
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2003

MATHEMATICS AND EDUCATION IN MATHEMATICS, 2003

Proceedings of the Thirty Second Spring Conference of

the Union of Bulgarian Mathematicians

Sunny Beach, April 5–8, 2003

OPEN SYSTEMS VERSUS CLOSED SYSTEMS

Irena L. Atanasova

While linear-time and branching-time temporal logics (LTL and BTL) are natural
specification languages for closed systems, alternating-time logic ATL is natural spec-
ification language for open systems. LTL assumes implicit universal quantification
over all paths that are generated by the execution of a system. BTL allows explicit
existential and universal quantification over all paths. ATL offers selective quantifi-
cation over those paths that are possible outcomes of games. In Table 1 are shown
the model-checking problem complexity results for BTL and ATL logics.

1. Introduction. In 1977, Pnueli proposed to use linear-time temporal logic (LTL)
to specify requirements for reactive systems. A formula of LTL is interpreted over a
computation, which is an infinite sequence of states. Branching-time temporal logic such
as CTL and CTL* do provide explicit quantification over the set of computations [6].
The problem of model checking is to verify whether a finite-state abstraction of a reactive
system satisfies a temporal-logic specification [4]. Efficient model checkers exist for LTL,
CTL and CTL* [11, 13]. The logics LTL and CTL are interpreted over Kripke structure.
An open system is a system that interacts with its environment and whose behavior
depends on the state of the system as well as the behavior of the environment. Modeling
languages for open systems distinguish between internal nondeterminism (system), and
external nondeterminism (environment). Besides universal and existential questions,
there is the third: can the system resolve its internal choices. Such an alternating
satisfaction can be viewed as a winning condition in a 2-player game between the system
and the environment.

In this paper, we consider the linear-time temporal logic, branching-time temporal
logics and alternating-time temporal logics. We do not consider the basic definition for
LTL, CTL, CTL*, ATL and ATL*, and we establish and summarize complexity bounds
on model checking for these logics.

2. Model-checking complexity. Lichtenstein and Pnueli argued that when
analyzing the complexity of model checking, a distinction should be made between com-
plexity in the size of the input structure and complexity in the size of the input formula.
We measure the complexity of the model-checking problem in two different ways: the
program complexity and the full complexity of model checking. Since the structure is
typically much larger than the formula, and its size is the common computational bot-
tleneck, the program-complexity measure is of particular practical interest. There is the
third kind of complexity – time complexity.

221

Closed systems

Theorem 2.1. The program complexity of model checking for CTL and CTL* is
NLOGSPACE-complete.

Proof. Let the formula is fixed. We get a hesitant alternating automaton HAA of a
fixed depth. The nonemptiness problem for such a HAA is in NLOGSPACE [8]. Thus
the program complexity of CTL and CTL* model checking is the same. Hardness in
NLOGSPACE is immediate by a reduction from the graph accessibility problem, proved
to be NLOGSPACE-complete in [7].

Open systems
Consider a game structure S=(k, Q, P, π, d, δ) and a set A⊆ Σ of players. We build the

following 2-player turn-based synchronous game structure SA = (2, QA, PA, πA, σA, RA).
If the game structure S has m transitions, then the turn-based synchronous structure SA

has O(m) states and transitions.

Lemma 2.1.Let S be a game structure with state space Q, A be a set of players of S
and p be a proposition of S. Then

[≪A≫.p]S = [≪1≫.p[SA∩Q and [≪A≫.p]S = [≪1≫.(p ∨ newstate)]SA ∩ Q,

where newstate is a special proposition that identifies the new states: PA = P∪{newstate}.

Consider the game structure S and fairness condition G for S. We define the following
extended game structure: SF = (k, QF, PF, πF, dF, δF), where QF = {(false , q)|q ∈ Q} ∪
{(q′, q)|q is a successor of q′ in S}; for (a, γ) ∈ G there are new propositions (a, γ, allowed)
and (a, γ, taken), that are PF = P∪(G{allowed , taken}), where the new propositions allow
us to identify the fair computations; for the (false , q) ∈ QF, we have πF((false, q)) = π(q),
for (q′, q) ∈ QF we have

πF((q′, q)) = π(q) ∪ {(a, γ, allowed)|γ(q′) 6= ∅} ∪ {(a, γ, taken)|

there is a (j1, . . . , jk) ∈ D(q′) such that ja ∈ γ(q′) and δ(q′, j1, . . . , jk) = q}; for a ∈ Σ
and (·, q) ∈ QF, we have dF

a
((·, q)) = da (q); for (·, q) ∈ QF and (j1, . . . , jk) ∈ D(q), we

have δF((·, q), j1, . . . , jk) = δ(q, j1, . . . , jk).

