MATEMATИKA И MATEMATИЧЕСКО ОБРАЗОВАНИЕ, 2003 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2003 Proceedings of the Thirty Second Spring Conference of the Union of Bulgarian Mathematicians Sunny Beach, April 5–8, 2003

CURVATURE TENSORS ON SOME FIVE–DIMENSIONAL ALMOST CONTACT B-METRIC MANIFOLDS^{*}

Galia V. Nakova, Mancho H. Manev

There are considered 5-dimensional almost contact B-metric manifolds of two basic classes. It is proved that every manifold from the section of these classes is with point-wise constant sectional curvatures. It is studied the curvature tensor of the manifolds of these two classes and some their curvature characteristics are given.

1. Preliminaries. Let $(M, \varphi, \xi, \eta, g)$ be a (2n + 1)-dimensional almost contact manifold with *B*-metric, i.e. (φ, ξ, η) is an almost contact structure and *g* is a metric on *M* such that:

$$\varphi^2 = -id + \eta \otimes \xi; \quad \eta(\xi) = 1; \quad g(\varphi \cdot, \varphi \cdot) = -g(\cdot, \cdot) + \eta(\cdot)\eta(\cdot).$$

Both metrics g and its associated \tilde{g} : $\tilde{g}(\cdot, \cdot) = g(\cdot, \varphi \cdot) + \eta(\cdot)\eta(\cdot)$ are indefinite metrics of signature (n + 1, n) [1].

Further, X, Y, Z, W will stand for arbitrary differentiable vector fields on M (i.e. X, $Y, Z, W \in \mathfrak{X}(M)$), and x, y, z, w – arbitrary vectors in the tangential space T_pM to M at some point $p \in M$.

Let $(V, \varphi, \xi, \eta, g)$ be a (2n+1)-dimensional vector space with almost contact *B*-metric structure. Let us denote the subspace $hV := \ker \eta$ of *V*, and the restrictions of *g* and φ on hV by the same letters. It is obtained a 2*n*-dimensional vector space hV with a complex structure φ and *B*-metric *g*. Let $\{e_1, \ldots, e_n, \varphi e_1, \ldots, \varphi e_n, \xi\}$ be an adapted φ -basis of *V*, where $-g(e_i, e_j) = g(\varphi e_i, \varphi e_j) = \delta_{ij}, g(e_i, \varphi e_j) = 0, \eta(e_i) = 0; i, j \in \{1, \ldots, n\}.$

A decomposition of the class of the almost contact manifolds with *B*-metric with respect to the tensor $F : F(X,Y,Z) = g((\nabla_X \varphi)Y,Z)$ is given in [1], where there are defined eleven basic classes \mathcal{F}_i (i = 1, ..., 11). The Levi-Civita connection of g is denoted by ∇ . The special class \mathcal{F}_0 : F = 0 is contained in each \mathcal{F}_i . The following 1-forms are associated with F:

$$\theta(\cdot) = g^{ij}F(e_i, e_j, \cdot), \quad \theta^*(\cdot) = g^{ij}F(e_i, \varphi e_j, \cdot), \quad \omega(\cdot) = F(\xi, \xi, \cdot),$$

where $\{e_i,\xi\}$ (i = 1, ..., 2n) is a basis of T_pM , and (g^{ij}) is the inverse matrix of (g_{ij}) .

In this paper we consider especially the classes \mathcal{F}_4 and \mathcal{F}_5 arise from the main components of F. There are known explicit examples of \mathcal{F}_5 - and $(\mathcal{F}_4 \oplus \mathcal{F}_5)$ -manifolds in

^{*}Mathematics Subject Classification (2000): Primary 53D15, 53C15, 53C50; Secondary 70G45, 53C25.

Key words: almost contact manifold, indefinite metric, curvature, almost Einsteinian, five-dimensional, conformal transformations.

