MATEMATИKA И MATEMATИЧЕСКО ОБРАЗОВАНИЕ, 2003 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2003 Proceedings of the Thirty Second Spring Conference of the Union of Bulgarian Mathematicians Sunny Beach, April 5–8, 2003

NEW QUASI-CYCLIC CODES OVER $GF(5)^*$

Plamen Hristov

Let $[n, k, d]_q$ -codes be linear codes of length n, dimension k and minimum Hamming distance d over GF(q). In this paper, fourteen new codes over GF(5) are constructed, which improve the known lower bounds on minimum distance.

1. Introduction. Let GF(q) denote the Galois field of q elements. A linear code C over GF(q) of length n, dimension k and minimum Hamming distance d is called an $[n, k, d]_q$ -code.

A code is called *p*-quasi-cyclic (p-QC for short) if every cyclic shift of a codeword by p places is again a codeword. A quasi-cyclic (QC) code is just a code of length n which is p-QC for some divisor p of n with p < n [5]. A cyclic code is just a 1-QC code. Suppose C is a p-QC [pm, k]-code. It is convenient to take the coordinate places of C in the order

 $1, p + 1, 2p + 1, \dots, (m - 1)p + 1, 2, p + 2, \dots, (m - 1)p + 2, \dots, p, 2p, \dots, mp.$

Then ${\cal C}$ will be generated by a matrix of the form

$$[G_1,G_2,\ldots,G_p],$$

where each G_i is a circulant matrix, i.e. a matrix of the form

(1)
$$B = \begin{bmatrix} b_0 & b_1 & b_2 & \cdots & b_{m-2} & b_{m-1} \\ b_{m-1} & b_0 & b_1 & \cdots & b_{m-3} & b_{m-2} \\ b_{m-2} & b_{m-1} & b_0 & \cdots & b_{m-4} & b_{m-3} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ b_1 & b_2 & b_3 & \cdots & b_{m-1} & b_0 \end{bmatrix},$$

in which each row is a cyclic shift of its predecessor.

If the row vector $(b_0b_1\cdots b_{m-1})$ is identified with the polynomial $g(x) = b_0 + b_1x + \cdots + b_{m-1}x^{m-1}$, then we may write

(2)
$$B = \begin{bmatrix} g(x) \\ xg(x) \\ x^2g(x) \\ \vdots \\ x^{m-1}g(x) \end{bmatrix}$$

where each polynomial is reduced modulo $x^m - 1$.

175

 $^{^{*}2000}$ Math. Subject Classification: 94B15, 94B65. This work was partially supported by the Bulgarian Ministry of Education and Science under Contract in TU of Gabrovo.

If C is the QC code generated by

(3)
$$G = \begin{bmatrix} g_1(x) & g_2(x) & \cdots & g_p(x) \\ xg_1(x) & xg_2(x) & \cdots & xg_p(x) \\ \vdots & \vdots & \vdots & \vdots \\ x^{m-1}g_1(x) & x^{m-1}g_2(x) & \cdots & x^{m-1}g_p(x) \end{bmatrix}$$

then the $g_i(x)$'s are called the *defining polynomials* of C [5]. The code C will usually be a code of dimension m, but if the defining polynomials all happen to be a multiple of some polynomial h(x), where $h(x)|x^m - 1$, then C will actually have dimension m - r, where r is the degree of h(x). Such a QC code is called r-degenerate [5].

,

Similarly to the case of cyclic codes, a p-QC code over GF(q) of length n = pm can be viewed as an $GF(q)[x]/(x^m - 1)$ submodule of $(GF(q)[x]/(x^m - 1))^p$ [10], [7]. Then an r-generator QC code is spanned by r elements of $(GF(q)[x]/(x^m - 1))^p$. In this paper we consider one-generator QC codes.

Definition. Let α be a root of a primitive polynomial of degree n over GF(q). Then $1, \alpha, \alpha^2, \dots, \alpha^{n-1}$ form the multiplicative group of the field $GF(q^n)$. A polynomial $g(x) \in GF(q)[x]$ is said to have consecutive roots if α^i and α^{i+1} are roots of g(x).

A well-known results regarding the one-generator QC codes are as follows.

Theorem 1 [10], [7]. Let C be a one-generator QC code over GF(q) of length n = pm. Then, a generator $\mathbf{g}(\mathbf{x}) \in (GF(q)[x]/(x^m - 1))^p$ of C has the following form $\mathbf{g}(\mathbf{x}) = (f_1(x)g_1(x), f_2(x)g_2(x), \cdots, f_p(x)g_p(x)),$

where $g_i(x)|(x^m-1)$ and $(f_i(x), (x^m-1)/g_i(x)) = 1$ for all $1 \le i \le p$.

Theorem 2 [7]. Let C be a one-generator QC code over GF(q) of length n = pm with a generator as in Theorem 1. Then

$$p.((\# of consecutive roots of g(x)) + 1) \le d_{\min}(C)$$

and the dimension of C is equal to m - deg(g(x)).

