{T}_{k} = \overset{1}{T}_{k} = \overset{3}{T}_{k} = \overset{2}{T}_{k} = 0 \\ \overset{1}{T}_{k} = \overset{3}{T}_{k} = \overset{2}{T}_{k} = 0 \end{array}$$

Proof. According (5), (14), (16) and the linear independence of v_k^i , v_i^k (k = 1, 2, 3), we obtain (18). Conversely, (18) implies (5).

Since the composition in Theorem 2 is Cartesian, then the vectors v_1^k , v_2^k and v_3^k are translated parallelly in the direction of v_3 and the vector v_3^k is translated parallelly in the direction of v_1 and v_2 . Hence, according [3], we have the conditions:

(19)
$$v^k \nabla_k v^s = v^k \nabla_k v^s = v^k \nabla_k v^s = v^k \nabla_k v^s = v^k \nabla_k v^s = 0.$$

Using (9), (10), (18) and (19), we obtain:

Corollary 2.1. Let the composition $W_3(X_2 \times X_1)$ be Cartesian. There are valid the following conditions for the non-zero coefficients of the derivative equations:

(20)
$$\begin{array}{c} \overset{3}{T_k} = 3\omega_k, \quad a_i^k \overset{2}{T_k} = \overset{2}{T_i}, \quad a_i^k \overset{1}{T_k} = \overset{1}{T_i}. \end{array}$$

Theorem 3. The associated composition $W_3(X_2 \times X_1)$ to the net $\begin{pmatrix} v, & v, & v \\ 1 & 2 & 3 \end{pmatrix}$ is Chebyshevian if and only if:

(21)
$$\begin{array}{c} \begin{array}{c} 1 \\ T_{i} \\ v_{k} \\ 3 \\ T_{i} \\ v_{k} \\ 1 \end{array} = \begin{array}{c} 1 \\ T_{k} \\ v_{i} \\ 3 \\ T_{i} \\ v_{k} \\ 1 \end{array} = \begin{array}{c} 1 \\ T_{k} \\ v_{i} \\ 1 \end{array} = \begin{array}{c} 2 \\ T_{i} \\ v_{k} \\ 3 \\ T_{i} \\ v_{k} \\ 1 \end{array} = \begin{array}{c} 1 \\ T_{k} \\ v_{i} \\ 1 \end{array} = \begin{array}{c} 2 \\ T_{i} \\ v_{k} \\ 1 \end{array} = \begin{array}{c} 2 \\ T_{i} \\ T_{i} \\ v_{k} \\ 1 \end{array} = \begin{array}{c} 2 \\ T_{i} \end{array} = \begin{array}{c} 2 \\ T_{i} \\ T_{$$

171

Proof. According (14), the condition (6) receives the form:

(22)
$$\overset{\circ}{\nabla}_{i}a_{k}^{s} - \overset{\circ}{\nabla}_{k}a_{i}^{s} = 0.$$

Having in mind (16), (22) and linear independence of v^i_k , we obtain (21). We verify immediately that (21) implies (22), which is equivalent to (6). Hence the composition is Chebyshevian.

It is easy to prove that the coefficients $\frac{1}{T_k}$ and $\frac{2}{T_k}$ are collinear to $\frac{3}{v_k}$ and $\frac{3}{T_k}$, $\frac{3}{T_k}$ are linear dependent of $\frac{1}{v_k}$ and $\frac{2}{v_k}$ in the case when $W_3(X_2 \times X_1)$ is a Chebyshevian composition.

A geodesic composition $W_3(X_2 \times X_1)$ is characterized by condition (7) and because of (14) it is equivalent to:

(23)
$$a_i^k \overset{\circ}{\nabla}_s a_k^m + a_s^k \overset{\circ}{\nabla}_k a_i^m = 0.$$

Having in mind (11), (16) and (23), we establish the truthfulness of the following theorem by an analogous way of the proof of Theorem 3.