[1]. Moreover, these classes are analogues to the classes of the known α -Sasakian and $\tilde{\alpha}$ -Kenmotsu manifolds in the geometry of the almost contact metric manifolds. The considered classes are determined by the conditions

(1.1)
$$\mathcal{F}_4: F(X, Y, Z) = -\frac{\theta(\xi)}{2n} \left\{ g(\varphi X, \varphi Y) \eta(Z) + g(\varphi X, \varphi Z) \eta(Y) \right\},$$

 $\mathcal{F}_5: F(X, Y, Z) = -\frac{\theta^*(\xi)}{2n} \left\{ g(X, \varphi Y) \eta(Z) + g(X, \varphi Z) \eta(Y) \right\}.$ The structural 1-form η is closed on the \mathcal{F}_i -manifolds (i = 4, 5).

An important problem in the differential geometry of such manifolds is the studying of the manifolds with constant totally real sectional curvatures. In this paper we pay attention to the \mathcal{F}_i -manifolds (i = 4, 5) of dimension 5. This is the boundary dimension for the necessary and sufficient condition \mathcal{F}_0 -manifold to be with point-wise constant sectional curvatures [7].

The following transformation is called a contact-conformal transformation (1.2) $c: \bar{g}(X,Y) = e^{2u} \cos 2vg(X,Y) + e^{2u} \sin 2vg(X,\varphi Y) + (1 - e^{2u} \cos 2v)\eta(X)\eta(Y)$, where u and v are differentiable functions on M. These transformations form a group denoted by C. The manifolds (M,φ,ξ,η,g) and $(\bar{M},\varphi,\xi,\eta,\bar{g})$ are called C-equivalent manifolds [3].

As it is known [3], the subclass $\mathcal{F}_i^0 \subset \mathcal{F}_i$ is the class of the C_i^0 -equivalent manifolds to \mathcal{F}_0 (i = 4, 5). These subclasses of \mathcal{F}_i and these subgroups of C are determined by the conditions:

(1.3)
$$\begin{aligned} \mathcal{F}_4^0 &= \{\mathcal{F}_4 \mid d\theta = 0\}, \qquad C_4^0 = \{c \in C \mid du = dv \circ \varphi, \ d(dv(\xi)) = 0\}, \\ \mathcal{F}_5^0 &= \{\mathcal{F}_5 \mid d\theta^* = 0\}, \qquad C_5^0 = \{c \in C \mid dv = -du \circ \varphi, \ d(du(\xi)) = 0\}. \end{aligned}$$

The corresponding 1-forms of \bar{F} on \bar{M} are

(1.4) $\bar{\theta} = 2ndv(\xi)\eta$ for i = 4; $\bar{\theta}^* = 2ndu(\xi)\eta$ for i = 5. The relations between the corresponding Levi-Civita connections are [4]: $\bar{\nabla}_X Y = \nabla_X Y - dv(\varphi X)\varphi^2 Y - dv(\varphi Y)\varphi^2 X + dv(X)\varphi Y + dv(Y)\varphi X$

(1.5)
$$+ \left[\varphi \operatorname{grad}(v) - e^{2u} \sin 2v \operatorname{d} v(\xi) \xi\right] g(\varphi X, \varphi Y)$$
$$- \left[\operatorname{grad}(v) - (1 - e^{2u} \cos 2v) \operatorname{d} v(\xi) \xi\right] g(X, \varphi Y) \qquad \text{for } i = 4;$$

(1.6)

$$\bar{\nabla}_X Y = \nabla_X Y - \mathrm{d}u(X)\varphi^2 Y - \mathrm{d}u(Y)\varphi^2 X - \mathrm{d}u(\varphi X)\varphi Y - \mathrm{d}u(\varphi Y)\varphi X \\
+ \left[\mathrm{grad}(u) - (1 - e^{2u}\cos 2v)\mathrm{d}u(\xi)\xi\right]g(\varphi X,\varphi Y) \\
+ \left[\varphi\mathrm{grad}(u) - e^{2u}\sin 2v\mathrm{d}u(\xi)\xi\right]g(X,\varphi Y) \quad \text{for } i = 5.$$

2. Curvature tensors. Let R and \overline{R} be the *C*-corresponding curvature tensors for ∇ and $\overline{\nabla}$, respectively.

