CURVATURE TENSORS ON SOME FIVE-DIMENSIONAL ALMOST CONTACT B-METRIC MANIFOLDS*

Galia V. Nakova, Mancho H. Manev

Abstract

There are considered 5 -dimensional almost contact B-metric manifolds of two basic classes. It is proved that every manifold from the section of these classes is with point-wise constant sectional curvatures. It is studied the curvature tensor of the manifolds of these two classes and some their curvature characteristics are given.

1. Preliminaries. Let $(M, \varphi, \xi, \eta, g)$ be a $(2 n+1)$-dimensional almost contact manifold with B-metric, i.e. (φ, ξ, η) is an almost contact structure and g is a metric on M such that:

$$
\varphi^{2}=-i d+\eta \otimes \xi ; \quad \eta(\xi)=1 ; \quad g(\varphi \cdot, \varphi \cdot)=-g(\cdot, \cdot)+\eta(\cdot) \eta(\cdot) .
$$

Both metrics g and its associated $\tilde{g}: \tilde{g}(\cdot, \cdot)=g(\cdot, \varphi \cdot)+\eta(\cdot) \eta(\cdot)$ are indefinite metrics of signature $(n+1, n)[1]$.

Further, X, Y, Z, W will stand for arbitrary differentiable vector fields on M (i.e. X, $Y, Z, W \in \mathfrak{X}(M))$, and x, y, z, w - arbitrary vectors in the tangential space $T_{p} M$ to M at some point $p \in M$.

Let $(V, \varphi, \xi, \eta, g)$ be a $(2 n+1)$-dimensional vector space with almost contact B-metric structure. Let us denote the subspace $h V:=\operatorname{ker} \eta$ of V, and the restrictions of g and φ on $h V$ by the same letters. It is obtained a $2 n$-dimensional vector space $h V$ with a complex structure φ and B-metric g. Let $\left\{e_{1}, \ldots, e_{n}, \varphi e_{1}, \ldots, \varphi e_{n}, \xi\right\}$ be an adapted φ-basis of V, where $-g\left(e_{i}, e_{j}\right)=g\left(\varphi e_{i}, \varphi e_{j}\right)=\delta_{i j}, g\left(e_{i}, \varphi e_{j}\right)=0, \eta\left(e_{i}\right)=0 ; i, j \in\{1, \ldots, n\}$.

A decomposition of the class of the almost contact manifolds with B-metric with respect to the tensor $F: F(X, Y, Z)=g\left(\left(\nabla_{X} \varphi\right) Y, Z\right)$ is given in [1], where there are defined eleven basic classes $\mathcal{F}_{i}(i=1, \ldots, 11)$. The Levi-Civita connection of g is denoted by ∇. The special class $\mathcal{F}_{0}: F=0$ is contained in each \mathcal{F}_{i}. The following 1 -forms are associated with F :

$$
\theta(\cdot)=g^{i j} F\left(e_{i}, e_{j}, \cdot\right), \quad \theta^{*}(\cdot)=g^{i j} F\left(e_{i}, \varphi e_{j}, \cdot\right), \quad \omega(\cdot)=F(\xi, \xi, \cdot),
$$

where $\left\{e_{i}, \xi\right\}(i=1, \ldots, 2 n)$ is a basis of $T_{p} M$, and $\left(g^{i j}\right)$ is the inverse matrix of $\left(g_{i j}\right)$.
In this paper we consider especially the classes \mathcal{F}_{4} and \mathcal{F}_{5} arise from the main components of F. There are known explicit examples of $\mathcal{F}_{5^{-}}$and $\left(\mathcal{F}_{4} \oplus \mathcal{F}_{5}\right)$-manifolds in

[^0][1]. Moreover, these classes are analogues to the classes of the known α-Sasakian and $\tilde{\alpha}$-Kenmotsu manifolds in the geometry of the almost contact metric manifolds. The considered classes are determined by the conditions
\[

$$
\begin{align*}
& \mathcal{F}_{4}: F(X, Y, Z)=-\frac{\theta(\xi)}{2 n}\{g(\varphi X, \varphi Y) \eta(Z)+g(\varphi X, \varphi Z) \eta(Y)\}, \\
& \mathcal{F}_{5}: F(X, Y, Z)=-\frac{\theta^{*}(\xi)}{2 n}\{g(X, \varphi Y) \eta(Z)+g(X, \varphi Z) \eta(Y)\} \tag{1.1}
\end{align*}
$$
\]

The structural 1-form η is closed on the \mathcal{F}_{i}-manifolds $(i=4,5)$.
An important problem in the differential geometry of such manifolds is the studying of the manifolds with constant totally real sectional curvatures. In this paper we pay attention to the \mathcal{F}_{i}-manifolds $(i=4,5)$ of dimension 5 . This is the boundary dimension for the necessary and sufficient condition \mathcal{F}_{0}-manifold to be with point-wise constant sectional curvatures [7].

