MATEMATUKA W MATEMATUWYECKO OBPA3OBAHWE, 2003
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2003
Proceedings of the Thirty Second Spring Conference of

the Union of Bulgarian Mathematicians
Sunny Beach, April 5-8, 2003

OPEN SYSTEMS VERSUS CLOSED SYSTEMS

Irena L. Atanasova

While linear-time and branching-time temporal logics (LTL and BTL) are natural
specification languages for closed systems, alternating-time logic ATL is natural spec-
ification language for open systems. LTL assumes implicit universal quantification
over all paths that are generated by the execution of a system. BTL allows explicit
existential and universal quantification over all paths. ATL offers selective quantifi-
cation over those paths that are possible outcomes of games. In Table 1 are shown
the model-checking problem complexity results for BTL and ATL logics.

1. Introduction. In 1977, Pnueli proposed to use linear-time temporal logic (LTL)
to specify requirements for reactive systems. A formula of LTL is interpreted over a
computation, which is an infinite sequence of states. Branching-time temporal logic such
as CTL and CTL* do provide explicit quantification over the set of computations [6].
The problem of model checking is to verify whether a finite-state abstraction of a reactive
system satisfies a temporal-logic specification [4]. Efficient model checkers exist for LTL,
CTL and CTL* [11, 13]. The logics LTL and CTL are interpreted over Kripke structure.
An open system is a system that interacts with its environment and whose behavior
depends on the state of the system as well as the behavior of the environment. Modeling
languages for open systems distinguish between internal nondeterminism (system), and
external nondeterminism (environment). Besides universal and existential questions,
there is the third: can the system resolve its internal choices. Such an alternating
satisfaction can be viewed as a winning condition in a 2-player game between the system
and the environment.

In this paper, we consider the linear-time temporal logic, branching-time temporal
logics and alternating-time temporal logics. We do not consider the basic definition for
LTL, CTL, CTL*, ATL and ATL*, and we establish and summarize complexity bounds
on model checking for these logics.

2. Model-checking complexity. Lichtenstein and Pnueli argued that when
analyzing the complexity of model checking, a distinction should be made between com-
plexity in the size of the input structure and complexity in the size of the input formula.
We measure the complexity of the model-checking problem in two different ways: the
program complexity and the full complexity of model checking. Since the structure is
typically much larger than the formula, and its size is the common computational bot-
tleneck, the program-complexity measure is of particular practical interest. There is the
third kind of complexity — time complexity.

221

Closed systems

Theorem 2.1. The program complexity of model checking for CTL and CTL* is
NLOGSPACE-complete.

Proof. Let the formula is fixed. We get a hesitant alternating automaton HAA of a
fixed depth. The nonemptiness problem for such a HAA is in NLOGSPACE [8]. Thus
the program complexity of CTL and CTL* model checking is the same. Hardness in
NLOGSPACE is immediate by a reduction from the graph accessibility problem, proved
to be NLOGSPACE-complete in [7].

Open systems

Consider a game structure S=(k, Q, P, 7, d, 0) and a set AC 3 of players. We build the
following 2-player turn-based synchronous game structure Sy = (2, Qa, Pa,ma, 04, Ra).
If the game structure S has m transitions, then the turn-based synchronous structure Sy
has O(m) states and transitions.

Lemma 2.1. Let S be a game structure with state space Q, A be a set of players of S
and p be a proposition of S. Then

[KA>.pls = [KI>.p[sanNQ and [«A>.pls = [«1>.(p V newstate)]sa N Q,
where newstate is a special proposition that identifies the new states: Pa = PU{newstate}.