Quasi-cyclic codes form an important class of linear codes which contains the wellknown class of cyclic codes. The investigation of QC codes is motivated by the following facts: QC codes meet a modified version of Gilbert-Varshamov bound [6]; some of the best quadratic residue codes and Pless symmetry codes are QC codes [8]; a large number of record breaking (and optimal codes) are QC codes [1]; there is a link between QCcodes and convolutional codes [11], [4].

In this paper, new one-generator QC codes (p = 2) are constructed using a nonexhaustive algebraic-combinatorial computer search, similar to that in [9] and [3]. The codes presented here improve the corresponding lower bounds on the minimum distance in [1] and [2].

2. The New QC Codes. Our search method is the same as that presented in [9]. We illustrate this method in the following example. Let m = 62 and q = 5. Then the gcd(m,q) = 1 and the splitting field of $x^m - 1$ is $GF(q^l)$ where l is the smallest integer such that $m|(q^l - 1)$. Let α be a primitive *m*th root of unity. Then

$$x^m - 1 = \prod_{j=0}^{m-1} (x - \alpha^j).$$

176

In our case l = 3 and $p(x) = x^3 + 4x^2 + 4x + 2$ is a primitive polynomial of degree 3 over GF(5). Let η be a root of p(x), such that η is a primitive $(5^3 - 1)$ th root of unity and $\alpha = \eta^{124}$ is a primitive 62th root of unity. To obtain a "good" polynomial g(x) we look at the cyclotomic cosets of 5 \mod 62. The cyclotomic cosets are:

 $cl(0) = \{0\}$ $cl(1) = \{1, 5, 25\}$ $cl(2) = \{2, 10, 50\}$ $cl(3) = \{3, 13, 15\}$ $cl(4) = \{4, 20, 38\}$ $cl(6) = \{6, 26, 30\}$ $cl(7) = \{7, 35, 51\}$ $cl(8) = \{8, 14, 40\}$ $cl(9) = \{9, 39, 45\}$ $cl(11) = \{11, 27, 55\}$ $cl(12) = \{12, 52, 60\}$ $cl(16) = \{16, 18, 28\}$ $cl(17) = \{17, 23, 53\}$ $cl(19) = \{19, 33, 41\}$ $cl(21) = \{21, 29, 43\}$ $cl(22) = \{22, 48, 54\}$ $cl(24) = \{24, 42, 58\}$ $cl(31) = \{31\}$ $cl(32) = \{32, 36, 56\}$ $cl(34) = \{34, 44, 46\}$ $cl(37) = \{37, 57, 61\}$ $cl(47) = \{47, 49, 59\}.$

The corresponding minimal polynomials are

 $\begin{array}{ll} h_0(x) = x + 4 & h_1(x) = x^3 + 2x^2 + 1 & h_2(x) = x^3 + x^2 + x + 4 \\ h_3(x) = x^3 + x^2 + 3x + 1 & h_4(x) = x^3 + x^2 + 3x + 4 & h_5(x) = x^3 + 2x + 4 \end{array}$ $h_{6}(x) = x^{3} + 4x^{2} + 3x + 1 \qquad h_{7}(x) = x^{3} + x + 4 \qquad \qquad h_{8}(x) = x^{4} + x + 1$ $h_{9}(x) = x^{3} + 3x^{2} + 4x + 1$ $h_{10}(x) = x^{3} + 4x^{2} + 4x + 4$ $h_{11}(x) = x^{3} + 2x^{2} + x + 4$ $\begin{array}{ll} h_{12}(x) = x^3 + x^2 + 1 \\ h_{12}(x) = x^3 + x^2 + 1 \\ h_{15}(x) = x^3 + 4x^2 + 4 \\ h_{18}(x) = x^3 + 3x^2 + 4 \\ \end{array} \begin{array}{ll} h_{10}(x) = x + 1x + 1 \\ h_{13}(x) = x^3 + 4x^2 + x + 1 \\ h_{14}(x) = x^3 + x^2 + 4x + 1 \\ h_{16}(x) = x^3 + 2x^2 + 4x + 4 \\ h_{17}(x) = x + 1 \\ h_{19}(x) = x^3 + 4x^2 + 3x + 4 \\ \end{array} \right.$ $h_{18}(x) = x^3 + 3x^2 + 4$ $h_{19}(x) = x^3 + 4x^2 + 3x + 4$ $h_{20}(x) = x^3 + 2x + 1$ $h_{21}(x) = x^3 + 3x^2 + x + 1.$

Let $T = \bigcup cl(i)$, $M = \{2, 4, 6, 7, 8, 9, 11, 12, 17, 19, 21, 22, 24, 31, 32, 34, 37, 47\}$ and

 $g(x) = \prod_{i \in M} (x - \alpha^i)$. Then the polynomial g(x) has 33 consecutive roots. According to $i \in M$ Theorem 2 we expect to obtain a cyclic code with minimum distance at least 34. Taking

$$g(x) = \prod_{i \in M} (x - \alpha^{i}) = h_2 \prod_{i=4}^{10} h_i(x) \prod_{i=12}^{21} h_i(x)$$

we obtain a new [62, 10, 38]₅-cyclic code. We take f(x) = 1 and make search for $f_2(x)$. With

$$f_2(x) = x^7 + 3x^5 + 3x^4 + 4x^3 + 3x^2 + 3$$

we find a new $[124, 10, 84]_5$ -QC code.