The following transformation is called a contact-conformal transformation (1.2) $c: \bar{g}(X, Y)=e^{2 u} \cos 2 v g(X, Y)+e^{2 u} \sin 2 v g(X, \varphi Y)+\left(1-e^{2 u} \cos 2 v\right) \eta(X) \eta(Y)$, where u and v are differentiable functions on M. These transformations form a group denoted by C. The manifolds $(M, \varphi, \xi, \eta, g)$ and $(\bar{M}, \varphi, \xi, \eta, \bar{g})$ are called C-equivalent manifolds [3].

As it is known [3], the subclass $\mathcal{F}_{i}^{0} \subset \mathcal{F}_{i}$ is the class of the C_{i}^{0}-equivalent manifolds to $\mathcal{F}_{0}(i=4,5)$. These subclasses of \mathcal{F}_{i} and these subgroups of C are determined by the conditions:

$$
\begin{array}{ll}
\mathcal{F}_{4}^{0}=\left\{\mathcal{F}_{4} \mid \mathrm{d} \theta=0\right\}, & C_{4}^{0}=\{c \in C \mid \mathrm{d} u=\mathrm{d} v \circ \varphi, \mathrm{~d}(\mathrm{~d} v(\xi))=0\} \\
\mathcal{F}_{5}^{0}=\left\{\mathcal{F}_{5} \mid \mathrm{d} \theta^{*}=0\right\}, & C_{5}^{0}=\{c \in C \mid \mathrm{d} v=-\mathrm{d} u \circ \varphi, \mathrm{~d}(\mathrm{~d} u(\xi))=0\} \tag{1.3}
\end{array}
$$

The corresponding 1-forms of \bar{F} on \bar{M} are

$$
\begin{equation*}
\bar{\theta}=2 n \mathrm{~d} v(\xi) \eta \quad \text { for } i=4 ; \quad \bar{\theta}^{*}=2 n \mathrm{~d} u(\xi) \eta \quad \text { for } i=5 . \tag{1.4}
\end{equation*}
$$

The relations between the corresponding Levi-Civita connections are [4]:

$$
\begin{array}{rlr}
\bar{\nabla}_{X} Y= & \nabla_{X} Y-\mathrm{d} v(\varphi X) \varphi^{2} Y-\mathrm{d} v(\varphi Y) \varphi^{2} X+\mathrm{d} v(X) \varphi Y+\mathrm{d} v(Y) \varphi X \\
& +\left[\varphi \operatorname{grad}(v)-e^{2 u} \sin 2 v \mathrm{~d} v(\xi) \xi\right] g(\varphi X, \varphi Y) & \tag{1.5}\\
& -\left[\operatorname{grad}(v)-\left(1-e^{2 u} \cos 2 v\right) \mathrm{d} v(\xi) \xi\right] g(X, \varphi Y) & \text { for } i=4 ; \\
\bar{\nabla}_{X} Y= & \nabla_{X} Y-\mathrm{d} u(X) \varphi^{2} Y-\mathrm{d} u(Y) \varphi^{2} X-\mathrm{d} u(\varphi X) \varphi Y-\mathrm{d} u(\varphi Y) \varphi X \\
& +\left[\operatorname{grad}(u)-\left(1-e^{2 u} \cos 2 v\right) \mathrm{d} u(\xi) \xi\right] g(\varphi X, \varphi Y) & \\
& +\left[\varphi \operatorname{grad}(u)-e^{2 u} \sin 2 v \mathrm{~d} u(\xi) \xi\right] g(X, \varphi Y) & \text { for } i=5 .
\end{array}
$$

2. Curvature tensors. Let R and \bar{R} be the C-corresponding curvature tensors for ∇ and $\bar{\nabla}$, respectively.

Let \mathcal{R} be the set of all curvature-like tensors with the properties of R :

$$
\begin{gather*}
R(x, y, z, w)=-R(y, x, z, w)=-R(x, y, w, z), \quad \sigma_{x, y, z} R(x, y) z=0 \tag{2.1}\\
\underset{x, y, z}{\sigma}\left(\nabla_{x} R\right)(y, z) w=0 \tag{2.2}
\end{gather*}
$$