Lemma 2.2. A state q of the game structure S fairly satisfies a Fair ATL formula
of the form ≪A≫Ψ, where A is a set of players of S, and Ψ = p1Up2 or Ψ = ∇p,
with respect to the weak-fairness condition GW iff the state (false , q) of SF satisfies
the following ATL* formula: ≪A≫(∧

a∈A,(a,γ)∈GW
∇♦(¬(a, γ, allowed)∨ (a, γ, taken))∧

(∧
a∈Σ\A,(a,γ)∈GW

∇♦(¬(a, γ, allowed) ∨ (a, γ, taken)) → Ψ)).
A state q fairly satisfies ≪A≫Ψ with respect to the strong-fairness condition GS iff
(false , q) satisfies the following ATL* formula: ≪A≫(∧

a∈A,(a,γ)∈GS
∇♦(a, γ, allowed) →

∇♦(a, γ, taken)) ∧ (∧
a∈Σ\A,(a,γ)∈GS

(∇♦(a, γ, allowed) → ∇♦(a, γ, taken)) → Ψ)).

Theorem 2.2. The model-checking problem for ATL can be solved in time O(m.l)
for a game structure with m transitions and an ATL formula of length l.

Proof. Consider a game structure S with m transitions and an ATL formula ϕ of
length l.

Consider the following symbolic algorithm for ATL model checking, which manipu-
lates state sets of S:
for (each ϕ’ in Subformula (ϕ))

222

switch (ϕ’) {case ϕ’=p:[ϕ’]=state sat p (p);
case ϕ’=¬θ: [ϕ’]=[true]\[θ];
case ϕ’=θ1 ∨ θ2: [ϕ’]= [θ1]∪[θ2];
case ϕ′ = ≪A≫⊗ θ: [ϕ’]=Player state(A, [θ]);
case ϕ′ = ≪A≫∇θ: ρ=[true];τ=[θ];

while (ρ�τ)
{ρ=ρ ∩ τ ;τ=Player state(A, ρ)∩[θ];}[ϕ’]= ρ;

case ϕ′ = ≪A≫θ1 ∪ θ2: ρ=[false];τ=[θ2];
while (τ.ρ)
{ρ=ρ ∪ τ ;τ=Player state(A, ρ)∩[θ1];} [ϕ’]= ρ;}

return [ϕ];
We claim that this algorithm can be implemented in time O(m.l). The size of Sub-

formula (ϕ) is bounded by l. To compute [≪A≫.ϕ] from [ϕ], we apply the second part
of Lemma 2.1. The resulting invariance game on SA can be solved in time linear in the
size of SA, that is, in time O(m) [3]. To compute [≪A≫θ1 ∪ θ2] from [ϕ1] and [ϕ2], we
first restrict the game structure S to the states in [ϕ1] ∪ [ϕ1], and then apply the first
part of Lemma 2.1. The resulting reachability game can again be solved in time O(m).

Theorem 2.3 [1]. The model-checking problem for ATL is PTIME-complete. The
problem is PTIME-hard even for a fixed formula.

Theorem 2.4. The model-checking problem for Fair ATL is PSPACE-complete,
and can be solved in time mO(w).l for a game structure with m transitions, w fairness
constraints, and a Fair ATL formula of size l. The problem is PSPACE-hard even for
a fixed formula. For a bounded number of fairness constraints, the problem is PTIME-
complete.

Proof. The model-checking algorithm labels each state of the SF with all subformulas
of given Fair ATL formula ϕ, starting with the innermost subformulas. The interesting
case is when the subformulas are of the form ≪A≫Ψ. This requires solving a game on
SF with the winning condition of the form given by the second part of Lemma 2.2. In [2],
it is shown that turn-based games whose condition is a Boolean combination of formulas
of the form ��p can be solved in PSPACE, or in time mn, where n is the size of the
formula and m is the size of the game structure. The size of the winning condition is
O(w), where w is the number of fairness constraints. Therefore, each temporal operator
can be processed in time mO(w), leading to the overall complexity bound.

For the lower bounds, the construction of [2] can be modified to reduce the satisfaction
of a given quantified Boolean formula Φ to Fair ATL model checking of a fixed formula of
the form ≪a≫∇p over 2-player turn-based synchronous game structure of size O(|Φ|).

Theorem 2.5. The model-checking problem for ATL* is 2EXPTIME-complete. The
model-checking problem for ATL* formulas of bounded size is PTIME-complete.

