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WEYL SPACES OF COMPOSITIONS

Georgi Zlatanov Zlatanov

Three Weyl spaces of nonorthogonal compositions of two base manifolds are investi-
gated in the present paper. The hybridian tensor generated by the first Weyl space
and introduced by G. Timofeev is chosen as a fundamental tensor for the second of
them and the third Weyl space is conformal to the second one. Necessary and suf-
ficient conditions, so that these three Weyl spaces to be spaces of compositions are
found with the help of the prolonged covariant differentiation. The relations between
the tensors of curvatures of these three Weyl spaces of compositions are established.
The characteristics for an isotropic composition in these spaces are obtained.

1. Preliminary. Let WN (gαβ , Tσ) be Weyl space with a fundamental tensor gαβ

and a complementary covector Tσ.
After renormalization of the fundamental tensor by the law

(1) ğαβ = λ2gαβ ,

where λ is a point function, the complementary covector Tσ transforms by the law ([1],
p.152)

(2) T̆σ = Tσ + ∂σlnλ.

According to ([1], p.152) the fundamental tensor gαβ and the complementary covector
Tσ satisfy the identities

(3) ∇σ gαβ = 2Tσ gαβ , ∇σ gαβ = −2Tσ gαβ

where gαβ is the reciprocal tensor to gαβ and

(4) gαβ gασ = δσ
β .

The equalities

(5)
◦

∇σ gαβ = 0,
◦

∇σ gαβ = 0,

where with
◦

∇ is denoted the prolonged covariant differentiation, are introduced in [8].
Consider in the space WN the composition Xn × Xm of two base manifolds Xn and

Xm, (n+m = N). The spaces WN of compositions will be denoted WN (Xn ×Xm). Two
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positions P (Xn) and P (Xm) of the base manifolds pass through any point of the space
WN (Xn × Xm).

According to [2] and [3] each composition is completely definite with the field of the
affinor aβ

α, satisfying the condition

(6) aσ
αaβ

σ = δβ
α.

The affinor aβ
α is called an affinor of the composition.

We presuppose that the composition is always integrable and nonorthogonal. The
condition for integrability of the structure characterizes with the equality [6] and

(7) aσ
β∇[α aν

σ] − aσ
α∇[β aν

σ] = 0.

According to [6, 7] the projecting affinors
n
a β

α,
m
a β

α are defined by the equalities

(8)
n
a β

α =
1

2
(δβ

α + aβ
α),

m
a β

α =
1

2
(δβ

α − aβ
α).

It is true the equality gαβ =
n

Gαβ + 2gαβ +
m

Gαβ , where

(9)
n

Gαβ =
n
a σ

α

n
a ν

β gσν ,
m

Gαβ =
m
a σ

α

m
a ν

β gσν , Gαβ = aσ
(α aν

β) gσν .

The tensor Gαβ is named hybridian metrical tensor [4]. Due of (5) Gαβ 6= 0 for nonorthog-
onal compositions Xn × Xm.

Acccording to [4] the tensor of the composition

(10) aαβ = aσ
α gσβ

and the fundamental tensor of WN satisfy the equation

(11) aασ gσν aνβ = gαβ .

In [4] Timofeev has proved the following theorem

Theorem 1. The Weyl space WN (gαβ , Tσ) is a space of composition WN (Xn×Xm),
if and only if there exists a tensor aαβ, satisfying equalities (11) and

(12) gσρ aβρ ∇[αaσ]ν − gσρ aαρ ∇[βaσ]ν − 2T[α gβ]ν − 2Tσgσρ a[α/ρ/ aβ]ν = 0.

2. Weyl spaces of compositions. Let us note that by means of the prolonged
covariant differentiation the equality (12) can be written in the form

(13) gσρ aβρ

◦

∇[αaσ]ν − gσρ aαρ

◦

∇[βaσ]ν = 0.

We denote by ∇ and a∇ covariant derivatives in Weyl spaces WN and aWN , a = 1, 2 ,
respectively.

Let WN (gαβ , Tσ) be a space of composition WN (Xn × Xm).
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Theorem 2. The Weyl space 1WN (Gαβ , Tσ) is a space of composition 1WN (Xn ×
Xm), if and only if there exists a tensor aαβ, satisfying equalities

(14) aσα Gσν aβν = Gαβ ,

(15) Gσρ aρβ
1
◦

∇[αa/ν/σ] − Gσρ aρα
1
◦

∇[βa/ν/σ] = 0.

Proof. It is easily to see that the weight of the hybridian tensor Gαβ is {2}. Hence

after renormalization (1) of gαβ for Gαβ we have Ğαβ = λ2Gαβ . Since Tσ transforms
by the law (2), then there exists only one Weyl space 1WN (Gαβ , Tσ) with a fundamental
tensor Gαβ and a complementary covector Tσ, satisfying 1∇σ Gαβ = 2Tσ Gαβ .

According to [8]

(16) 1
◦

∇σ Gαβ = 0, 1
◦

∇σ Gαβ = 0.

Consider the tensor

(17) Gαβ = a(α
σ aβ)

ν gσν .

Using (6) and (7) we find GαβGασ = δσ
β , which means that Gαβ{−2} is a reciprocal

tensor of the tensor Gαβ .
Let the Weyl space 1WN (Gαβ , Tσ) be a space of composition 1WN (Xn ×Xm). Con-

sider the tensor of the composition Xn × Xm

(18) 1aαβ = aσ
α Gσβ .

Obviously 1aαβ{2}. Taking into account (9), (10), (18) we obtained

(19) 1aαβ = aβα.

