MATEMATUKA W MATEMATUWYECKO OBPA3OBAHWE, 2003
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2003
Proceedings of the Thirty Second Spring Conference of

the Union of Bulgarian Mathematicians
Sunny Beach, April 5-8, 2003

NEW QUASI-CYCLIC CODES OVER GF(5)*

Plamen Hristov

Let [n, k, d]q-codes be linear codes of length n, dimension k¥ and minimum Hamming
distance d over GF(¢). In this paper, fourteen new codes over GF'(5) are constructed,
which improve the known lower bounds on minimum distance.

1. Introduction. Let GF(q) denote the Galois field of ¢ elements. A linear code
C over GF(q) of length n, dimension k and minimum Hamming distance d is called an
[n, k, d]4-code.

A code is called p-quasi-cyclic (p-QC for short) if every cyclic shift of a codeword by
p places is again a codeword. A quasi-cyclic (QC) code is just a code of length n which is
p-QC for some divisor p of n with p < n [5]. A cyclic code is just a 1-QC code. Suppose
C is a p-QC [pm, k]-code. It is convenient to take the coordinate places of C' in the order

Lp+1,2p+1,....(m—Dp+1,2,p+2,....(m—L)p+2,...,p,2p,...,mp.
Then C' will be generated by a matrix of the form

[G1,Ga, ..., Gy,
where each G, is a circulant matrix, i.e. a matrix of the form
bO bl b2 o bm—2 bm—l
bp—1 bo b1 - bm—gz b2
(1) B = bn—2 bm—1 bo -+ bm—a bpm_3 ,
by bo b3 o0 bpo1 bo

in which each row is a cyclic shift of its predecessor.
If the row vector (boby - -« bpm—1) is identified with the polinomial g(x) = by + biz +
oo+ by_12™7 1, then we may write

2) B — z?g(x)

m—1

a™ g (x)
where each polynomial is reduced modulo ™ — 1.

*2000 Math. Subject Classification: 94B15, 94B65. This work was partially supported by the Bul-
garian Ministry of Education and Science under Contract in TU of Gabrovo.
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If C is the QC' code generated by

a@  w@ g
o N NCIE ORI 0
2 g(z) 2™ lga(r) o 2™ lgy(a)

then the g;(x)’s are called the defining polynomials of C [5]. The code C will usually be
a code of dimension m, but if the defining polynomials all happen to be a multiple of
some polynomial h(x), where h(z)[z™ — 1, then C will actually have dimension m — r,
where r is the degree of h(z). Such a QC code is called r-degenerate [5].

Similarly to the case of cyclic codes, a p-QC code over GF(q) of length n = pm
can be viewed as an GF(q)[x]/(z™ — 1) submodule of (GF(q)[x]/(z™ — 1))? [10], [7].
Then an r-generator QC' code is spanned by r elements of (GF(q)[x]/(z™ — 1))P. In
this paper we consider one-generator QC' codes.

Definition. Let « be a root of a primitive polynomial of degree n over GF(q).
Then 1,a,a2,--- ,a"" ! form the multiplicative group of the field GF(q™). A polynomial
g(z) € GF(q)[x] is said to have consecutive roots if o' and o'+ are roots of g(z).

A well-known results regarding the one-generator QC' codes are as follows.

Theorem 1 [10], [7]. Let C be a one-generator QC code over GF(q) of length
n =pm. Then, a generator g(x) € (GF(q)[z]/(z™ —1))? of C has the following form

g(x) = (f1(@)g1(2), fa(@)g2(2), -+, fp(x)gp()),
where gi(z)|(z™ —1) and (fi(z), (@™ = 1)/gi(x)) =1 for all 1<i<p.

Theorem 2 [7]. Let C be a one-generator QC code over GF(q) of length n = pm
with a generator as in Theorem 1. Then

p.((# of consecutive roots of g(x)) +1) < dmin(C)
and the dimension of C s equal to m — deg(g(z)).

Quasi-cyclic codes form an important class of linear codes which contains the well-
known class of cyclic codes. The investigation of QC' codes is motivated by the following
facts: QC' codes meet a modified version of Gilbert-Varshamov bound [6]; some of the
best quadratic residue codes and Pless symmetry codes are QC codes [8]; a large number
of record breaking (and optimal codes) are QC' codes [1]; there is a link between QC
codes and convolutional codes [11], [4].