Proof. As in the algorithm for CTL* model checking, we label each state q of S
by all state subformulas of ϕ that are satisfied in q, starting from the innermost state
subformulas of ϕ. Let ϕ′ = ≪A≫Ψ. We construct a Rabin tree automaton Aϕ that
accepts precisely the trees that satisfy the CTL* formula ∀ Ψ. For each state q of S,
we construct a Büchi tree automaton AS,q,A = (2π, Q, η, q, F) that accepts the (q, A)-
execution trees. The product of the two automata is a Rabin tree automaton that accepts

223

the (q, A)-execution trees that satisfy ∀Ψ. The size of the AS,q,A is bounded by the size
of game structure S. The nonemptiness problem for a Rabin tree automaton of size n
with r Rabin pairs can be solved in time O(n.r)3r [12]. Labeling a single state with ϕ’

requires at most time
(

|S|.22O(|Ψ|)
)2O(|Ψ|)

= |S|2
O(|Ψ|)

. Since there are |Q| states and at

most |ϕ| subformulas, membership in 2EXPTIME follows.
The lower bound for the program complexity follows from Theorem 2.2 and theorem

2.3, and the upper bound from fixing |Ψ| in the analysis of the joint complexity above.

Systems/ Logic Complexity
full program time

Open systems
ATL PTIME [1] PTIME [1] O(m.l)

Fair ATL PSPACE PSPACE mO(w)

ATL* 2EXPTIME PTIME m2O(l)

[1]
Closed systems

CTL PTIME [5] NLOGSPACE [10] O(m.log2(m.n)) [8]
Fair CTL PTIME [5] PTIME [9] O(m.log2(n.l)) [8]

CTL* PSPACE [5] NLOGSPACE [10] O(m(m + logn)2) [8]

Table 1

3. Conclusions. While closed systems are naturally modeled as Kripke structures,
a general model for open systems is the concurrent game structure. Closed systems
correspond to the special case of a single player. Game structure degenerates to Kripke
structure, ATL degenerates to CTL and ATL* to CTL* in this case. The model –
checking complexity results are summarized in Table 1. All complexities in the table
denote tight bounds. m is the size of the structure and l is the length of the formula.

REFERENCES

[1] R. Alur, Th. Henzinger, O. Kupferman. A Hernating-time Temporal Logic. Pro-
ceedings of the 38th IEEE Symposium on Foundations of Computer Science (FOCS), 1997,
100–109.
[2] R. Alur, S. La Torre, P. Madhusudan. Playing Games with Boxes and Diamonds.
Technical report, University of Pennsylvania, 2002.
[3] C. Beeri. On the membership problem for functional and multi-valued dependencies in
relational databases. ACM Transactions on Database Systems, 5 (1980), 241–259.
[4] E. M. Clarke, E. A. Emerson. Design and synthesis of synchronization skeletons using
branching-temporal logic. In: Proceedings of the International Workshop on Logic of Programs.
Springer-Verlag, 131, 1981, 52–71.
[5] E. M. Clarke, E. A. Emerson, A. P. Sistla. Automatic Verification of finite-state
concurrent systems using temporal-logic specifications. ACM Transactions on Programming

Languages and Systems, 8 (1986), No 2, 244–263.
[6] E. A. Emerson, J. Y. Halpern. Sometimes and not never revisited: On branching versus
linear time. Journal of the ACM , 33 (1986), No 1, 151–178.

224

[7] N. D. Jones. Space-bounded reducibility among combinatorial problems. Journal of Com-

puter and System Sciences, 11 (1975), 68–75.
[8] O. Kupferman. Model Checking for Branching-Time Temporal Logic. PhD Thesis, 1995.
[9] O. Kupferman, M. Vardi. Verification of fair transition systems. Chicago Journal of

Theoretical Computer Science, (1998).
[10] O. Kupferman, M. Vardi, P. Wolper. An automata-theoretic approach to branching-
time model checking. Journal of the ACM , 47 (2000), No 2, 312–360.
[11] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
[12] A. Pnueli, R. Rosner. On the synthesis of a reactive module. In: Proceedings of the
16th International Symposium on Principles of Programming Languages. ACM Press, 1989,
179–190.
[13] W. Visser. Efficient CTL* Model Checking Using Games and Automata. PhD Thesis,
1998.

Irena Atanasova
Southwestern University “N. Rilski”
Department of Computer Science
66, Ivan Mihajlov Str.
2700 Blagoevgrad, Bulgaria
e-mail: irenatm@aix.swu.bg

ОТВОРЕНИТЕ СИСТЕМИ СРЕЩУ ЗАТВОРЕНИТЕ СИСТЕМИ

Ирена Атанасова

Докато линейната във времето и разклонената във времето темпорални логики

LTL и BTL са естествени езици за спецификация за затворени системи, то алтер-

нативната във времето логика ATL е естествен език за спецификация за отворени

системи. LTL допуска само квантификация на общност над всички пътища, кои-

то са генерирани чрез изпълнението на система. BTL позволява квантификация

за общност и съществуване над всички пътища. ATL предлага квантификация

по избир над тези пътища, които са възможни резултати от игрите. В таблица 1

са показани резултатите за сложността на проблема на проверката на модела за

BTL и ATL логиките.

225