The corresponding Ricci tensor and scalar curvatures are denoted respectively by:

$$
\rho(y, z)=g^{i j} R\left(e_{i}, y, z, e_{j}\right), \quad \tau=g^{i j} \rho\left(e_{i}, e_{j}\right), \quad \tau^{*}=\varphi_{k}^{j} g^{i k} \rho\left(e_{i}, e_{j}\right)
$$

where $\left\{e_{i}\right\}_{i=1}^{2 n+1}$ is a basis of $T_{p} M$.
We use the following curvature-like tensors, which are invariant with respect to the structural group. The tensor S is a symmetric and φ-antiinvariant tensor of type $(0,2)$.

$$
\begin{aligned}
& \psi_{1}(S)(x, y, z, u)=g(y, z) S(x, u)-g(x, z) S(y, u)+g(x, u) S(y, z)-g(y, u) S(x, z) \\
& \psi_{2}(S)(x, y, z, u)=\psi_{1}(S)(x, y, \varphi z, \varphi u) \\
& \psi_{3}(S)(x, y, z, u)=-\psi_{1}(S)(x, y, \varphi z, u)-\psi_{1}(S)(x, y, z, \varphi u) \\
& \psi_{4}(S)(x, y, z, u)=\psi_{1}(S)(x, y, \xi, u) \eta(z)+\psi_{1}(S)(x, y, z, \xi) \eta(u) \\
& \psi_{5}(S)(x, y, z, u)=\psi_{1}(S)(x, y, \xi, \varphi u) \eta(z)+\psi_{1}(S)(x, y, \varphi z, \xi) \eta(u)
\end{aligned}
$$

We denote tensors $\pi_{i}=\frac{1}{2} \psi_{i}(g)(i=1,2,3), \pi_{i}=\psi_{i}(g)(i=4,5)$. The tensors $\bar{\psi}_{i}(S)$ and $\bar{\pi}_{i}$ are the corresponding tensors with respect to $\bar{g}(i=1, \ldots, 5)$.

A decomposition of \mathcal{R} over $(V, \varphi, \xi, \eta, g)$ into 20 mutually orthogonal and invariant factors with respect to the structural group $G L(n, C) \cap O(n, n)) \times I$ is obtained in [5]. It is received initially the partial decomposition $\mathcal{R}=h \mathcal{R} \oplus v \mathcal{R} \oplus w \mathcal{R}$ and subsequently the decompositions:

$$
h \mathcal{R}=\omega_{1} \oplus \ldots \oplus \omega_{11}, \quad v \mathcal{R}=v_{1} \oplus \ldots \oplus v_{5}, \quad w \mathcal{R}=w_{1} \oplus \ldots \oplus w_{4}
$$

The characteristic conditions of the factors $\omega_{i}(i=1, \ldots, 11), v_{j}(j=1, \ldots, 5), w_{k}(k=$ $1, \ldots, 4$) are given in [5]. Let us recall [6], an almost contact B-metric manifold is said to be in one of the classes $h \mathcal{R}_{i}, h \mathcal{R}_{i}^{\perp}, v \mathcal{R}_{j}, v \mathcal{R}_{j}^{\perp}, w \mathcal{R}, \omega_{k}, v_{r}, w_{s}$ if R belongs to the corresponding component, where $i=1,2,3 ; j=1,2 ; k=1, \ldots, 11 ; r=1, \ldots, 5$; $s=1, \ldots, 4$.

From the decomposition of \mathcal{R} follows that the 5 -dimensional almost contact B-metric manifold cannot belong to the factors ω_{3} and ω_{4}.

Let $(M, \varphi, \xi, \eta, g)$ be a 5 -dimensional manifold. Moreover, let $k(\alpha ; p), \tilde{k}(\alpha ; p)$ be the scalar curvatures of a nondegenerate totally real orthogonal to ξ section α (i.e. $\alpha \perp \varphi \alpha$, $\alpha \perp \xi)$ in $T_{p} M, p \in M$. In this connection let us recall the following

Theorem $2.1([7])$. Let $(M, \varphi, \xi, \eta, g)(\operatorname{dim} M \geq 5)$ be an $\mathcal{F}_{0}-m a n i f o l d . ~ M$ is of constant totally real sectional curvatures $\nu(p)=k(\alpha ; p)$ and $\tilde{\nu}(p)=\tilde{k}(\alpha ; p)$ if and only if

$$
R=\nu\left[\pi_{1}-\pi_{2}-\pi_{4}\right]+\tilde{\nu}\left[\pi_{3}+\pi_{5}\right]
$$

Both functions ν and $\tilde{\nu}$ are constant if M is connected and $\operatorname{dim} M \geq 7$.