In this paper, new one-generator QC' codes (p = 2) are constructed using a nonex-
haustive algebraic-combinatorial computer search, similar to that in [9] and [3]. The
codes presented here improve the corresponding lower bounds on the minimum distance
in [1] and [2].

2. The New QC Codes. Our search method is the same as that presented in [9].
We illustrate this method in the following example. Let m = 62 and ¢ = 5. Then the
ged(m, q) = 1 and the splitting field of 2™ — 1 is GF(q') where [ is the smallest integer
such that m|(¢' — 1). Let a be a primitive mth root of unity. Then

m—1
2™ —1= H(x—aj).
j=0
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In our case | = 3 and p(x) = 23 + 42% + 42 + 2 is a primitive polynomial of degree 3 over
GF(5). Let n be a root of p(z), such that 7 is a primitive (5% — 1)th root of unity and
a = n'?** is a primitive 62th root of unity. To obtain a “good” polynomial g(z) we look

at the cyclotomic cosets of 5 mod 62. The cyclotomic cosets are:

(0) = {0} (1) = {1,5,25} (2) = {2,10,50}  cl(3) = {3,13,15}
(4) = {4,20,38} (6) = {6,26, 30} (7) = {7,35,51}  cl(8) = {8, 14,40}
cl(9) = {9,39,45})  cl(11) = {11,27,55} cl(12) = {12,52,60} cl(16) = {16, 18,28}
cl(17) = {17,23,53} cl(19) = {19,33,41} cl(21) = {21,29,43} cl(22) = {22, 48,54}

(24) = {24,42,58} cl(31) = {31} (32) = {32,36,56) cl(34) = {34,44,46}
cl(37) = {37,57,61}  cl(47) = {47, 49,59}

The corresponding minimal polynomials are
ho(z) =z +4 hi(z) = 2% +22%2 + 1 ho(x) = a3 + 22 + 2+ 4
ha(x) =2+ 22 +3z+1  he(x)=23+22+32+4  hs(x) =23 +22+4
he(z) = 23 + 422 + 3z + 1 h7()*:c3+:c+4 hg(z) =zt +z +1
ho(z) =23+ 322 + 4z +1 hig(x) = :c +4z? +4z +4 hyg(z) =23+ 222 + 2+ 4
hig(z) = 2% + 2% +1 hiz(x) = :c +d4r?+x+1  hylr)=2>+2% +4x+1
his(z) = 2® + 42 + 4 hig(z) = 2% + 222 +dx +4 hiz(z) =2 +1
hig(z) = 2% + 322 + 4 hig(z) = 2% +42® + 32 +4  hoo(z) = 2® + 22 + 1

Let T = U c(i), M=1{2,4,6,7,8,9,11,12,17,19,21,22,24,31,32,34,37,47} and
ieM
g(x) = H (x — a'). Then the polynomial g(z) has 33 consecutive roots. According to
ieM
Theorem 2 we expect to obtain a cyclic code with minimum distance at least 34. Taking

g@) = [[(@—a") =ha [ hilw) [] hil=)

ieM i=4 i=12
we obtain a new [62, 10, 38]5-cyclic code. We take f(z) = 1 and make search for fa(z).
With
fo(z) = 27 + 325 + 32 + 423 + 32° + 3

we find a new [124, 10, 84]5-QC code.

Now, we present the new QC codes. Their parameters are given in Table 1. The
minimum distances, dp, [1] of the previously best known codes are given for comparison.

The coefficients of the defining polynomials of the new codes are as follows:

1. A [42,13,19]5-code: 123333321000000000000, 440400412121121000000;

2. A [44,12,22]5-code: 4203134302100000000000, 2412004120213102100000;

3. A [48,14,22]5-code: 430201431110000000000000, 212141033120121100000000;

4. A [52,16,21]5-code: 40303020201000000000000000, 12033132011243211000000000;

5. A [62,10, 38]5-code: (C) 43220230434200310421413113323222134240443434412201431000000000;
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6. A [66,16,31]5-code: 421021210404141241000000000000000, 240040314211012130330100000000000;

7. A [78,12,46]5-code: 432214244322014422340311321100000000000,
114341240314120222144031103214332100000;

o]

. A [78,13,44]5-code: 110013433412424244233022001000000000000,
320243043102001314302222040411000000000;