193

Let \mathcal{R} be the set of all curvature-like tensors with the properties of R:

(2.1)
$$R(x, y, z, w) = -R(y, x, z, w) = -R(x, y, w, z), \quad \bigcup_{x, y, z} R(x, y)z = 0,$$

The corresponding Ricci tensor and scalar curvatures are denoted respectively by:

$$\begin{split} \rho(y,z) &= g^{ij} R(e_i,y,z,e_j), \qquad \tau = g^{ij} \rho(e_i,e_j), \qquad \tau^* = \varphi_k^j g^{ik} \rho(e_i,e_j), \end{split}$$
 where $\{e_i\}_{i=1}^{2n+1}$ is a basis of $T_p M.$

We use the following curvature-like tensors, which are invariant with respect to the structural group. The tensor S is a symmetric and φ -antiinvariant tensor of type (0, 2).

$$\begin{split} \psi_1(S)(x, y, z, u) &= g(y, z)S(x, u) - g(x, z)S(y, u) + g(x, u)S(y, z) - g(y, u)S(x, z), \\ \psi_2(S)(x, y, z, u) &= \psi_1(S)(x, y, \varphi z, \varphi u), \\ \psi_3(S)(x, y, z, u) &= -\psi_1(S)(x, y, \varphi z, u) - \psi_1(S)(x, y, z, \varphi u), \\ \psi_4(S)(x, y, z, u) &= \psi_1(S)(x, y, \xi, u)\eta(z) + \psi_1(S)(x, y, z, \xi)\eta(u), \\ \psi_5(S)(x, y, z, u) &= \psi_1(S)(x, y, \xi, \varphi u)\eta(z) + \psi_1(S)(x, y, \varphi z, \xi)\eta(u). \end{split}$$

We denote tensors $\pi_i = \frac{1}{2}\psi_i(g)$ $(i = 1, 2, 3), \pi_i = \psi_i(g)$ (i = 4, 5). The tensors $\bar{\psi}_i(S)$ and $\bar{\pi}_i$ are the corresponding tensors with respect to \bar{g} (i = 1, ..., 5).

A decomposition of \mathcal{R} over $(V, \varphi, \xi, \eta, g)$ into 20 mutually orthogonal and invariant factors with respect to the structural group $GL(n, C) \cap O(n, n)) \times I$ is obtained in [5]. It is received initially the partial decomposition $\mathcal{R} = h\mathcal{R} \oplus v\mathcal{R} \oplus w\mathcal{R}$ and subsequently the decompositions:

$$h\mathcal{R} = \omega_1 \oplus \ldots \oplus \omega_{11}, \quad v\mathcal{R} = v_1 \oplus \ldots \oplus v_5, \quad w\mathcal{R} = w_1 \oplus \ldots \oplus w_4.$$

The characteristic conditions of the factors ω_i (i = 1, ..., 11), v_j (j = 1, ..., 5), w_k (k = 1, ..., 4) are given in [5]. Let us recall [6], an almost contact *B*-metric manifold is said to be in one of the classes $h\mathcal{R}_i$, $h\mathcal{R}_i^{\perp}$, $v\mathcal{R}_j$, $v\mathcal{R}_j^{\perp}$, $w\mathcal{R}$, ω_k , v_r , w_s if *R* belongs to the corresponding component, where i = 1, 2, 3; j = 1, 2; k = 1, ..., 11; r = 1, ..., 5; s = 1, ..., 4.

From the decomposition of \mathcal{R} follows that the 5-dimensional almost contact *B*-metric manifold cannot belong to the factors ω_3 and ω_4 .

Let $(M, \varphi, \xi, \eta, g)$ be a 5-dimensional manifold. Moreover, let $k(\alpha; p)$, $\tilde{k}(\alpha; p)$ be the scalar curvatures of a nondegenerate totally real orthogonal to ξ section α (i.e. $\alpha \perp \varphi \alpha$, $\alpha \perp \xi$) in $T_p M$, $p \in M$. In this connection let us recall the following

Theorem 2.1 ([7]). Let $(M, \varphi, \xi, \eta, g)$ (dim $M \ge 5$) be an \mathcal{F}_0 -manifold. M is of constant totally real sectional curvatures $\nu(p) = k(\alpha; p)$ and $\tilde{\nu}(p) = \tilde{k}(\alpha; p)$ if and only if $R = \nu [\pi_1 - \pi_2 - \pi_4] + \tilde{\nu} [\pi_3 + \pi_5]$.

