NEW QUASI-CYCLIC CODES OVER GF(5)*

Plamen Hristov

Let $[n, k, d]_{q}$-codes be linear codes of length n, dimension k and minimum Hamming distance d over $G F(q)$. In this paper, fourteen new codes over $G F(5)$ are constructed, which improve the known lower bounds on minimum distance.

1. Introduction. Let $G F(q)$ denote the Galois field of q elements. A linear code C over $G F(q)$ of length n, dimension k and minimum Hamming distance d is called an $[n, k, d]_{q}$-code.

A code is called p-quasi-cyclic ($p-Q C$ for short) if every cyclic shift of a codeword by p places is again a codeword. A quasi-cyclic $(Q C)$ code is just a code of length n which is $p-Q C$ for some divisor p of n with $p<n$ [5]. A cyclic code is just a 1- $Q C$ code. Suppose C is a $p-Q C[p m, k]$-code. It is convenient to take the coordinate places of C in the order

$$
1, p+1,2 p+1, \ldots,(m-1) p+1,2, p+2, \ldots,(m-1) p+2, \ldots, p, 2 p, \ldots, m p .
$$

Then C will be generated by a matrix of the form

$$
\left[G_{1}, G_{2}, \ldots, G_{p}\right]
$$

where each G_{i} is a circulant matrix, i.e. a matrix of the form

$$
B=\left[\begin{array}{cccccc}
b_{0} & b_{1} & b_{2} & \cdots & b_{m-2} & b_{m-1} \tag{1}\\
b_{m-1} & b_{0} & b_{1} & \cdots & b_{m-3} & b_{m-2} \\
b_{m-2} & b_{m-1} & b_{0} & \cdots & b_{m-4} & b_{m-3} \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
b_{1} & b_{2} & b_{3} & \cdots & b_{m-1} & b_{0}
\end{array}\right],
$$

in which each row is a cyclic shift of its predecessor.
If the row vector $\left(b_{0} b_{1} \cdots b_{m-1}\right)$ is identified with the polinomial $g(x)=b_{0}+b_{1} x+$ $\cdots+b_{m-1} x^{m-1}$, then we may write

$$
B=\left[\begin{array}{c}
g(x) \tag{2}\\
x g(x) \\
x^{2} g(x) \\
\vdots \\
x^{m-1} g(x)
\end{array}\right]
$$

where each polynomial is reduced modulo $x^{m}-1$.

[^0]If C is the $Q C$ code generated by

$$
G=\left[\begin{array}{cccc}
g_{1}(x) & g_{2}(x) & \cdots & g_{p}(x) \tag{3}\\
x g_{1}(x) & x g_{2}(x) & \cdots & x g_{p}(x) \\
\vdots & \vdots & \vdots & \vdots \\
x^{m-1} g_{1}(x) & x^{m-1} g_{2}(x) & \cdots & x^{m-1} g_{p}(x)
\end{array}\right]
$$

then the $g_{i}(x)$'s are called the defining polynomials of C [5]. The code C will usually be a code of dimension m, but if the defining polynomials all happen to be a multiple of some polynomial $h(x)$, where $h(x) \mid x^{m}-1$, then C will actually have dimension $m-r$, where r is the degree of $h(x)$. Such a $Q C$ code is called r-degenerate [5].

Similarly to the case of cyclic codes, a $p-Q C$ code over $G F(q)$ of length $n=p m$ can be viewed as an $G F(q)[x] /\left(x^{m}-1\right)$ submodule of $\left(G F(q)[x] /\left(x^{m}-1\right)\right)^{p}[10],[7]$. Then an r-generator $Q C$ code is spanned by r elements of $\left(G F(q)[x] /\left(x^{m}-1\right)\right)^{p}$. In this paper we consider one-generator $Q C$ codes.

Definition. Let α be a root of a primitive polynomial of degree n over $G F(q)$. Then $1, \alpha, \alpha^{2}, \cdots, \alpha^{n-1}$ form the multiplicative group of the field $G F\left(q^{n}\right)$. A polynomial $g(x) \in G F(q)[x]$ is said to have consecutive roots if α^{i} and α^{i+1} are roots of $g(x)$.