We have in mind that R satisfies the Kähler property on every \mathcal{F}_{0}-manifold

$$
\begin{equation*}
R(X, Y, \varphi Z, \varphi W)=-R(X, Y, Z, W) \tag{2.3}
\end{equation*}
$$

According to the decomposition of \mathcal{R} in [5] we obtain the equivalence of the R 's expression in the last theorem and the condition $R \in \omega_{1} \oplus \omega_{2}$ for dimension 5 . Then we have

Theorem 2.2 Every 5-dimensional \mathcal{F}_{0}-manifold has point-wise constant sectional curvatures $\nu(p)=k(\alpha ; p), \tilde{\nu}(p)=\tilde{k}(\alpha ; p)$ and it belongs to $\omega_{1} \oplus \omega_{2}$.

Proof. Let $\left\{e_{1}, e_{2}, \varphi e_{1}, \varphi e_{2}, \xi\right\}$ be a φ-basis of $T_{p} M$. Then $x=x^{i} e_{i}+x^{i+2} \varphi e_{i}+\eta(x) \xi$, ($i=1,2$). Using the properties (2.1) and (2.3) of $R(x, y, z, w)$ we compute immediately

$$
R=\nu\left[\pi_{1}-\pi_{2}-\pi_{4}\right]+\tilde{\nu}\left[\pi_{3}+\pi_{5}\right], \quad \nu=R\left(e_{1}, e_{2}, e_{2}, e_{1}\right), \tilde{\nu}=R\left(e_{1}, e_{2}, e_{2}, \varphi e_{1}\right)
$$

Then according Theorem 2.1. we establish the point-wise constancy for α.
Immediately it follows that $R \in \omega_{1} \oplus \omega_{2}$ and consequently $M \in \omega_{1} \oplus \omega_{2}$.
Lemma 2.3. Let $(\bar{M}, \varphi, \xi, \eta, \bar{g})$ be a 5-dimensional C_{i}^{0}-equivalent \mathcal{F}_{i}^{0}-manifold to an \mathcal{F}_{0}-manifold with curvatures $\nu=\nu(p), \tilde{\nu}=\tilde{\nu}(p)$ of $\alpha(i=4,5)$. The curvature tensor on \bar{M} has the following form

$$
\begin{aligned}
\bar{R}= & -e^{-2 u} \cos 2 v\left[\bar{\psi}_{1}-\bar{\psi}_{2}-\bar{\psi}_{4}\right](S)-e^{-2 u} \sin 2 v\left[\bar{\psi}_{3}+\bar{\psi}_{5}\right](S)-\bar{A} \\
& +e^{-4 u}\{\nu \cos 4 v-\tilde{\nu} \sin 4 v\}\left[\bar{\pi}_{1}-\bar{\pi}_{2}-\bar{\pi}_{4}\right]+e^{-4 u}\{\nu \sin 4 v+\tilde{\nu} \cos 4 v\}\left[\bar{\pi}_{3}+\bar{\pi}_{5}\right],
\end{aligned}
$$

where

$$
\begin{aligned}
& S(Y, Z)=\left(\nabla_{Y} \sigma\right) Z+\sigma(\varphi Y) \sigma(\varphi Z)-\sigma(Y) \sigma(Z)-\frac{1}{2} \sigma(s) g(\varphi Y, \varphi Z)-\frac{1}{2} \sigma(\varphi s) g(Y, \varphi Z), \\
& \operatorname{tr} S=g^{i j} S_{i j}=\Delta u, \quad \operatorname{tr}^{*} S=\varphi_{k}^{j} g^{i k} S_{i j}=-\Delta v, \quad \Delta=-\frac{\partial^{2}}{\partial x_{1}^{2}}-\frac{\partial^{2}}{\partial x_{2}^{2}}+\frac{\partial^{2}}{\partial x_{3}^{2}}+\frac{\partial^{2}}{\partial x_{4}^{2}}+\frac{\partial^{2}}{\partial x_{5}^{2}}
\end{aligned}
$$

is the Laplacian and we have for \bar{A} and $\sigma=g(s, \cdot)$, respectively,
a) for $i=4: \quad \bar{A}=(\mathrm{d} v(\xi))^{2}\left[\bar{\pi}_{2}-\bar{\pi}_{4}\right], \quad \sigma=\mathrm{d} v \circ \varphi$;
b) for $i=5: \quad \bar{A}=(\mathrm{d} u(\xi))^{2} \bar{\pi}_{1}, \quad \quad \sigma=-\mathrm{d} u \circ \varphi^{2}$.

