SPECIAL COMPOSITIONS AND CURVATURE PROPERTIES ON A THREE-DIMENSIONAL WEYL SPACE

Dobrinka K. Gribacheva, Georgi Z. Zlatanov

Special compositions, generated by a net in a space with a symmetric linear connection are considered in [2]. In [4] there is introduced the prolonged covariant differentiation of satellites of the metric tensor of a Weyl space. In this paper, the special compositions, generated by a net in the 3-dimensional Weyl space are characterized in terms of the prolonged covariant differentiation. There the form of the curvature tensor on a 3-dimensional Weyl space and the Ricci curvatures of some tangent vectors of the net are given.

1. Preliminaries. Let W_{3} be a 3 -dimensional Weyl space with a metric tensor $g_{i k}$ and its inverse tensor $g^{k j}$, i.e. $g_{i k} g^{k j}=\delta_{i}^{j}, i, j, k=1,2,3$.

As it is well-known [5], the Weyl connection ∇ with components $\Gamma_{i j}^{k}$ is determined by the equation:

$$
\Gamma_{i j}^{k}=\left\{\begin{array}{c}
k \tag{1}\\
i j
\end{array}\right\}-\left(\omega_{i} \delta_{j}^{k}+\omega_{j} \delta_{i}^{k}-g_{i j} g^{k s} \omega_{s}\right)
$$

where ω_{k} is the complementary vector of W_{3} and $\left\{\begin{array}{l}k \\ i j\end{array}\right\}$ are the Cristoffel symbols, determined by $g_{i j}$. There are valid the following equations:

$$
\begin{equation*}
\nabla_{k} g_{i j}=2 \omega_{k} g_{i j}, \quad \nabla_{k} g^{i j}=-2 \omega_{k} g^{i j} \tag{2}
\end{equation*}
$$

Let us consider a composition $W_{3}\left(X_{2} \times X_{1}\right)$ in W_{3}, where $X_{2}\left(\operatorname{dim} X_{2}=2\right), X_{1}(\operatorname{dim}$ $X_{1}=1$) are the fundamental manifolds. There exists a unique position of each of the fundamental manifolds X_{2} and X_{1} at every point $p \in W_{3}$, which is denoted by $P\left(X_{2}\right)$ and $P\left(X_{1}\right)$, respectively.

According to [8], W_{3} is the space of the composition $W_{3}\left(X_{2} \times X_{1}\right)$, if there exists a tensor field a_{i}^{j} of type $(1,1)$ determined by the equations:

$$
\begin{equation*}
a_{i}^{j} a_{j}^{k}=\delta_{i}^{k} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
N_{i j}^{k}=a_{i}^{s} \nabla_{s} a_{j}^{k}-a_{j}^{s} \nabla_{s} a_{i}^{k}+a_{s}^{k}\left(\nabla_{i} a_{j}^{s}-\nabla_{j} a_{i}^{s}\right)=0, \tag{4}
\end{equation*}
$$

where $N_{i j}^{k}$ is the Nijenhuis tensor of the structure a_{i}^{j}.
Following [6], the composition $W_{3}\left(X_{2} \times X_{1}\right)$ is called Cartesian, if the tangent section of $P\left(X_{2}\right)$ and the tangent vector of $P\left(X_{1}\right)$ is translated parallelly in the direction of every curve of $P\left(X_{2}\right)$ and $P\left(X_{1}\right)$. The characteristics of the Cartesian composition is:

$$
\begin{equation*}
\nabla_{i} a_{j}^{k}=0 \tag{5}
\end{equation*}
$$

A composition $W_{3}\left(X_{2} \times X_{1}\right)$ is called Chebyshevian, if the tangent section of $P\left(X_{2}\right)$ is translated parallelly in $P\left(X_{1}\right)$ and the tangent vector of $P\left(X_{1}\right)$ is translated parallelly in the direction of every curve of $P\left(X_{2}\right)$. The characteristic of the Chebyshevian composition is:

$$
\begin{equation*}
\nabla_{i} a_{j}^{k}-\nabla_{j} a_{i}^{k}=0 \tag{6}
\end{equation*}
$$

The composition $W_{3}\left(X_{2} \times X_{1}\right)$ is called geodesic, if the tangent section of $P\left(X_{2}\right)$ is translated parallelly in the direction of every curve of $P\left(X_{2}\right)$ and the curve $P\left(X_{1}\right)$ is geodesic. The characteristic of the geodesic composition is:

$$
\begin{equation*}
a_{i}^{k} \nabla_{s} a_{k}^{m}+a_{s}^{k} \nabla_{k} a_{i}^{m}=0 . \tag{7}
\end{equation*}
$$