A well-known results regarding the one-generator $Q C$ codes are as follows.
Theorem 1 [10], [7]. Let C be a one-generator $Q C$ code over $G F(q)$ of length $n=p m$. Then, a generator $\mathbf{g}(\mathbf{x}) \in\left(G F(q)[x] /\left(x^{m}-1\right)\right)^{p}$ of C has the following form

$$
\mathbf{g}(\mathbf{x})=\left(f_{1}(x) g_{1}(x), f_{2}(x) g_{2}(x), \cdots, f_{p}(x) g_{p}(x)\right)
$$

where $g_{i}(x) \mid\left(x^{m}-1\right)$ and $\left(f_{i}(x),\left(x^{m}-1\right) / g_{i}(x)\right)=1$ for all $1 \leq i \leq p$.
Theorem 2 [7]. Let C be a one-generator $Q C$ code over $G F(q)$ of length $n=p m$ with a generator as in Theorem 1. Then

$$
p \cdot((\# \text { of consecutive roots of } g(x))+1) \leq d_{\min }(C)
$$

and the dimension of C is equal to $m-\operatorname{deg}(g(x))$.
Quasi-cyclic codes form an important class of linear codes which contains the wellknown class of cyclic codes. The investigation of $Q C$ codes is motivated by the following facts: $Q C$ codes meet a modified version of Gilbert-Varshamov bound [6]; some of the best quadratic residue codes and Pless symmetry codes are $Q C$ codes [8]; a large number of record breaking (and optimal codes) are $Q C$ codes [1]; there is a link between $Q C$ codes and convolutional codes [11], [4].

In this paper, new one-generator $Q C$ codes $(p=2)$ are constructed using a nonexhaustive algebraic-combinatorial computer search, similar to that in [9] and [3]. The codes presented here improve the corresponding lower bounds on the minimum distance in [1] and [2].
2. The New QC Codes. Our search method is the same as that presented in [9]. We illustrate this method in the following example. Let $m=62$ and $q=5$. Then the $\operatorname{gcd}(m, q)=1$ and the splitting field of $x^{m}-1$ is $G F\left(q^{l}\right)$ where l is the smallest integer such that $m \mid\left(q^{l}-1\right)$. Let α be a primitive m th root of unity. Then

$$
x^{m}-1=\prod_{j=0}^{m-1}\left(x-\alpha^{j}\right)
$$

In our case $l=3$ and $p(x)=x^{3}+4 x^{2}+4 x+2$ is a primitive polynomial of degree 3 over $G F(5)$. Let η be a root of $p(x)$, such that η is a primitive $\left(5^{3}-1\right)$ th root of unity and $\alpha=\eta^{124}$ is a primitive 62 th root of unity. To obtain a "good" polynomial $g(x)$ we look at the cyclotomic cosets of $5 \bmod 62$. The cyclotomic cosets are:

$c l(0)=\{0\}$	$c l(1)=\{1,5,25\}$	$\operatorname{cl}(2)=\{2,10,50\}$	$\operatorname{cl}(3)=\{3,13,15\}$
$\operatorname{cl}(4)=\{4,20,38\}$	$\operatorname{cl}(6)=\{6,26,30\}$	$\operatorname{cl}(7)=\{7,35,51\}$	$\operatorname{cl}(8)=\{8,14,40\}$
$\operatorname{cl}(9)=\{9,39,45\}$	$\operatorname{cl}(11)=\{11,27,55\}$	$\operatorname{cl}(12)=\{12,52,60\}$	$\operatorname{cl}(16)=\{16,18,28\}$
$\operatorname{cl}(17)=\{17,23,53\}$	$\operatorname{cl}(19)=\{19,33,41\}$	$\operatorname{cl}(21)=\{21,29,43\}$	$\operatorname{cl}(22)=\{22,48,54\}$
$\operatorname{cl}(24)=\{24,42,58\}$	$\operatorname{cl}(31)=\{31\}$	$\operatorname{cl}(32)=\{32,36,56\}$	$\operatorname{cl}(34)=\{34,44,46\}$
$\operatorname{cl}(37)=\{37,57,61\}$	$\operatorname{cl}(47)=\{47,49,59\}$.		