Then we obtain the corresponding Ricci tensor and scalar curvatures, respectively:

$$
\begin{align*}
\bar{\rho}= & {\left[-e^{-2 u}(\Delta u \cos 2 v+\Delta v \sin 2 v)+2 e^{-4 u}(\nu \cos 4 v-\tilde{\nu} \sin 4 v)\right] \bar{g} } \\
& +\left[e^{-2 u}(\Delta u \sin 2 v-\Delta v \cos 2 v)-2 e^{-4 u}(\nu \sin 4 v+\tilde{\nu} \cos 4 v)\right] \tilde{\tilde{g}} \\
& +\left[-e^{-2 u}(\Delta u(\cos 2 v-\sin 2 v)+\Delta v(\cos 2 v+\sin 2 v))\right. \tag{2.4}\\
& \left.-2 e^{-4 u}((\nu-\tilde{\nu}) \cos 4 v-(\nu+\tilde{\nu}) \sin 4 v)\right] \eta \otimes \eta-\bar{\rho}(\bar{A}) \\
\bar{\tau}= & -4\left[e^{-2 u}(\Delta u \cos 2 v+\Delta v \sin 2 v)-2 e^{-4 u}(\nu \cos 4 v-\tilde{\nu} \sin 4 v)\right]-\bar{\tau}(\bar{A}), \\
\bar{\tau}^{*}= & -4\left[e^{-2 u}(\Delta u \sin 2 v-\Delta v \cos 2 v)-2 e^{-4 u}(\nu \sin 4 v+\tilde{\nu} \cos 4 v)\right]
\end{align*}
$$

where

$$
\begin{array}{lll}
\bar{\rho}(\bar{A})=-4(\mathrm{~d} v(\xi))^{2} \eta \otimes \eta, & \bar{\tau}(\bar{A})=-4(\mathrm{~d} v(\xi))^{2} & \text { for } i=4 ; \\
\bar{\rho}(\bar{A})=4(\mathrm{~d} u(\xi))^{2} \bar{g}, & \bar{\tau}(\bar{A})=20(\mathrm{~d} u(\xi))^{2} & \text { for } i=5 .
\end{array}
$$

The obtained \bar{R} as a curvature tensor has to satisfy the second Bianchi identity (2.2). As a consequence it is known the following corollary of the mentioned identity in local
coordinates

$$
\begin{equation*}
\nabla_{i} \tau=2 \nabla_{j} \rho_{i}^{j} \tag{2.5}
\end{equation*}
$$

Applying (2.5) for the tensors from (2.4) in the case for $i=4$ we get $\mathrm{d} v(\xi)=0$. This equality implies the following conclusion.

Theorem 2.4 The 5-dimensional manifold $(\bar{M}, \varphi, \xi, \eta, \bar{g})=C_{4}^{0}(M, \varphi, \xi, \eta, g)$ is an \mathcal{F}_{0}-manifold, i.e. it is not possible to be obtained nontrivial 5-dimensional \mathcal{F}_{4}^{0}-manifold by C-transformation.

In the same way (when $i=5$), we get the condition $v=\frac{1}{4} \arctan (\nu / \tilde{\nu})$ and consequently $\Delta u=\Delta v=0$ for the functions determining the C_{5}^{0}-transformation and then we receive

Lemma 2.5 There are valid the following equalities for a 5-dimensional \mathcal{F}_{5}^{0}-manifold which is C_{4}^{0}-equivalent to an \mathcal{F}_{0}-manifold:

$$
\begin{aligned}
\bar{R} & =-\left(\mathrm{d} u(\xi)^{2} \bar{\pi}_{1}+\tilde{\varepsilon} e^{-4 u} \sqrt{\nu^{2}+\tilde{\nu}^{2}}\left[\bar{\pi}_{3}+\bar{\pi}_{5}\right],\right. \\
\bar{\rho} & =-4(\mathrm{~d} u(\xi))^{2} \bar{g}-2 \tilde{\varepsilon} e^{-4 u} \sqrt{\nu^{2}+\tilde{\nu}^{2}} \bar{g}^{*} \\
\bar{\tau} & =-20(\mathrm{~d} u(\xi))^{2}, \quad \bar{\tau}^{*}=8 \tilde{\varepsilon} e^{-4 u} \sqrt{\nu^{2}+\tilde{\nu}^{2}} .
\end{aligned}
$$

where $\tilde{\varepsilon}=\operatorname{sgn}(\tilde{\nu}), \bar{g}^{*}=\bar{g}(\cdot, \varphi \cdot)$, and the functions $\nu, \tilde{\nu}, \mathrm{d} u(\xi) \neq 0$ are point-wise constant.