Let $(\underset{1}{v}, \underset{2}{v}, \underset{3}{v})$ be a net in W_{3}, determined by independent tangent vector fields $\underset{k}{\stackrel{i}{v}}$ of the curve of the net $(k=1,2,3)$. We determine the inverse covectors $\stackrel{k}{v}{ }_{i}$ of ${\underset{k}{v}}_{i}^{(k=1,2,3), ~}$ respectively, by the equations:

$$
\begin{equation*}
v_{i}^{k} v_{k}^{s}=\delta_{i}^{s} \Leftrightarrow v_{i}^{k} v_{s}^{i}=\delta_{s}^{k} \tag{8}
\end{equation*}
$$

According to [4], the prolonged covariant differentiation $\stackrel{\circ}{\nabla}$ of the satellite A with weight $\{p\}$ in the Weyl space is defined by:

$$
\begin{equation*}
\stackrel{\circ}{\nabla} A=\nabla_{i} A-p \omega_{i} A . \tag{9}
\end{equation*}
$$

In [4] there are found the derivative equations of the directional vectors of the net:

$$
\begin{equation*}
\stackrel{\circ}{\nabla}{ }_{i} v_{k}^{s}=\stackrel{m}{T_{i}} \underset{m}{v^{s}}, \quad \stackrel{\circ}{\nabla}{ }_{i}{ }^{k} v_{s}=-\stackrel{k}{T_{i}} \underset{s}{v^{m}}, \quad k=1,2,3 . \tag{10}
\end{equation*}
$$

2. Special compositions in $\boldsymbol{W}_{\mathbf{3}}$. In [2] there is defined the affinor a_{i}^{k} of the composition in the Weyl space. It is determined uniquely by the net and it has the following form in W_{3} :

$$
\begin{equation*}
a_{i}^{k}=v_{1}^{k} \stackrel{1}{v}_{i}+v_{2}^{k} \stackrel{2}{v}_{i}-v_{3}^{k} \stackrel{3}{v}_{i}^{3} . \tag{11}
\end{equation*}
$$

There is follows immediately a_{i}^{k} satisfies (3) and the conditions:

$$
\begin{equation*}
a_{k}^{s} v_{1}^{k}=\underset{1}{v^{s}}, \quad a_{k}^{s} v_{2}^{k}=\underset{2}{v^{s}}, \quad a_{k}^{s} v_{3}^{k}=-v_{3}^{s} . \tag{12}
\end{equation*}
$$

The composition $W_{3}\left(X_{2} \times X_{1}\right)$ is determined by a_{i}^{k}, if the affinor satisfies (4). The composition $W_{3}\left(X_{2} \times X_{1}\right)$ is called associated to the net $(\underset{1}{v}, \underset{2}{v}, \underset{3}{v})$.

Theorem 1. The Weyl space W_{3} is a space of the composition $W_{3}\left(X_{2} \times X_{1}\right)$ associated to net $(\underset{1}{v}, \underset{2}{v}, \underset{3}{v})$ if and only if:

$$
\begin{align*}
& \underset{3}{\underset{T}{T}}\left[\stackrel{3}{v}_{i]}+\stackrel{1}{T}_{3}{\underset{1}{v}}^{v} \stackrel{s}{v}_{[k}^{3} \stackrel{1}{v}_{i]}+\stackrel{1}{T}_{3}{\underset{2}{v}}^{s} \stackrel{3}{v}_{[k} \stackrel{2}{v}_{i]}=0,\right. \\
& {\underset{3}{T}}_{2}^{2} \stackrel{3}{v}_{i]}+\stackrel{2}{T}_{3}^{2}{\underset{1}{v}}^{s} \stackrel{3}{v}_{[k} \stackrel{1}{v}_{i]}+{\underset{3}{T}}_{S_{2}}^{2}{\underset{2}{v}}^{s} \stackrel{3}{v}_{[k} \stackrel{2}{v}_{i]}=0, \tag{13}
\end{align*}
$$

Proof. The affinor a_{i}^{k} has weight $\{0\}$ and according to [4] we have:

$$
\begin{equation*}
\stackrel{\circ}{\nabla}_{s} a_{i}^{k}=\nabla_{s} a_{i}^{k} \tag{14}
\end{equation*}
$$