The corresponding minimal polynomials are

$$
\begin{array}{lll}
h_{0}(x)=x+4 & h_{1}(x)=x^{3}+2 x^{2}+1 & h_{2}(x)=x^{3}+x^{2}+x+4 \\
h_{3}(x)=x^{3}+x^{2}+3 x+1 & h_{4}(x)=x^{3}+x^{2}+3 x+4 & h_{5}(x)=x^{3}+2 x+4 \\
h_{6}(x)=x^{3}+4 x^{2}+3 x+1 & h_{7}(x)=x^{3}+x+4 & h_{8}(x)=x^{4}+x+1 \\
h_{9}(x)=x^{3}+3 x^{2}+4 x+1 & h_{10}(x)=x^{3}+4 x^{2}+4 x+4 & h_{11}(x)=x^{3}+2 x^{2}+x+4 \\
h_{12}(x)=x^{3}+x^{2}+1 & h_{13}(x)=x^{3}+4 x^{2}+x+1 & h_{14}(x)=x^{3}+x^{2}+4 x+1 \\
h_{15}(x)=x^{3}+4 x^{2}+4 & h_{16}(x)=x^{3}+2 x^{2}+4 x+4 & h_{17}(x)=x+1 \\
h_{18}(x)=x^{3}+3 x^{2}+4 & h_{19}(x)=x^{3}+4 x^{2}+3 x+4 & h_{20}(x)=x^{3}+2 x+1 \\
h_{21}(x)=x^{3}+3 x^{2}+x+1 . & &
\end{array}
$$

Let $T=\bigcup_{i \in M} c l(i), \quad M=\{2,4,6,7,8,9,11,12,17,19,21,22,24,31,32,34,37,47\}$ and $g(x)=\prod_{i \in M}\left(x-\alpha^{i}\right)$. Then the polynomial $g(x)$ has 33 consecutive roots. According to
Theorem 2 we expect to obtain a cyclic code with minimum distance at least 34 . Taking

$$
g(x)=\prod_{i \in M}\left(x-\alpha^{i}\right)=h_{2} \prod_{i=4}^{10} h_{i}(x) \prod_{i=12}^{21} h_{i}(x),
$$

we obtain a new $[62,10,38]_{5}$-cyclic code. We take $f(x)=1$ and make search for $f_{2}(x)$. With

$$
f_{2}(x)=x^{7}+3 x^{5}+3 x^{4}+4 x^{3}+3 x^{2}+3
$$

we find a new $[124,10,84]_{5}-Q C$ code.
Now, we present the new Q C codes. Their parameters are given in Table 1. The minimum distances, $d_{b r}$ [1] of the previously best known codes are given for comparison.

The coefficients of the defining polynomials of the new codes are as follows:

1. A $[42,13,19]_{5}$-code: 123333321000000000000,440400412121121000000 ;
2. $\mathbf{A}[44,12,22]_{5}$-code: 4203134302100000000000,2412004120213102100000 ;
3. A $[48,14,22]_{5}$-code: 430201431110000000000000,212141033120121100000000 ;
4. A $[52,16,21]_{5}$-code: 40303020201000000000000000,12033132011243211000000000 ;
5. A $[62,10,38]_{5}$-code: (C) 43220230434200310421413113323222134240443434412201431000000000 ;
6. A $[66,16,31]_{5}$-code: 421021210404141241000000000000000,240040314211012130330100000000000 ;
7. A $[78,12,46]_{5}$-code: 432214244322014422340311321100000000000 , 114341240314120222144031103214332100000 ;
8. A $[78,13,44]_{5}$-code: 110013433412424244233022001000000000000 , 320243043102001314302222040411000000000 ;
9. An $[88,12,52]_{5}$-code: 12102421024443120141421403332044100000000000 , 40011332311130444022341201144310021301000000;
10. An $[88,16,46]_{5}$-code: 11212103300430023310321411341000000000000000 , 11011401200312221442021112033441100000000000;
11. A $[104,11,65]_{5}$-code: 1303324134222134011411003421243440330213010000000000 , 3411100242010133410121312304444123332004204220100000 ;
12. A $[104,14,61]_{5}$-code: 2233432010312433112424003301021104113210000000000000 , 3401400142230434224000324403234110212424100110000000 ;
13. A $[124,9,85]_{5}$-code: 11242220124042234311403304044242022440141412434000040400000000 , 20421032341230303120100402014414122312401001032214032113400000;
14. A $[124,10,84]_{5}$-code: 43220230434200310421413113323222134240443434412201431000000000 , 31312124320412313112002234432224021423132420334231140244203100 ;