Hence, we give a geometric characterization of such manifolds in the next assertions.
Theorem 2.6 Every 5 -dimensional \mathcal{F}_{5}^{0}-manifold \bar{M} is almost Einsteinian with negative point-wise constant scalar curvatures and it belongs to $\omega_{1} \oplus \omega_{2} \oplus \omega_{5} \oplus \omega_{6} \oplus \omega_{7} \oplus \omega_{8} \oplus \omega_{1}$.

Theorem 2.7 The 5-dimensional \mathcal{F}_{5}^{0}-manifold \bar{M} is Einsteinian if and only if its C_{5}^{0}-equivalent manifold M is a flat \mathcal{F}_{0}-manifold.

In the last case the curvature characteristics of an Einsteinian \bar{M} are:

$$
\bar{R}=-(\mathrm{d} u(\xi))^{2} \bar{\pi}_{1}, \quad \bar{\rho}=-4(\mathrm{~d} u(\xi))^{2} \bar{g}, \quad \bar{\tau}=-20(\mathrm{~d} u(\xi))^{2}, \quad \bar{\tau}^{*}=0
$$

Therefore we finally receive
Theorem 2.8 The \mathcal{F}_{5}^{0}-manifold \bar{M} has constant sectional curvatures if and only if it is Einsteinian.

REFERENCES

[1] G. Ganchev, V. Mihova, K. Gribachev. Almost contact manifolds with B-metric. Math. Balk., 7 (1993), No 3-4, 261-276.
[2] M. Manev. Properties of curvatures tensors on almost contact manifolds with B-metric. Proc. of Jubilee Sci. Session of The V. Levsky Higher Military School, V. Tarnovo, 27 (1993), 221-227.
[3] M. Manev, K. Gribachev. Contactly conformal transformations of almost contact manifolds with B-metric. Serdica Bulg. Math. Publ., 19 (1993), 287-299.
[4] M. Manev, K. Gribachev. Contactly invariant tensors on almost contact manifolds with B-metric. Serdica Bulg. Math. Publ., 20 (1994), 133-147.
[5] G. Nakova. Curvature tensors on almost contact manifolds with B-metric. Perspectives of Complex Analysis, Differential Geometry and Mathematical Physics (Eds S. Dimiev, K. Sekigawa) World Scientific, Singapore (to appear).
[6] G. Nakova. Curvature tensors in the basic classes of real isotropic hypersurfaces of a Kaehler manifold with B-metric. Perspectives of Complex Analysis, Differential Geometry and Mathematical Physics (Eds S. Dimiev, K. Sekigawa) World Scientific, Singapore (to appear).
[7] G. Nakova, K. Gribachev. Submanifolds of some almost contact manifolds with B-metric with codimension two, I. Math. Balk., 11 (1997), 255-267.

G. Nakova
Department of Algebra and Geometry University of Veliko Tirnovo
1, Theodosij Tirnovsky Str.
Veliko Tirnovo 5000, Bulgaria
e-mail: gnakova@yahoo.com

M. Manev
Faculty of Mathematics and Informatics University of Plovdiv
236, Bulgaria Blvd.
Plovdiv 4004, Bulgaria
e-mail: mmanev@pu.acad.bg

КРИВИННИ ТЕНЗОРИ ВЪРХУ НЯКОИ ПЕТМЕРНИ ПОЧТИ КОНТАКТНИ -МЕТРИЧНИ МНОГООБРАЗИЯ

Галя В. Накова, Манчо Хр. Манев

Разгледани са 5-мерни почти контактни В-метрични многообразия от два основни класа. Доказано е, че всяко многообразие от сечението на тези класове е с точково постоянни секционни кривини. Изучен е кривинният тензор на многообразията от тези два класа и са дадени техни геометрични характеристики.

[^0]: ${ }^{*}$ Mathematics Subject Classification (2000): Primary 53D15, 53C15, 53C50; Secondary 70G45, 53C25.
 Key words: almost contact manifold, indefinite metric, curvature, almost Einsteinian, five-dimensional, conformal transformations.