Then the condition (4) receives the form:

$$
\begin{equation*}
a_{i}^{s} \stackrel{\circ}{\nabla}_{s} a_{j}^{k}-a_{j}^{s} \stackrel{\circ}{\nabla}_{s} a_{i}^{k}+a_{s}^{k}\left(\stackrel{\circ}{\nabla}_{i} a_{j}^{s}-\stackrel{\circ}{\nabla}_{j} a_{i}^{s}\right)=0 . \tag{15}
\end{equation*}
$$

According to (10) and (11) we obtain:

Having in mind (11), (12), (16), (15) and the linear independence of v_{k}^{i}, it follows (13). Conversely, (13) implies (15).

We receive the following equality by contracting the last equation of (13) with v_{1}^{s} and $v_{2}^{s}:$

$$
\begin{equation*}
\stackrel{3}{T}_{T_{1}}^{v_{2}^{s}}=\stackrel{3}{v_{2}}{ }_{2}^{v_{1}^{s}} \tag{17}
\end{equation*}
$$

Theorem 2. The composition $W_{3}\left(X_{2} \times X_{1}\right)$ is Cartesian if and only if the coefficients of the derivative equations satisfy the conditions:

$$
\begin{equation*}
\stackrel{3}{T_{k}}=\stackrel{1}{T_{k}}=\stackrel{3}{T_{2}}=\stackrel{2}{T_{k}}=0 \tag{18}
\end{equation*}
$$

Proof. According (5), (14), (16) and the linear independence of $v_{k}^{i},{\underset{v}{v}}_{i}^{k}(k=1,2,3)$, we obtain (18). Conversely, (18) implies (5).

Since the composition in Theorem 2 is Cartesian, then the vectors v_{1}^{k}, v_{2}^{k} and v_{3}^{k} are translated parallelly in the direction of v_{3} and the vector v_{3}^{k} is translated parallelly in the direction of $\underset{1}{v}$ and $\underset{2}{v}$. Hence, according [3], we have the conditions:

$$
\begin{equation*}
v_{1}^{v^{k}} \nabla_{k} v_{3}^{v^{s}}=v_{2}^{v^{k}} \nabla_{k}{\underset{3}{v^{s}}=v_{3}^{k} \nabla_{k} v_{3}^{s}=v_{3}^{k} \nabla_{k} v_{1}^{s}=v_{3}^{v^{k}} \nabla_{k} v_{2}^{s}=0 . ~ . ~}_{\text {. }} \tag{19}
\end{equation*}
$$

Using (9), (10), (18) and (19), we obtain:
Corollary 2.1. Let the composition $W_{3}\left(X_{2} \times X_{1}\right)$ be Cartesian. There are valid the following conditions for the non-zero coefficients of the derivative equations:

$$
\begin{equation*}
\stackrel{3}{T_{k}}=3 \omega_{k}, \quad a_{i}^{k} \underset{1}{\underset{T}{T}}{ }_{1}^{2}=\stackrel{2}{T}, \quad a_{i}^{k} \underset{2}{\underset{T}{T}} \underset{2}{1}=\stackrel{1}{T_{i}} . \tag{20}
\end{equation*}
$$

Theorem 3. The associated composition $W_{3}\left(X_{2} \times X_{1}\right)$ to the net $(\underset{1}{v}, \underset{2}{v}, \underset{3}{v})$ is Chebyshevian if and only if:

Proof. According (14), the condition (6) receives the form:

$$
\begin{equation*}
\stackrel{\circ}{\nabla}_{i} a_{k}^{s}-\stackrel{\circ}{\nabla}_{k} a_{i}^{s}=0 . \tag{22}
\end{equation*}
$$

Having in mind (16), (22) and linear independence of v_{k}^{i}, we obtain (21). We verify immediately that (21) implies (22), which is equivalent to (6). Hence the composition is Chebyshevian.
 are linear dependent of $\stackrel{1}{v}_{k}$ and $\stackrel{2}{v}_{k}$ in the case when $W_{3}\left(X_{2} \times X_{1}\right)$ is a Chebyshevian composition.

A geodesic composition $W_{3}\left(X_{2} \times X_{1}\right)$ is characterized by condition (7) and because of (14) it is equivalent to:

$$
\begin{equation*}
a_{i}^{k} \stackrel{\circ}{\nabla}_{s} a_{k}^{m}+a_{s}^{k} \stackrel{\circ}{\nabla}_{k} a_{i}^{m}=0 . \tag{23}
\end{equation*}
$$

Having in mind (11), (16) and (23), we establish the truthfulness of the following theorem by an analogous way of the proof of Theorem 3.