9. An [88,12,52]5-code: 12102421024443120141421403332044100000000000,
40011332311130444022341201144310021301000000;

10. An [88,16, 46]5-code: 11212103300430023310321411341000000000000000,
11011401200312221442021112033441100000000000;

11. A [104,11,65]5-code: 1303324134222134011411003421243440330213010000000000,
3411100242010133410121312304444123332004204220100000;

12. A [104, 14, 61]5-code: 2233432010312433112424003301021104113210000000000000,
3401400142230434224000324403234110212424100110000000;

13. A [124,9,85]5-code: 11242220124042234311403304044242022440141412434000040400000000,
20421032341230303120100402014414122312401001032214032113400000;

14. A [124,10, 84]5-code: 43220230434200310421413113323222134240443434412201431000000000,
31312124320412313112002234432224021423132420334231140244203100;

Table 1. Minimum distances of the new linear codes over GF(5).

code | d | dpr code | d | dp,
42,13] | 19 | 18 [78,13] | 44 | 43
44,12] [ 22 | 21 || [88,12] | 52 | 51
48,14] | 22 | 21 [88,16 46 | 45

[42,13] ]
1 |
[52,16] | 21 | 20 || [104,11] | 65 | 64
62,10] ]
[66,16] ]
[78,12] |

62,10] | 38 | 37 | [104,14] | 61 | 60
66,16] | 31 | 30 || [124,9] | 85 | 84
78,12] | 46 | 44 || [124,10] | 84 | 83

REFERENCES

[1] A. E. BROUWER. Linear code bound [electronic table; online],

http://www.win.tue.nl/~ aeb/voorlincod.html.

[2]R. N. DaskaLov, T. A. GULLIVER. Minimum distance bounds for linear codes over GF(5).
AAECC, 9, No 6 (1999), 547-558.

[3]R. N. DaskaLov, P. HrisSTov. New one-generator quasi-cyclic codes over GF(7). Probl.
Pered. Inform., 38, No 1 (2002), 59-63.

[4] M. EsMAEILI, T. A. GULLIVER, N. P. SECORD AND S.A. MAHMOUD. A link between quasi-
cyclic codes and convolutional codes. IEEE Trans. Inform. Theory, 44 (1998), 431-435.

[5] P. P. GREENOUGH AND R. HILL. Optimal ternary quasi-cyclic codes. Designs, Codes and
Cryptography, 2 (1992), 81-91.

178



[6] T. KasamI. A Gilbert-Varshamov bound for quasi-cyclic codes of rate 1/2. IEEE Trans.
Inform. Theory, IT-20 (1974), 679-680.

[7] K. LaLLY AND P. FiTzpaTRICK. Construction and classification of quasi-cyclic codes. In:
Proc. Int. Workshop on Coding and Cryptography, WCC’99, Paris, France, 1999, 11-20.

[8]F. J. MAcWILLIAMS, N. J. A. SLOANE. The Theory of Error-Correcting Codes. New York,
NY, North-Holland Publishing Co., 1977.

[8]I. S1aP, N. AYDIN, D. RAY-CHAUDHURY. New ternary quasi-cyclic codes with better mini-
mum distances. IEEE Trans. Inform. Theory, 46, No 4 (2000), 1554-1558.

[9] G. E. SEGUIN, G. DROLET. The theory of 1-generator quasi-cyclic codes. Technical Report,
Royal Military College of Canada, Kingston, ON, 1991.

[10] G. SoLoMoON, H. C. A. vaN TILBORG. A connection between block and convolutional
codes. SIAM J. of Applied Mathematics, 37, No 2 (1979), 358-369.

Plamen Hristov

Department of Mathematics
Technical University of Gabrovo
5300 Gabrovo, Bulgaria
e-mail: plhristov@tugab.bg

HOBUM KBA3U-ITUKJINYHU KOJOBE HA/JI GF(5)

Ilnamen Xpucros

Heka [n, k, d]q-Kox € JMHEeH KOJ| C JUbJDKUHA M, PA3MEPHOCT k M MUHMMAJHO Xe-
MuHroBo pascrosuue d nan GF(q). Koncrpynpanu ca 4eTupuHaIeceT HOBU KOJIa HaT
GF(5), xouto nomobpsBaT MO3HATATE B MOMEHTA JOJHM I'DAHUIM 33 MUHUMAJIHOTO
pa3CcTosiHuE.
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