Theorem 4. The associated composition $W_3(X_2 \times X_1)$ to the net $(\underbrace{v}_1, \underbrace{v}_2, \underbrace{v}_3)$ is geodesic if and only if:

(24)
$$a_i^k \frac{1}{3}_k = \frac{1}{3}_i, \quad a_i^k \frac{2}{3}_k = \frac{2}{3}_i, \quad a_i^k \frac{3}{1}_k = -\frac{3}{1}_i, \quad a_i^k \frac{3}{2}_k = -\frac{3}{2}_i,$$

i.e. \vec{T}_{k}, \vec{T}_{k} belong to $P(X_{2})$ and \vec{T}_{k}, \vec{T}_{k} are collinear to covector \vec{v}_{k} .

3. The curvature tensor of W_3 . There is known [3], the curvature tensor is expressed by the Ricci tensor and the metric tensor for every 3-dimensional Riemannian manifold. Let $K_{ijk}^{\ l}$ be the curvature tensor of (W_3, g_{ij}, ω_k) determined by the Cristoffel symbols ${k \atop ij}$. Let K_{jk} and $K = g^{ij}K_{ij}$ be the Ricci tensor and the scalar curvature, respectively. Since the connection $\tilde{\nabla}$ for ${k \atop ij}$ is Riemannian, then the curvature tensor $K_{ijk}^{\ l}$ has the following form [3, p.282]:

(25)
$$K_{ijk}{}^{s} = g_{jk}K_{i}^{s} - g_{ik}K_{j}^{s} + K_{jk}\delta_{i}^{s} - K_{ik}\delta_{j}^{s} - \frac{K}{2}\left(g_{jk}\delta_{i}^{s} - g_{ik}\delta_{j}^{s}\right),$$

where $K_i^s = g^{sm} K_{im}$.

Theorem 5. Let (W_3, g, ω) be 3-dimensional Weyl space and ∇ be the Weyl connection of W_3 . Then the curvature tensor R_{ijk}^{s} of ∇ satisfies the condition:

(26)
$$R_{ijk.}^{s} = \frac{1}{3} \left\{ \left(g_{jk} S_{im} - g_{ik} S_{jm} \right) g^{ms} + S_{jk} \delta_{i}^{s} - S_{ik} \delta_{j}^{s} + \left(S_{ji} - S_{ij} \right) \delta_{k}^{s} \right\},$$

where $S_{jk} = 2R_{jk} + R_{kj} - \frac{3R}{4}g_{jk}$, $R = g^{ij}R_{ij}$ - the scalar curvature.

Proof. Having in mind [5] and (1) for R_{ijk}^{l} and tensor K_{ijk}^{l} we have:

$$R_{ijk.}^{\ \ l} = K_{ijk.}^{\ \ l} - \tilde{\nabla}_i T_{jk}^{\ \ l} + \tilde{\nabla}_j T_{ik}^{\ \ l} + T_{is}^{\ \ l} T_{jk}^{\ \ s} - T_{js}^{\ \ l} T_{ik}^{\ \ s},$$

where $T_{jk}^{\ l} = \omega_j \delta_k^{?l} + \omega_i \delta_j^{?l} - g_{jk} g^{lm} \omega_m$. Using (2), the last equation has the following form:

$$(27) \qquad R_{ijk.}^{\ \ l} = K_{ijk.}^{\ \ l} + \left(\tilde{\nabla}_j\omega_i - \tilde{\nabla}_i\omega_j\right)\delta_k^l + M_{jk}\delta_i^l - M_{ik}\delta_j^l + g_{jk}M_{i.}^l - g_{ik}M_{j.}^l,$$

$$(27) \qquad 172$$

where $M_{jk} = \tilde{\nabla}_j \omega_k + \omega_j \omega_k - \frac{1}{2} g_{jk} \omega^s \omega_s, \ M_{j.}^{\ l} = g^{lk} M_{jk}.$

According to (1) and the identity for the curvature tensor of a Weyl space [5], i.e. $R_{ski}^i = -2n\nabla_{[s\omega_k]}$, we have the following equality for n = 3

(28)
$$\nabla_j \omega_i - \nabla_i \omega_j = \tilde{\nabla}_j \omega_i - \tilde{\nabla}_i \omega_j = \frac{R_{ji} - R_{ij}}{3}.$$