Both functions ν and $\tilde{\nu}$ are constant if M is connected and dim $M \geq 7$.

194

We have in mind that R satisfies the Kähler property on every \mathcal{F}_0 -manifold

(2.3)
$$R(X, Y, \varphi Z, \varphi W) = -R(X, Y, Z, W)$$

According to the decomposition of \mathcal{R} in [5] we obtain the equivalence of the R's expression in the last theorem and the condition $R \in \omega_1 \oplus \omega_2$ for dimension 5. Then we have

Theorem 2.2 Every 5-dimensional \mathcal{F}_0 -manifold has point-wise constant sectional curvatures $\nu(p) = k(\alpha; p)$, $\tilde{\nu}(p) = k(\alpha; p)$ and it belongs to $\omega_1 \oplus \omega_2$.

Proof. Let $\{e_1, e_2, \varphi e_1, \varphi e_2, \xi\}$ be a φ -basis of T_pM . Then $x = x^i e_i + x^{i+2} \varphi e_i + \eta(x)\xi$, (i = 1, 2). Using the properties (2.1) and (2.3) of R(x, y, z, w) we compute immediately

 $R = \nu \left[\pi_1 - \pi_2 - \pi_4 \right] + \tilde{\nu} \left[\pi_3 + \pi_5 \right], \quad \nu = R(e_1, e_2, e_2, e_1), \ \tilde{\nu} = R(e_1, e_2, e_2, \varphi e_1).$

Then according Theorem 2.1. we establish the point-wise constancy for α . Immediately it follows that $R \in \omega_1 \oplus \omega_2$ and consequently $M \in \omega_1 \oplus \omega_2$.

Lemma 2.3. Let $(\overline{M}, \varphi, \xi, \eta, \overline{g})$ be a 5-dimensional C_i^0 -equivalent \mathcal{F}_i^0 -manifold to an \mathcal{F}_0 -manifold with curvatures $\nu = \nu(p), \ \tilde{\nu} = \tilde{\nu}(p)$ of α (i = 4, 5). The curvature tensor on \overline{M} has the following form

$$\bar{R} = -e^{-2u}\cos 2v \left[\bar{\psi}_1 - \bar{\psi}_2 - \bar{\psi}_4\right](S) - e^{-2u}\sin 2v \left[\bar{\psi}_3 + \bar{\psi}_5\right](S) - \bar{A}$$

$$+ e^{-4u} \left\{ \nu \cos 4v - \tilde{\nu} \sin 4v \right\} \left[\bar{\pi}_1 - \bar{\pi}_2 - \bar{\pi}_4 \right] + e^{-4u} \left\{ \nu \sin 4v + \tilde{\nu} \cos 4v \right\} \left[\bar{\pi}_3 + \bar{\pi}_5 \right],$$

where

$$\begin{split} S(Y,Z) &= (\nabla_Y \sigma) \, Z + \sigma(\varphi Y) \sigma(\varphi Z) - \sigma(Y) \sigma(Z) - \frac{1}{2} \sigma(s) g(\varphi Y, \varphi Z) - \frac{1}{2} \sigma(\varphi s) g(Y, \varphi Z), \\ \mathrm{tr} \ S &= g^{ij} S_{ij} = \Delta u, \quad \mathrm{tr}^* S = \varphi^j_k g^{ik} S_{ij} = -\Delta v, \quad \Delta &= -\frac{\partial^2}{\partial x_1^2} - \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2} + \frac{\partial^2}{\partial x_4^2} + \frac{\partial^2}{\partial x_5^2} \\ is \ the \ Laplacian \ and \ we \ have \ for \ \bar{A} \ and \ \sigma &= g(s, \cdot), \ respectively, \end{split}$$

a) for
$$i = 4$$
: $\bar{A} = (dv(\xi))^2 [\bar{\pi}_2 - \bar{\pi}_4]$, $\sigma = dv \circ \varphi$;
b) for $i = 5$: $\bar{A} = (du(\xi))^2 \bar{\pi}_1$, $\sigma = -du \circ \varphi^2$.

