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TWO-POINT BOUNDARY-VALUE PROBLEMS WITH

IMPULSE EFFECTS
*

Lyudmil I. Karandzhulov

A new scheme for investigation of boundary value problems of ordinary differential
equations with impulse effects at finite number of points is suggested. The problem
is reduced to a two-point boundary value problem which dimension is greater than
the dimension of the original problem. Conditions for existence of unique solution
and family of solutions are obtained.

1. Statement of the problem. We consider a two-point boundary-value problem
with generalized impulse conditions at finite number of points

dy

dx
= A(x)y + f(x), x ∈ [a, b], x 6= τi,(1)

By(a) + Cy(b) = d,(2)

Niy(τi + 0) + Miy(τi − 0) = vi, i = 1, p,(3)

a = τ0 < τ1 < τ2 < · · · < τp < τp+1 = b,

where the coefficients of the system (1) and the equalities (2), (3) are subordinate to the
following conditions:

(H1) A(x) is (n×n) matrix with continuous elements on [a, b], f(x) is n-dimensional
partially continuous vector function with break points of the first kind at τi: f(x) =
f1(x), x ∈ [a, τ1], f(x) = fi(x), x ∈ (τi, τi+1], i = 1, p, where fi(x) is continuous in
[τi−1, τi], i = 1, p + 1;

(H2) B and C are (k×n) constant matrices, d ∈ Rk and Mi, Ni i = 1, p, are (s×n)
constant matrices, vi ∈ Rs.

Further, we give conditions for existence of the solution y(·) ∈ C1 ([a, b] \ {τ1, · · · , τp})
of the impulsive boundary-value problem (1) – (3) and construct this solution.

If instead of (3) we consider the following impulse conditions

y(τi + 0) + (En + Si) y(τi − 0) = vi, i = 1, p,

where (En + Si) are nonsingular matrices, then we obtain the problem investigated in

[4]. The system (1) with impulse and boundary conditions united in the form
p+1
∑

i=1

liyi(·)
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where the functionals

liyi(·) =

∫ τi

τi1

[dσ(s)] Ci(s)yi(s), i = 1, p + 1,

is investigated in [2].

2. Main results. We denote xi = τi, i = 0, p + 1 and replace
x − xi−1

hi

= t, hi = xi − xi−1, i = 1, p + 1.(4)

This means that x ∈ [xi−1, xi] is equivalent to t ∈ [0, 1]. Therefore after change of
variables (4) the intervals [xi−1, xi], i = 1, p + 1 are represented in [0, 1].

Let y(xi−1 + thi) = zi(t), t ∈ [0, 1] when x ∈ [xi−1, xi]. Then
dy

dx
=

dzi(t)

dt

dt

dx
=

1

hi

dzi(t)

dt
. Thus (1) takes the form

dzi(t)

dt
= hiA(xi−1 + thi)zi(t) + hif(xi−1 + thi), i = 1, p + 1.

We introduce the next denotations

Ai(t) = hiA(xi−1 + thi), gi(t) = hif(xi−1 + thi).

Then the last system takes the form

dzi(t)

dt
= Ai(t)zi(t) + gi(t), i = 1, p + 1, t ∈ [0, 1].(5)

By means of the notations introduced above we find y(a) = z1(0), y(b) = zp+1(1). For
this reason (2) takes the form

Bz1(0) + Czp+1(1) = d.(6)

Since the solution y(x) of the problem (1) – (3) is continuous on every interval [a, x1],
(xi−1, xi], i = 2, p + 1, then as lim

x→τi+0
y(x) = y(τi + 0), we obtain

y(τi − 0) = zi(1), y(τi + 0) = zi+1(0).

On this way the impulse conditions (3) take the form

Mizi(1) + Nizi+1(0) = vi, i = 1, p.(7)

Let z(t) and g(t) be (p + 1)n-dimensional vector functions

z(t) = col(z1(t), · · · , zp+1(t)), g(t) = col(g1(t), · · · , gp+1(t)).

Then we rewrite the differential systems (5) and conditions (6), (7) like a generalized
two-point boundary-value problem

ż(t) = A(t)z(t) + g(t), t ∈ [0, 1],(8)

Bz(0) + Cz(1) = d,(9)

where

A(t) = diag (A1(t), · · · , Ap+1(t))) is ((p + 1)n × (p + 1)n) matrix,

B = diag (B, N1, · · · , Np)) is ((k + ps) × (p + 1)n)) constant matrix,
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is ((k + ps) × (p + 1)n) constant matrix,

d = [d, v1, · · · , vp]
T

is (k + ps)- dimensional vector.

We are to solve the problem (8), (9) instead of the problem (1) – (3). It is clear that
yi(x) = [z(t)]ni

when t = (x − τi)/hi. Here index ni means successively n in number
components of the solution z(t) of (8), (9).

Let Φ(t), Φ(0) = E(p+1)n be the normal fundamental matrix of the solutions of

ż = A(t)z. The generalized solution of the system (8) has the form

z(t) = Φ(t)c + η(t), c ∈ R(p+1)n,(10)

where η(t) =
t
∫

0

Φ(t)Φ
−1

(s)g(s)ds is a particular solution of (8). We substitute (10) in

the boundary condition (9) and bearing in mind Φ(0) = E(p+1)n, η(0) = 0, we obtain

Qc = d − Cη(1),(11)

where Q = B + CΦ(1) is ((k + ps) × (p + 1)n) matrix.
We denote by Q+ the ((p+1)n× (k + ps)) pseudoinverse matrix [1], [3] of the matrix

Q, by PQ and PQ∗ the orthoprojectors PQ : R(p+1)n → ker(Q), PQ∗ : Rk+ps → ker(Q∗),
Q∗ = QT .