Theorem 4. The associated composition $W_{3}\left(X_{2} \times X_{1}\right)$ to the net $(\underset{1}{v}, \underset{2}{v}, \underset{3}{v})$ is geodesic if and only if:
i.e. ${\underset{3}{T}}_{\underset{3}{1}}^{k}, \stackrel{2}{T_{k}}$ belong to $P\left(X_{2}\right)$ and $\underset{1}{T_{k}}, \underset{2}{T_{k}}$ are collinear to covector $\stackrel{3}{v}_{k}$.
3. The curvature tensor of $\boldsymbol{W}_{\mathbf{3}}$. There is known [3], the curvature tensor is expressed by the Ricci tensor and the metric tensor for every 3 -dimensional Riemannian manifold. Let $K_{i j k}{ }^{l}$. be the curvature tensor of ($W_{3}, g_{i j}, \omega_{k}$) determined by the Cristoffel symbols $\left\{\begin{array}{c}k \\ i j\end{array}\right\}$. Let $K_{j k}$ and $K=g^{i j} K_{i j}$ be the Ricci tensor and the scalar curvature, respectively. Since the connection $\tilde{\nabla}$ for $\left\{\begin{array}{l}k \\ i j\end{array}\right\}$ is Riemannian, then the curvature tensor $K_{i j k}{ }^{l}$. has the following form [3, p.282]:

$$
\begin{equation*}
K_{i j k .}^{s}=g_{j k} K_{i}^{s}-g_{i k} K_{j}^{s}+K_{j k} \delta_{i}^{s}-K_{i k} \delta_{j}^{s}-\frac{K}{2}\left(g_{j k} \delta_{i}^{s}-g_{i k} \delta_{j}^{s}\right) \tag{25}
\end{equation*}
$$

where $K_{i}^{s}=g^{s m} K_{i m}$.
Theorem 5. Let $\left(W_{3}, g, \omega\right)$ be 3-dimensional Weyl space and ∇ be the Weyl connection of W_{3}. Then the curvature tensor $R_{i j k}{ }^{s}$. of ∇ satisfies the condition:

$$
\begin{equation*}
R_{i j k .}^{s}=\frac{1}{3}\left\{\left(g_{j k} S_{i m}-g_{i k} S_{j m}\right) g^{m s}+S_{j k} \delta_{i}^{s}-S_{i k} \delta_{j}^{s}+\left(S_{j i}-S_{i j}\right) \delta_{k}^{s}\right\} \tag{26}
\end{equation*}
$$

where $S_{j k}=2 R_{j k}+R_{k j}-\frac{3 R}{4} g_{j k}, R=g^{i j} R_{i j}-$ the scalar curvature.
Proof. Having in mind [5] and (1) for $R_{i j k}{ }^{l}$. and tensor $K_{i j k}{ }^{l}$. we have:

$$
R_{i j k .}^{l}=K_{i j k .}^{l}-\tilde{\nabla}_{i} T_{j k}^{l}+\tilde{\nabla}_{j} T_{i k}^{l}+T_{i s}^{l} T_{j k}^{s}-T_{j s}^{l} T_{i k}^{s},
$$

where $T_{j k}^{l}=\omega_{j} \delta_{k}^{? l}+\omega_{i} \delta_{j}^{? l}-g_{j k} g^{l m} \omega_{m}$.
Using (2), the last equation has the following form:

$$
\begin{equation*}
R_{i j k .}^{l}=K_{i j k .}^{l}+\left(\tilde{\nabla}_{j} \omega_{i}-\tilde{\nabla}_{i} \omega_{j}\right) \delta_{k}^{l}+M_{j k} \delta_{i}^{l}-M_{i k} \delta_{j}^{l}+g_{j k} M_{i .}^{l}-g_{i k} M_{j .}^{l}, \tag{27}
\end{equation*}
$$

where $M_{j k}=\tilde{\nabla}_{j} \omega_{k}+\omega_{j} \omega_{k}-\frac{1}{2} g_{j k} \omega^{s} \omega_{s}, M_{j .}{ }^{l}=g^{l k} M_{j k}$.
According to (1) and the identity for the curvature tensor of a Weyl space [5], i.e. $R_{s k i}^{i}=-2 n \nabla_{\left[s \omega_{k}\right]}$, we have the following equality for $n=3$

$$
\begin{equation*}
\nabla_{j} \omega_{i}-\nabla_{i} \omega_{j}=\tilde{\nabla}_{j} \omega_{i}-\tilde{\nabla}_{i} \omega_{j}=\frac{R_{j i}-R_{i j}}{3} \tag{28}
\end{equation*}
$$