Now, we present the new QC codes. Their parameters are given in Table 1. The minimum distances, d_{br} [1] of the previously best known codes are given for comparison. The coefficients of the defining polynomials of the new codes are as follows:

1. A [42, 13, 19]₅-code: 12333332100000000000, 440400412121121000000;

2. A [44, 12, 22]₅-code: 420313430210000000000, 2412004120213102100000;

3. A [48, 14, 22]₅-code: 43020143111000000000000, 212141033120121100000000;

4. A [52, 16, 21]₅-code: 40303020201000000000000, 12033132011243211000000000;

5. A [62, 10, 38]₅-code: (C) 43220230434200310421413113323222134240443434412201431000000000;

- **6.** A [66,16,31]₅-code: 4210212104041412410000000000000, 240040314211012130330100000000000;
- **7. A** [78, 12, 46]₅-**code:** 43221424432201442234031132110000000000, 114341240314120222144031103214332100000;
- **8. A** [78, 13, 44]₅-code: 110013433412424242330220010000000000, 32024304310200131430222204041100000000;

code	d	d_{br}	code	d	d_{br}
[42, 13]	19	18	[78, 13]	44	43
[44, 12]	22	21	[88, 12]	52	51
[48, 14]	22	21	[88, 16]	46	45
[52, 16]	21	20	[104, 11]	65	64
[62, 10]	38	37	[104, 14]	61	60
[66, 16]	31	30	[124, 9]	85	84
[78, 12]	46	44	[124, 10]	84	83

Table 1. Minimum distances of the new linear codes over GF(5).

REFERENCES

[1] A. E. BROUWER. Linear code bound [electronic table; online],

http://www.win.tue.nl/~aeb/voorlincod.html.

[2] R. N. DASKALOV, T. A. GULLIVER. Minimum distance bounds for linear codes over GF(5). AAECC, 9, No 6 (1999), 547–558.

[3] R. N. DASKALOV, P. HRISTOV. New one-generator quasi-cyclic codes over GF(7). *Probl. Pered. Inform.*, **38**, No 1 (2002), 59–63.

[4] M. ESMAEILI, T. A. GULLIVER, N. P. SECORD AND S.A. MAHMOUD. A link between quasicyclic codes and convolutional codes. *IEEE Trans. Inform. Theory*, **44** (1998), 431–435.

[5] P. P. GREENOUGH AND R. HILL. Optimal ternary quasi-cyclic codes. *Designs, Codes and Cryptography*, **2** (1992), 81–91.

178

[6] T. KASAMI. A Gilbert-Varshamov bound for quasi-cyclic codes of rate 1/2. *IEEE Trans. Inform. Theory*, **IT-20** (1974), 679–680.

[7] K. LALLY AND P. FITZPATRICK. Construction and classification of quasi-cyclic codes. In: Proc. Int. Workshop on Coding and Cryptography, WCC'99, Paris, France, 1999, 11–20.

[8] F. J. MACWILLIAMS, N. J. A. SLOANE. The Theory of Error-Correcting Codes. New York, NY, North-Holland Publishing Co., 1977.

[8] I. SIAP, N. AYDIN, D. RAY-CHAUDHURY. New ternary quasi-cyclic codes with better minimum distances. *IEEE Trans. Inform. Theory*, **46**, No 4 (2000), 1554–1558.

[9] G. E. SÉGUIN, G. DROLET. The theory of 1-generator quasi-cyclic codes. Technical Report, Royal Military College of Canada, Kingston, ON, 1991.

[10] G. SOLOMON, H. C. A. VAN TILBORG. A connection between block and convolutional codes. *SIAM J. of Applied Mathematics*, **37**, No 2 (1979), 358–369.

Plamen Hristov Department of Mathematics Technical University of Gabrovo 5300 Gabrovo, Bulgaria e-mail: plhristov@tugab.bg

НОВИ КВАЗИ-ЦИКЛИЧНИ КОДОВЕ НАД GF(5)

Пламен Христов

Нека $[n, k, d]_q$ -код е линеен код с дължина n, размерност k и минимално Хемингово разстояние d над GF(q). Конструирани са четиринадесет нови кода над GF(5), които подобряват познатите в момента долни граници за минималното разстояние.