Then we obtain the corresponding Ricci tensor and scalar curvatures, respectively: $- \begin{bmatrix} -2u \\ \bullet \end{bmatrix}$

4

~ • • \] =

$$\bar{\rho} = \left[-e^{-2u} (\Delta u \cos 2v + \Delta v \sin 2v) + 2e^{-4u} (\nu \cos 4v - \tilde{\nu} \sin 4v) \right] \bar{g} \\ + \left[e^{-2u} (\Delta u \sin 2v - \Delta v \cos 2v) - 2e^{-4u} (\nu \sin 4v + \tilde{\nu} \cos 4v) \right] \bar{\tilde{g}} \\ + \left[-e^{-2u} (\Delta u (\cos 2v - \sin 2v) + \Delta v (\cos 2v + \sin 2v)) \right] \\ -2e^{-4u} ((\nu - \tilde{\nu}) \cos 4v - (\nu + \tilde{\nu}) \sin 4v) \right] \eta \otimes \eta - \bar{\rho}(\bar{A}), \\ \bar{\tau} = -4 \left[e^{-2u} (\Delta u \cos 2v + \Delta v \sin 2v) - 2e^{-4u} (\nu \cos 4v - \tilde{\nu} \sin 4v) \right] - \bar{\tau}(\bar{A}), \\ \bar{\tau}^* = -4 \left[e^{-2u} (\Delta u \sin 2v - \Delta v \cos 2v) - 2e^{-4u} (\nu \sin 4v + \tilde{\nu} \cos 4v) \right] . \\ \text{where} \quad \bar{\rho}(\bar{A}) = -4 (dv(\xi))^2 \eta \otimes \eta, \quad \bar{\tau}(\bar{A}) = -4 (dv(\xi))^2 \quad \text{for } i = 4; \\ \bar{\rho}(\bar{A}) = -4 (du(\xi))^2 \bar{a}, \qquad \bar{\tau}(\bar{A}) = 20 (du(\xi))^2 \quad \text{for } i = 5. \end{cases}$$

$$\bar{\rho}(\bar{A}) = 4(\mathrm{d} u(\xi))^2 \bar{g}, \qquad \quad \bar{\tau}(\bar{A}) = 20(\mathrm{d} u(\xi))^2 \quad \text{ for } i = 5.$$

The obtained \bar{R} as a curvature tensor has to satisfy the second Bianchi identity (2.2). As a consequence it is known the following corollary of the mentioned identity in local 195

coordinates

(2.5)
$$\nabla_i \tau = 2 \nabla_i \rho_i^*$$

Applying (2.5) for the tensors from (2.4) in the case for i = 4 we get $dv(\xi) = 0$. This equality implies the following conclusion.

Theorem 2.4 The 5-dimensional manifold $(\overline{M}, \varphi, \xi, \eta, \overline{g}) = C_4^0(M, \varphi, \xi, \eta, g)$ is an \mathcal{F}_0 -manifold, i.e. it is not possible to be obtained nontrivial 5-dimensional \mathcal{F}_4^0 -manifold by C-transformation.

In the same way (when i = 5), we get the condition $v = \frac{1}{4} \arctan(\nu/\tilde{\nu})$ and consequently $\Delta u = \Delta v = 0$ for the functions determining the C_5^0 -transformation and then we receive

Lemma 2.5 There are valid the following equalities for a 5-dimensional \mathcal{F}_5^0 -manifold which is C_4^0 -equivalent to an \mathcal{F}_0 -manifold:

$$\bar{R} = -(\mathrm{d}u(\xi)^2 \bar{\pi}_1 + \tilde{\varepsilon} e^{-4u} \sqrt{\nu^2 + \tilde{\nu}^2} [\bar{\pi}_3 + \bar{\pi}_5],$$

$$\bar{\rho} = -4(\mathrm{d}u(\xi))^2 \bar{g} - 2\tilde{\varepsilon} e^{-4u} \sqrt{\nu^2 + \tilde{\nu}^2} \bar{g}^*,$$

$$\bar{\tau} = -20(\mathrm{d}u(\xi))^2, \qquad \bar{\tau}^* = 8\tilde{\varepsilon} e^{-4u} \sqrt{\nu^2 + \tilde{\nu}^2}.$$

where $\tilde{\varepsilon} = \operatorname{sgn}(\tilde{\nu}), \ \bar{g}^* = \bar{g}(\cdot, \varphi \cdot), \ and \ the \ functions \ \nu, \ \tilde{\nu}, \ \operatorname{du}(\xi) \neq 0$ are point-wise constant.

