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CURVATURE TENSORS ON SOME FIVE-DIMENSIONAL
ALMOST CONTACT B-METRIC MANIFOLDS"

Galia V. Nakova, Mancho H. Manev

There are considered 5-dimensional almost contact B-metric manifolds of two basic
classes. It is proved that every manifold from the section of these classes is with
point-wise constant sectional curvatures. It is studied the curvature tensor of the
manifolds of these two classes and some their curvature characteristics are given.

1. Preliminaries. Let (M, p,£,n,9) be a (2n + 1)-dimensional almost contact
manifold with B-metric, i.e. (¢,£,n) is an almost contact structure and ¢ is a metric on
M such that:

P =—id+ne& nE) =1 gle,e)=—g(,) +n()n().
Both metrics g and its associated g : g(-,-) = g(-, ) + n(-)n(-) are indefinite metrics of
signature (n + 1,n) [1].

Further, X,Y, Z, W will stand for arbitrary differentiable vector fields on M (i.e. X,
Y, Z, W e X(M)), and z,y, z, w — arbitrary vectors in the tangential space T, M to M
at some point p € M.

Let (V,¢,&,7,9) be a (2n+ 1)-dimensional vector space with almost contact B-metric
structure. Let us denote the subspace hV := kern of V, and the restrictions of g and ¢ on
hV by the same letters. It is obtained a 2n-dimensional vector space hV with a complex
structure ¢ and B-metric g. Let {e1,...,en, pe1,...,pen, &} be an adapted ¢-basis of
Va where 79(61'7 ej) = g(cpeia 506]') = 51']'; g(eia 506]') - 07 77(61) - 0, Za] € {1a ) Tl}

A decomposition of the class of the almost contact manifolds with B-metric with
respect to the tensor F': F(X,Y,Z) = g((Vxyp)Y,Z) is given in [1], where there are
defined eleven basic classes F; (i = 1,...,11). The Levi-Civita connection of g is denoted
by V. The special class Fy: F' = 0 is contained in each F;. The following 1-forms are
associated with F"

9() :gUF(eiaeja')v 9*() :g”F(eiacpeja')a w() :F(gaga')v
where {e;,£} (i =1,...,2n) is a basis of T,M, and (¢*/) is the inverse matrix of (g;;).
In this paper we consider especially the classes F4 and F5 arise from the main com-
ponents of F'. There are known explicit examples of F5- and (Fy @ Fs5)-manifolds in
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[1]. Moreover, these classes are analogues to the classes of the known a-Sasakian and
a-Kenmotsu manifolds in the geometry of the almost contact metric manifolds. The
considered classes are determined by the conditions
) Fi: F(X.Y.2) = =52 {g(oX. oY n(Z) + 90X, pZ)n(Y)}
. o
Fs: F(X,Y, 2) = =53 {g(X, 0¥ n(2) + g(X. 0Zm(Y)} .

The structural 1-form 7 is closed on the F;-manifolds (i = 4, 5).

An important problem in the differential geometry of such manifolds is the studying
of the manifolds with constant totally real sectional curvatures. In this paper we pay
attention to the F;-manifolds (i = 4,5) of dimension 5. This is the boundary dimension
for the necessary and sufficient condition Fp-manifold to be with point-wise constant
sectional curvatures [7].

The following transformation is called a contact-conformal transformation
(1.2) ¢:g(X,Y) = e*cos2vg(X,Y) + e*sin 2vg(X, pY) + (1 — €2 cos 2v)n(X)n(Y),
where u and v are differentiable functions on M. These transformations form a group

denoted by C. The manifolds (M, ,¢,n,g) and (M, ,&,n,G) are called C-equivalent
manifolds [3].

As it is known [3], the subclass FP C F; is the class of the CP-equivalent manifolds
to Fo (i = 4,5). These subclasses of F; and these subgroups of C' are determined by the
conditions:

13) F)={F4|do =0}, C)={ceC|du=dvoy, d(dv()) =0},
1.3
Fo={Fs|do* =0}, Cl={ceC|dv=—duoyp, ddu(f))=0}.

The corresponding 1-forms of F' on M are

(1.4) 0 = 2ndv(&)n fori = 4; 0" =2ndu(¢)n fori=->5.
The relations between the corresponding Levi-Civita connections are [4]:
VxY =VxY — dv(pX)p?Y — dv(Y)p? X + do(X)eY + dv(Y)eX

(1.5) + [pgrad(v) — e** sin 2vdv(€)E] g( X, @Y)
— [grad(v) — (1 — €** cos 2v)dv(§)¢] g(X, ¢Y) for i = 4;

VxY = VxY — du(X)?Y — du(Y)p? X — du(eX)pY — du(pY)eX
(1.6) + [grad(u) — (1 — e** cos 2v)du(€)E] g( X, ¢Y)
+ [pgrad(u) — e2*sin 2vdu()¢] g(X, ¢Y) for i = 5.