Table 1. Minimum distances of the new linear codes over GF(5).

code	d	$d_{b r}$	code	d	$d_{b r}$
$[42,13]$	19	18	$[78,13]$	44	43
$[44,12]$	22	21	$[88,12]$	52	51
$[48,14]$	22	21	$[88,16]$	46	45
$[52,16]$	21	20	$[104,11]$	65	64
$[62,10]$	38	37	$[104,14]$	61	60
$[66,16]$	31	30	$[124,9]$	85	84
$[78,12]$	46	44	$[124,10]$	84	83

REFERENCES

[1] A. E. Brouwer. Linear code bound [electronic table; online], http://www.win.tue.nl/~ aeb/voorlincod.html.
[2] R. N. Daskalov, T. A. Gulliver. Minimum distance bounds for linear codes over GF(5). $A A E C C, \mathbf{9}$, No 6 (1999), 547-558.
[3] R. N. Daskalov, P. Hristov. New one-generator quasi-cyclic codes over GF(7). Probl. Pered. Inform., 38, No 1 (2002), 59-63.
[4] M. Esmaeili, T. A. Gulliver, N. P. Secord and S.A. Mahmoud. A link between quasicyclic codes and convolutional codes. IEEE Trans. Inform. Theory, 44 (1998), 431-435.
[5] P. P. Greenough and R. Hill. Optimal ternary quasi-cyclic codes. Designs, Codes and Cryptography, 2 (1992), 81-91.
[6] T. Kasami. A Gilbert-Varshamov bound for quasi-cyclic codes of rate $1 / 2$. IEEE Trans. Inform. Theory, IT-20 (1974), 679-680.
[7] K. Lally and P. Fitzpatrick. Construction and classification of quasi-cyclic codes. In: Proc. Int. Workshop on Coding and Cryptography, WCC'99, Paris, France, 1999, 11-20.
[8] F. J. MacWilliams, N. J. A. Sloane. The Theory of Error-Correcting Codes. New York, NY, North-Holland Publishing Co., 1977.
[8] I. Siap, N. Aydin, D. Ray-Chaudhury. New ternary quasi-cyclic codes with better minimum distances. IEEE Trans. Inform. Theory, 46, No 4 (2000), 1554-1558.
[9] G. E. Séguin, G. Drolet. The theory of 1-generator quasi-cyclic codes. Technical Report, Royal Military College of Canada, Kingston, ON, 1991.
[10] G. Solomon, H. C. A. van Tilborg. A connection between block and convolutional codes. SIAM J. of Applied Mathematics, 37, No 2 (1979), 358-369.

Plamen Hristov
Department of Mathematics
Technical University of Gabrovo
5300 Gabrovo, Bulgaria
e-mail: plhristov@tugab.bg

НОВИ КВАЗИ-ЦИКЛИЧНИ КОДОВЕ НАД GF(5)

Пламен Христов

Нека $[n, k, d]_{q}$-код е линеен код с дължина n, размерност k и минимално Хемингово разстояние d над $G F(q)$. Конструирани са четиринадесет нови кода над $G F(5)$, които подобряват познатите в момента долни граници за минималното разстояние.

[^0]: ${ }^{*} 2000$ Math. Subject Classification: 94B15, 94B65. This work was partially supported by the Bulgarian Ministry of Education and Science under Contract in TU of Gabrovo.