Then, by contracting i and l in (27), we obtain the form of the Ricci tensor and the scalar curvature:

(29)
$$K_{jk} = \frac{2}{3}R_{jk} + \frac{1}{3}R_{kj} - M_{jk} - g_{jk}g^{is}M_{is}, \quad R = K + 4g^{is}M_{is}.$$

The equalities (28), (25), (29) and (27) imply (26). \Box

There is known [7], the Ricci curvature in direction the unit vector field v^k is $R(v, v) = R_{ij}v^iv^j$ with respect to g_{ij} .

Theorem 6. Let $W_3(X_2 \times X_1)$ be a Cartesian composition. Then the Ricci curvature in the direction of the vector v_3^k is zero.

Proof. The condition (20) for Cartesian composition implies $\overset{\circ}{\nabla}_{j} v^{s}_{3} = 3\omega_{j}v^{s}_{3}$. Since the vector v^{s}_{3} has weight $\{-1\}$, according to (9) and the last equation, we obtain $\nabla_{j} v^{s}_{3} = 2\omega_{j}v^{s}_{3}$. The integrability conditions of the last equation are:

(30)
$$\nabla_i \nabla_j \frac{v^s}{3} - \nabla_j \nabla_i \frac{v^s}{3} = R_{ijk} \frac{s}{3} \frac{v^k}{3}$$

We obtains the left side of (30), by using of (28), and the right side of (30) – by using of (26). After some calculation, we obtain $R_{jk} v_{3}^{j} v^{k} = 0$, i.e. the Ricci curvature in the direction of v_{3}^{k} is zero.

REFERENCES

 K. JANO. Affine connections in an almost product space. Kodai, Math. Semin, Repts. 11, No 1, (1959), 1–24.

[2] G. ZLATANOV. Compositions, generated by special Nets in affinely connected spaces, *Serdica Math. J.* **28** (2002), 189–200.

[3] Б. Дубовин, С. Новиков, А. Фоменко. Современная геометрия. Москва, Наука, 1979.

[4] Г. ЗЛАТАНОВ. Сети в *n*-мерном пространстве Вейля. Доклади БАН **41**, No 10 (1988), 29–32.

[5] А. П. НОРДЕН. Пространстве аффинной связяности. Москва, Наука, 1976.

[6] А. П. НОРДЕН, Г. Н. ТИМОФЕЕВ. Инвариантные признаки специальных композиций многомерных пространств. Известия ВУЗ, Математика No 8 (1972), 81–89.

[7] Г. Станилов. Диференциална геометрия. София, 1988.

[8] Г. Н. ТИМОФЕЕВ. Инвариантные признаки специальных композиций в пространствах Вейля. Известия ВУЗ, Математика No 1 (1976), 87–99.

D. Gribacheva
Faculty of Mathematics and Informatics
University of Plovdiv
236, Bulgaria Blvd.
4004 Plovdiv, Bulgaria
e-mail: costas@pu.acad.bg

G. Zlatanov
Faculty of Mathematics and Informatics
University of Plovdiv
236, Bulgaria Blvd.
4004 Plovdiv, Bulgaria
e-mail: zlatanov@pu.acad.bg

СПЕЦИАЛНИ КОМПОЗИЦИИ В ТРИМЕРНО ВАЙЛОВО ПРОСТРАНСТВО. СВОЙСТВА НА ТЕНЗОРА НА КРИВИНА

Добринка К. Грибачева, Георги Зл. Златанов

Специални композиции, породени от мрежа в пространство със симетрична линейна свързаност се изучават в [2]. В [4] се въвежда продължено ковариантно диференциране на спътниците на метричния тензор на Вайлово пространство. В тази работа с помощта на продълженото ковариантно диференциране се характеризират специални композиции, породени от мрежа в тримерно Вайлово пространство. Намерен е вида на тензора на кривина на тримерно Вайлово пространство и кривините на Ричи на някои от допирателните вектори на линиите на мрежата.