Then, by contracting i and l in (27), we obtain the form of the Ricci tensor and the scalar curvature:

$$
\begin{equation*}
K_{j k}=\frac{2}{3} R_{j k}+\frac{1}{3} R_{k j}-M_{j k}-g_{j k} g^{i s} M_{i s}, \quad R=K+4 g^{i s} M_{i s} \tag{29}
\end{equation*}
$$

The equalities (28), (25), (29) and (27) imply (26).
There is known [7], the Ricci curvature in direction the unit vector field v^{k} is $R(v, v)=R_{i j} v^{i} v^{j}$ with respect to $g_{i j}$.

Theorem 6. Let $W_{3}\left(X_{2} \times X_{1}\right)$ be a Cartesian composition. Then the Ricci curvature in the direction of the vector v_{3}^{k} is zero.

Proof. The condition (20) for Cartesian composition implies $\stackrel{\circ}{\nabla}_{j} v_{3}^{s}=3 \omega_{j} v_{3}^{s}$. Since the vector v_{3}^{s} has weight $\{-1\}$, according to (9) and the last equation, we obtain $\nabla_{j} v_{3}^{s}=2 \omega_{j} v_{3}^{s}$. The integrability conditions of the last equation are:

$$
\begin{equation*}
\nabla_{i} \nabla_{j} v_{3}^{s}-\nabla_{j} \nabla_{i} v_{3}^{s}=R_{i j k .}{ }_{3}^{s} v^{k} \tag{30}
\end{equation*}
$$

We obtains the left side of (30), by using of (28), and the right side of (30) - by using of (26). After some calculation, we obtain $R_{j k} v_{3}^{j} v_{3}^{k}=0$, i.e. the Ricci curvature in the direction of v_{3}^{k} is zero.

REFERENCES

[1] K. Jano. Affine connections in an almost product space. Kodai, Math. Semin, Repts. 11, No 1, (1959), 1-24.
[2] G. Zlatanov. Compositions, generated by special Nets in affinely connected spaces, Serdica Math. J. 28 (2002), 189-200.
[3] Б. Дубовин, С. Новиков, А. Фоменко. Современная геометрия. Москва, Наука, 1979.
[4] Г. Златанов. Сети в n-мерном пространстве Вейля. Доклади БАН 41, No 10 (1988), 29-32.
[5] А. П. Норден. Пространстве аффинной связяности. Москва, Наука, 1976.
[6] А. П. Норден, Г. Н. Тимофеев. Инвариантные признаки специальных композиций многомерных пространств. Известия ВУЗ, Математика No 8 (1972), 81-89.
[7] Г. Станилов. Диференциална геометрия. София, 1988.
[8] Г. Н. Тимофеев. Инвариантные признаки специальных композиций в пространствах Вейля. Известия ВУЗ, Математика No 1 (1976), 87-99.

D. Gribacheva
Faculty of Mathematics and Informatics University of Plovdiv
236, Bulgaria Blvd.
4004 Plovdiv, Bulgaria
e-mail: costas@pu.acad.bg

G. Zlatanov
Faculty of Mathematics and Informatics University of Plovdiv
236, Bulgaria Blvd.
4004 Plovdiv, Bulgaria
e-mail: zlatanov@pu.acad.bg

СПЕЦИАЛНИ КОМПОЗИЦИИ В ТРИМЕРНО ВАЙЛОВО ПРОСТРАНСТВО. СВОЙСТВА НА ТЕНЗОРА НА КРИВИНА

Добринка К. Грибачева, Георги Зл. Златанов

Специални композиции, породени от мрежа в пространство със симетрична линейна свързаност се изучават в [2]. В [4] се въвежда продължено ковариантно диференциране на спътниците на метричния тензор на Вайлово пространство. В тази работа с помощта на продълженото ковариантно диференциране се характеризират специални композиции, породени от мрежа в тримерно Вайлово пространство. Намерен е вида на тензора на кривина на тримерно Вайлово пространство и кривините на Ричи на някои от допирателните вектори на линиите на мрежата.