To prove (14) it is sufficient to substitute Gαβ and aαβ from (17) and (19) in (14) and
keeping in mind (4) and (18).

After prolonged covariant differentiation of (18) and applying (16) and (19) we find

1
◦

∇ν Gβα = ∇ν aσ
α Gσβ . Now after substitution of ∇ν aσ

α = 1
◦

∇νGβα Gσβ in (7) we
obtain (15).

Theorem 3. The Weyl space 2WN (gαβ , aν
σTν) is a space of composition 2WN (Xn ×

Xm), if and only if there exists a tensor aαβ, satisfying equalities (11) and

(20) gσρ aρβ
2
◦

∇[αaσ]ν − gσρ aαρ
2
◦

∇[βaσ]ν = 0.

Proof. Let us consider the covector Pα = aβ
αTβ and the equality

(21) 2∇σ gαβ = 2Pσ gαβ .
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From (1) and (21) it follows 2∇σ ğαβ = 2(∂σλ + aν
σPν) ğαβ, which means that Pα

transforms by the law (2). Hence there exists only one weyl space 2WN (gαβ , Pσ) with a
fundamental tensor gαβ and a complementary covector Pσ.

According to [8] the equality (21) takes the form

(22) 2
◦

∇σ gαβ = 0.

Let the Weyl space 2WN (gαβ, Pσ) be a space of composition 2WN (Xn ×Xm). It is easy
to see that the tensor (10) is the tensor of the composition Xn ×Xm and it satisfies (11).
From (7), (10), (22) it follows (20).

3. Transformation of Weyl connectedness in WN(Xn × Xm).

Theorem 4. The tensors of curvatures Rαβγ
σ. , 1Rαβγ

σ. , 2Rαβγ
σ. of the spaces WN (Xn×

Xm), 1WN (Xn × Xm), 2WN (Xn × Xm), respectively satisfy the equalities:

(23) 1Rαβσ
σ. = Rαβσ

σ. ,

(24) 2Rαβσ
σ. − Rαβσ

σ. = 4N∇[α

m

T β],

where

(25)
m

T β =
m
a σ

β Tσ.

Proof. From 1∇α Tβ −∇α Tβ = −T σ
αβ Tσ, where T σ

αβ is the affine strain tensor, we
obtain

(26) 1∇[α Tβ] = ∇[α Tβ]

According to ([1], p.157) we have

(27) Rαβσ
σ. = −2N∇[αTβ],

1Rαβσ
σ. = −2N 1∇[αTβ].

From (26), (27) it follows (23).
Obviously there exists a conformal maping between the spaces WN (Xn × Xm),

2WN (Xn × Xm). Acccording to ([1], p.157) the tensors of curvatures of the spaces
WN (Xn × Xm), 2WN (Xn × Xm) satisfy the equality

(28) 2Rαβσ
σ. = Rαβσ

σ. + 2P σ.ν.γ[β pα]ν ,

where

(29) 2P ν.σ.γβ = δν
γ δσ

β + δν
β δσ

γ − gνσgγβ,

(30) pαν = ∇αpν −
1

2
P β.σ.αν pβpσ,
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(31) pα = Tα − Pα.

From (8), (25) and (31) we obtain pα = 2
m
a σ

α Tσ = 2
m

Tα , i.e. pα ∈ P (Xm). Takig into

account (30) and pα = 2
m

Tα, P ν.σ. [γβ] = 0 we find

(32) p[αν] = 2∇[α

m

T ν].

At last from (28) and (32) it follows the validity of (24).

4. Isotropic composition in WN(gαβ, Tσ). It is known that the Weyl space
WN (gαβ , Tσ) assumes an isotropic composition if and only if the tensor of the composition
aαβ is asymmetric [4]. In this case the positions P (Xn) and P (Xm) have the same
dimension and the space WN (gαβ , Tσ) is even-dimensional.

Theorem 5. The Weyl space WN (gαβ, Tσ) assumes an isotropic composition if and

only if for any field of directions vα the fields of directions vα and aα
σ vσ are orthogonal

in WN (gαβ , Tσ).

Proof. The fields of directions vα and aα
σ vσ are orthogonal in WN (gαβ , Tσ) if and

only if

(33) gαβ vα aα
σ vσ = 0.

According to (10) the equality (33) is equivalent to the equality aαβ vα vβ = 0. Since
vα are arbitrary, then (33) is equivalent to a(αβ) = 0, i.e. the tensor of the composition
is asymmetric.

Corollary 1. If one of the spaces of compositions WN (Xn × Xm), 1WN (Xn × Xm),
2WN (Xn × Xm) assumes an isotropic composition then the other two spaces assume

isotropic compositions too.

The validity of the corollary follows from the fact that the tensors of the compositions
of the spaces WN (Xn × Xm), 1WN (Xn × Xm), 2WN (Xn × Xm) are aαβ , aβα, aαβ ,
respectively.
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ВАЙЛОВИ ПРОСТРАНСТВА ОТ КОМПОЗИЦИИ

Георги Златанов Златанов

Нека е дадено вайлово пространство от неортогонална композиция. Разглеж-

дат се още две вайлови пространства, свързани с даденото по следния начин:

основният тензор на едното е въведеният от Тимофеев хибриден тензор, а дру-

гото вайлово пространство е конформно на даденото. С помоща на продължено

ковариантно диференциране са намарени необходими и достатъчни условия три-

те вайлови пространства да бъдат пространства от композиции и са намерени

връзки межда тензорите на кривината на тези пространства. Получена е харак-

теристика за изотопна композиция в тези пространства.
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