Hence, we give a geometric characterization of such manifolds in the next assertions.

Theorem 2.6 Every 5-dimensional \mathcal{F}_5^0 -manifold \overline{M} is almost Einsteinian with negative point-wise constant scalar curvatures and it belongs to $\omega_1 \oplus \omega_2 \oplus \omega_5 \oplus \omega_6 \oplus \omega_7 \oplus \omega_8 \oplus w_1$.

Theorem 2.7 The 5-dimensional \mathcal{F}_5^0 -manifold \overline{M} is Einsteinian if and only if its C_5^0 -equivalent manifold M is a flat \mathcal{F}_0 -manifold.

In the last case the curvature characteristics of an Einsteinian \overline{M} are:

 $\bar{R} = -(\mathrm{d}u(\xi))^2 \bar{\pi}_1, \qquad \bar{\rho} = -4(\mathrm{d}u(\xi))^2 \bar{g}, \qquad \bar{\tau} = -20(\mathrm{d}u(\xi))^2, \qquad \bar{\tau}^* = 0.$

Therefore we finally receive

Theorem 2.8 The \mathcal{F}_5^0 -manifold \overline{M} has constant sectional curvatures if and only if it is Einsteinian.

REFERENCES

[1] G. GANCHEV, V. MIHOVA, K. GRIBACHEV. Almost contact manifolds with *B*-metric. *Math. Balk.*, **7** (1993), No 3–4, 261–276.

[2] M. MANEV. Properties of curvatures tensors on almost contact manifolds with *B*-metric. *Proc. of Jubilee Sci. Session of The V. Levsky Higher Military School*, V. Tarnovo, **27** (1993), 221–227.

[3] M. MANEV, K. GRIBACHEV. Contactly conformal transformations of almost contact manifolds with *B*-metric. *Serdica Bulg. Math. Publ.*, **19** (1993), 287–299.

[4] M. MANEV, K. GRIBACHEV. Contactly invariant tensors on almost contact manifolds with B-metric. Serdica Bulg. Math. Publ., 20 (1994), 133–147.
196

[5] G. NAKOVA. Curvature tensors on almost contact manifolds with *B*-metric. Perspectives of Complex Analysis, Differential Geometry and Mathematical Physics (Eds S. Dimiev, K. Sekigawa) World Scientific, Singapore (to appear).

[6] G. NAKOVA. Curvature tensors in the basic classes of real isotropic hypersurfaces of a Kaehler manifold with *B*-metric. Perspectives of Complex Analysis, Differential Geometry and Mathematical Physics (Eds S. Dimiev, K. Sekigawa) World Scientific, Singapore (to appear).
[7] G. NAKOVA, K. GRIBACHEV. Submanifolds of some almost contact manifolds with B-metric with codimension two, I. *Math. Balk.*, **11** (1997), 255–267.

G. Nakova Department of Algebra and Geometry University of Veliko Tirnovo 1, Theodosij Tirnovsky Str. Veliko Tirnovo 5000, Bulgaria e-mail: gnakova@yahoo.com M. Manev Faculty of Mathematics and Informatics University of Plovdiv 236, Bulgaria Blvd. Plovdiv 4004, Bulgaria e-mail: mmanev@pu.acad.bg

КРИВИННИ ТЕНЗОРИ ВЪРХУ НЯКОИ ПЕТМЕРНИ ПОЧТИ КОНТАКТНИ -МЕТРИЧНИ МНОГООБРАЗИЯ

Галя В. Накова, Манчо Хр. Манев

Разгледани са 5-мерни почти контактни В-метрични многообразия от два основни класа. Доказано е, че всяко многообразие от сечението на тези класове е с точково постоянни секционни кривини. Изучен е кривинният тензор на многообразията от тези два класа и са дадени техни геометрични характеристики.