2. Curvature tensors. Let R and R be the C-corresponding curvature tensors for
V and V, respectively.
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Let R be the set of all curvature-like tensors with the properties of R:

(21) R(:L'a Y, Z,’LU) = *R(y,l‘, Z,’LU) = —R(x,y, w, Z)a 0- R(:c,y)z =0,

z,Y,z

(2.2) O (V.R) (y,z)w = 0.
T,z
The corresponding Ricci tensor and scalar curvatures are denoted respectively by:
p(yaz) :gin(eiay7Z7ej)a T:gijp(eiaej)7 T* :(plljggikp(eiaej);
where {e;}7" 1! is a basis of T, M.

We use the following curvature-like tensors, which are invariant with respect to the
structural group. The tensor S is a symmetric and ¢-antiinvariant tensor of type (0, 2).

V1(9)(@,y, z,u) = g(y, 2)S(z,u) — g(2,2)S(y, u) + g(z, u)S(y, 2) — g(y,u)S(z, 2),
V2(S)(z,y, 2, u
¥3(S)(z,y, 2, u
Va(S)(z,y,2,u

$1(9) (@, y, 2, pu),
71/}1( )(xvyﬂsazau) ( )(1’ y,z,cpu),

)=
)=
) w( )(1’ y7§7 ) ( )+w1( )(mﬂyazaf)n(u)a
)=

Vs () (@, y, z,u) = 1(S) (@, y, & pun(z )+1/)1( )z, y, 02, §)n(u).
We denote tensors m; = $15(g) (i = 1,2,3),m; = ¥;(g) (i = 4,5). The tensors ¢;(S) and
7; are the corresponding tensors with respect tog (i=1,...,5).

A decomposition of R over (V,¢,&,7,g) into 20 mutually orthogonal and invariant
factors with respect to the structural group GL(n,C)NO(n,n)) x I is obtained in [5]. Tt
is received initially the partial decomposition R = hR & vR & wR and subsequently the
decompositions:

AR=w1®...0wi1, "R=v1P...0v5, wR=wd...H ws.
The characteristic conditions of the factors w; (i = 1,...,11), v; (j = 1,...,5), wg (k =
1,...,4) are given in [5]. Let us recall [6], an almost contact B-metric manifold is
said to be in one of the classes hR;, hR , UR], UR , WR, wk, v, w, if R belongs to
the corresponding component, where ¢ = 1,2,3; j = 1,2; k= 1,...,11; r = 1,...,5;
s=1,...,4.

From the decomposition of R follows that the 5-dimensional almost contact B-metric
manifold cannot belong to the factors w3 and wy.

Let (M, ¢,£,1n,9) be a 5-dimensional manifold. Moreover, let k(a;p), l;(a;p) be the
scalar curvatures of a nondegenerate totally real orthogonal to £ section a (i.e. alpa,
al&)in T,M, p € M. In this connection let us recall the following

Theorem 2.1 ([7]). Let (M,,&,n,g) (dimM > 5) be an Fo-manifold. M is of
constant totally real sectional curvatures v(p) = k(c;p) and v(p) = k(a; p) if and only if

R=v|m —my — m4] + U [ms + 5] .

Both functions v and U are constant if M is connected and dim M > 7.
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We have in mind that R satisfies the Kéhler property on every Fy-manifold
(2.3) R(X.Y,0Z,oW) = —R(X,Y, Z,W).
According to the decomposition of R in [5] we obtain the equivalence of the R’s expression
in the last theorem and the condition R € wi @ wsy for dimension 5. Then we have

Theorem 2.2 FEvery 5-dimensional Fo-manifold has point-wise constant sectional
curvatures v(p) = k(a; p), 7(p) = k(a;p) and it belongs to wi & wa.

Proof. Let {e1, e2, pe1, pes, £} be a p-basis of T, M. Then z = zle; + 22 pe; +n(x)E,
(¢ = 1,2). Using the properties (2.1) and (2.3) of R(x,y, z, w) we compute immediately

R=v[m —m —m|+0[ms+7s5], v=R(ei, ez ez e1), = R(er, ez, ea, pe1).

Then according Theorem 2.1. we establish the point-wise constancy for a.