Theorem. Let the conditions (H1), (H2) be satisfied and rankQ = n1 < min(k +
ps, (p + 1)n). Then the boundary-value problem (8), (9) has one-parametric family of

solutions

z(t, ξ) = Φ(t)PQξ + z(t), z(t) = Φ(t)Q+(d − Cη(1)) + η(t)(12)

if and only if PQ∗

(

d − Cη(1)
)

= 0.

Proof. We have rankQ = n1 < min(k + ps, (p + 1)n). Then the system (11) has a
parametric solution

c = PQξ + Q+
(

d − Cη(1)
)

, ξ ∈ R(p+1)n(13)

if and only if the condition of orthogonality PQ∗

(

d − Cη(1)
)

= 0 is fulfilled. We substi-
tute (13) in (10) and obtain (12).

Corollary 1. Let the conditions (H1), (H2) be satisfied and PQ∗ = 0. Then the

boundary-value problem (8), (9) has one-parametric solution of the form (12).

In this case rankQ = (p + 1)n and the system (11) is always solvable.

Corollary 2. Let the conditions (H1), (H2) be satisfied and PQ = 0. Then the

boundary-value problem (8), (9) has an unique solution z(t) = z(t) if and only if
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PQ∗

(

d − Cη(1)
)

= 0.

In this case rankQ = k + ps.

Corollary 3. Let the conditions (H1), (H2) be satisfied and PQ = 0, PQ∗ = 0. Then

the boundary-value problem (8), (9) has a unique solution z(t) = z(t) and Q+ = Q−1.

In this case k + ps = (p + 1)n and detQ 6= 0. Here we may supplement a case when
k = s = n.

Keeping in mind the replacement (4) for the solution of the boundary-value problem
(1), (2) with impulse effects (3), we find

y(x, ξ) =



























y1(x) =

[

Φ

(

x − a

h1

)

PQ

]

n1

ξ +

[

z

(

x − a

h1

)]

n1

, x ∈ [a, τ1],

yi(x) =

[

Φ

(

x − τi

hi

)

PQ

]

ni

ξ +

[

z

(

x − τi

hi

)]

ni

, x ∈ (τi−1, τi],

i = 2, p + 1,

(14)

where n1 + n2 + · · · + np+1 = (p + 1)n, n1 means the first n in number rows, n2- the
second and etc., np+1- the last n in number rows of the matrix Φ(t)PQ and the vector
z(t).

3. Examples.
3.1. We illustrate the theorem by the impulsive problem

dy

dx
= 0, x ∈ [0, 2], x 6= 1, y(0) + y(2) = 1, y(1 + 0) + y(1 − 0) = 1.

In this case

ż(t) =

[

ż1(t)
ż2(t)

]

, g(t) =

[

0
0

]

, Φ(t) =

[

1 0
0 1

]

, B =

[

1 0
0 1

]

,

C =

[

0 1
1 0

]

, d =

[

1
1

]

, η(t) =

[

0
0

]

.

Since Q has the representation Q =

[

1 1
1 1

]

, then rankQ = 1. Thus we find

successively

Q+ =
1

4

[

1 1
1 1

]

, PQ =
1

2

[

1 −1
−1 1

]

, PQ∗ =
1

2

[

1 −1
−1 1

]

.

Obviously, the condition of orthogonality PQ∗

[

1
1

]

= 0 is fulfilled. This shows that the

system
[

1 1
1 1

]

c =

[

1
1

]

is always solvable and according to (13) has one parametric solution

c =
1

2

[

1 −1
−1 1

]

ξ +
1

2

[

1
1

]

, ξ ∈ R2.

From (12) we find

z(t, ξ) =
1

2

[

1 −1
−1 1

]

ξ +
1

2

[

1
1

]

, ξ ∈ R2.
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Finally from (14) we get

x(t, ξ) =















y1(x) =
1

2
[ 1, −1] ξ +

1

2
, x ∈ [0, 1],

y2(x) =
1

2
[−1, 1] ξ + 12, x ∈ (1, 2]

x(t) =







y1(x) = λ + 12, x ∈ [0, 1],

y2(x) = −λ + 12, x ∈ (1, 2].
λ ∈ R

3.2. We will find periodic solution of the system

dy

dx
= 1, x ∈ [0, 3], x 6= 1, y(0) = y(3), y(1 + 0) = 0.

In this case h1 = 1, h2 = 2 and the system (8) has the form

ż(t) =

[

ż1(t)
ż2(t)

]

=

[

1
2

]

and we obtain Φ(t) =

[

1 0
0 1

]

. The boundary conditions (9) are

[

1 0
0 1

]

z(0) +

[

0 −1
0 0

]

z(1) =

[

0
0

]

.

The system (11) has the form
[

1 −1
0 1

]

c =

[

2
0

]

.

Then

c =
[

2, 0
]T

.

In accordance with corollary 3

z(t) = z(t) =
[

t + 2, 2t
]T

and from (14) we find

x(t, ξ) =







y1(x) = x + 2, x ∈ [0, 1],

y2(x) = x − 1, x ∈ (1, 3].

We describe a scheme for investigation of boundary-value problems with impulse ef-
fects of the form (3). This scheme may be applied to multipoint boundary-value problems.
Then the matrices B and C are not so simple.
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ДВУТОЧКОВИ ГРАНИЧНИ ЗАДАЧИ С ИМПУЛСНО
ВЪЗДЕЙСТИВИЕ

Людмил Ив. Каранджулов

В работата е предложена нова схема за изследване на гранични задачи за обик-

новени диференциални уравнения с общи импулсни въздействия в краен брой

точки чрез свеждане по двуточкова гранична задача с по-голяма размерност от

първоначалната. Получени са условията за съществуване както на единствено

решение, така и на семейство от решения.
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