Immediately it follows that R € w; @ ws and consequently M € wy @ ws. O

Lemma 2.3. Let (M, ¢,£,1,9) be a 5-dimensional C?-equivalent F?-manifold to an
Fo-manifold with curvatures v = v(p), v = v(p) of a (i = 4,5). The curvature tensor
on M has the following form

R=—e % cos2v [y — Yo — 4] (5) — e 2" sin2v [1h3 + 95| (S) — A

+e M {vcosdv — Usindv} [71 — 7o — T4] + e 4 {vsindv + v cosdv} [A3 + 75),

where
S(Y,2) = (Vyo) Z +o(pY)o(pZ) — o(Y)a(Z) = 50(s)g(¢Y,0Z) — 50(ps)g(Y, 0 Z),

.. - . 2 2 2 2 2
tr S =g¥S;; =Au, tr*S=¢lg*S;; =—-Av, A= 76‘9—@% - aa_xg + a%g + 36_583 + 5375
is the Laplacian and we have for A and o = g(s,-), respectively,
a) fori=4: A= (dw(€)’[72—7], o=dvogy;
b) fori=5: A = (du(€))* 7, o= —duo .

Then we obtain the corresponding Ricci tensor and scalar curvatures, respectively:
p= [—e 2"(Aucos2v + Avsin2v) + 2e 4 (v cosdv — Usin4v)] g

+ [e72“(Ausin2v — Avcos 2v) — 24 (v sindv + ¥ cos 4v)] g
+ [—e72*(Au(cos 2v — sin 2v) + Av(cos 2v + sin 2v))
—2e " ((v — p)cosdv — (v + D) sindv) | n @ n — p(A),
7 = —4 [e7?"(Aucos 2v 4+ Avsin 2v) — 24 (v cos dv — Usin 4v)| — 7(A),
7 = —4 [e7?"(Ausin 2v — Avcos 2v) — 2~ (vsindv + D cos 4v)] .
where  p(A) = —4(do(€)2n @, () = —4(dv(€)? for i = 4
p(A) = 4(Au(©)?g,  7(A) =20(du()? fori=5.

The obtained R as a curvature tensor has to satisfy the second Bianchi identity (2.2).
As a consequence it is known the following corollary of the mentioned identity in local
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coordinates
(2.5) Vit = 2V;p).

Applying (2.5) for the tensors from (2.4) in the case for i = 4 we get dv(€) = 0. This
equality implies the following conclusion.

Theorem 2.4 The 5-dimensional manifold (M, p,&,1,5) = CY(M,p,&,n,9) is an
Fo-manifold, i.e. it is not possible to be obtained nontrivial 5-dimensional F3-manifold
by C-transformation.

In the same way (when i = 5), we get the condition v = % arctan(v/7’) and conse-

quently Au = Av = 0 for the functions determining the C2-transformation and then we
receive

Lemma 2.5 There are valid the following equalities for a 5-dimensional F2-manifold
which is C3-equivalent to an Fo-manifold:

R = —(du(¢)?*m + ée~ 412 + 02 [73 + 75),
p = —4(du(§))*g — 28e~ "2 + 12g",

7= —20(du(¢))?, 7 = 8e1\/12 4 2.
where € = sgn(v), g* = (-, ), and the functions v, v, du(§) # 0 are point-wise
constant.

Hence, we give a geometric characterization of such manifolds in the next assertions.

Theorem 2.6 Every 5-dimensional F9-manifold M is almost Einsteinian with nega-
tive point-wise constant scalar curvatures and it belongs to wy PwsBwsPweBwrBwsPws -

Theorem 2.7 The 5-dimensional F9-manifold M is Einsteinian if and only if its
CY-equivalent manifold M is a flat Fo-manifold.

In the last case the curvature characteristics of an Einsteinian M are:
R=—(du(§))’m,  p=—4(du())’g,  7=-20(du(¢))?*, 7 =0.
Therefore we finally receive

Theorem 2.8 The F9-manifold M has constant sectional curvatures if and only if
it is Einsteinian.
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KPUBVMHHUN TEH30PU BbPXY HAKOU ITETMEPHN
IMO4YTN KOHTAKTHU -METPUYHN MHOI'OOBPA3UA

T'ansa B. HakoBa, Manvo Xp. Manes

Pa3FJIe,ILa,HI/I ca 5—MepHI/I IIOYTHU KOHTAKTHH B—MeTpI/I‘IHI/I MHOFOO6pa31/IH OT JBa OCHOB-
HH KJIaca. ,D;OKaBa,HO €, 9e€ BCAKO MHOFOO6pa3I/Ie OT CE€YECHHETO Ha TEe3U KJiaCOBE € C
TOYKOBO IIOCTOAHHU CEKIIMOHHU KPUBUHU. I/Isyqu € KPUBUHHUAT TE€H30PD Ha MHOI'O-
06p33HHTa OT Te3U JIBa KJlaCa U Ca JaJIeHU TEeXHU I'eOMETPUYIHU XapaKTEePUCTUKU.
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