Consider the game structure S and fairness condition G for S. We define the following
extended game structure: S¥ = (k, Q¥, P¥, 7t d¥, %), where QF = {(false,q)|q € Q} U
{(d’,q)|q is a successor of ¢’ in S}; for (a,v) € G there are new propositions (a, v, allowed)
and (a,, taken), that are P¥ = PU(G{allowed, taken}), where the new propositions allow
us to identify the fair computations; for the (false, q) € QF, we have 7% ((false, q)) = 7(q),
for (q’,q) € QF we have

7 ((d',) = 7(a) U {(a, v, allowed)|v(q") # 0} U {(a,, taken)|
there is a (ji1,...,jk) € D(q’) such that j, € v(q') and 6(q,j1,...,jk) = q}; for a € &
and (-,q) € QF, we have d5((-,q)) = da(q); for (-,q) € QF and (j1,...,jk) € D(q), we
have 6% ((-,q), i1, -+ dk) = 0(d, i1, - -+ jk)-

Lemma 2.2. A state q of the game structure S fairly satisfies a Fair ATL formula
of the form <A>WV, where A is a set of players of S, and ¥ = p1Ups or ¥ = Vp,
with respect to the weak-fairness condition Gw iff the state (false,q) of S¥ satisfies
the following ATL* formula: <A>(Agea,(ay)eGw VO((a, 7, allowed) V (a, 7, taken)) A
(AaEE\A,(a,W)EGwVO(_‘(av g allowed) v (aa s taken)) - \Il))

A state q fairly satisfies < A>VU with respect to the strong-fairness condition Gg iff
(false, q) satisfies the following ATL* formula: <A>(Ngen, (a,y)eas VEO(a,7, allowed) —
V& (a,7, taken)) A (Aaes\A,(ay)ecs (VO (a,7, allowed) — V& (a, vy, taken)) — W¥)).

Theorem 2.2. The model-checking problem for ATL can be solved in time O(m.l)
for a game structure with m transitions and an ATL formula of length 1.

Proof. Consider a game structure S with m transitions and an ATL formula ¢ of
length 1.

Consider the following symbolic algorithm for ATL model checking, which manipu-
lates state sets of S:
for (each ¢’ in Subformula (¢))
222

switch (¢’) {case p’=p:[p’]=state_sat_p (p);
case ¢’'=—0: [p’']=[true]\[0];
case p'=01 V O3: [¢’]= [61]U[O2];
case ' = KA> ®0: [p’|=Player_state(A, [0]);
case ¢’ = <KA>V0O: p=|[true|;7=[0];
while (pO7)
{p=p N m;7=Playerstate(A, p)N[0]:}[¢’]= p;
case ' = KA>0, U by: p=[false];7=[02];
while (7.p)
{p=p U mi7=Playerstate(A, p)N[b1];} [¢’]= pi}
return [p];

We claim that this algorithm can be implemented in time O(m.l). The size of Sub-
formula (¢) is bounded by 1. To compute [<A>>.¢] from [¢], we apply the second part
of Lemma 2.1. The resulting invariance game on Sp can be solved in time linear in the
size of SA, that is, in time O(m) [3]. To compute [<A>0; U 6] from [p1] and [p2], we
first restrict the game structure S to the states in [¢1] U [p1], and then apply the first
part of Lemma 2.1. The resulting reachability game can again be solved in time O(m).

Theorem 2.3 [1]. The model-checking problem for ATL is PTIME-complete. The
problem is PTIME-hard even for a fixed formula.

Theorem 2.4. The model-checking problem for Fair ATL is PSPACE-complete,
and can be solved in time mPW) .1 for a game structure with m transitions, w fairness
constraints, and a Fair ATL formula of size I. The problem is PSPACE-hard even for
a fixed formula. For a bounded number of fairness constraints, the problem is PTIMFE-
complete.

Proof. The model-checking algorithm labels each state of the S with all subformulas
of given Fair ATL formula ¢, starting with the innermost subformulas. The interesting
case is when the subformulas are of the form <A>W. This requires solving a game on
S¥ with the winning condition of the form given by the second part of Lemma 2.2. In [2],
it is shown that turn-based games whose condition is a Boolean combination of formulas
of the form OOp can be solved in PSPACE, or in time m", where n is the size of the
formula and m is the size of the game structure. The size of the winning condition is
O(w), where w is the number of fairness constraints. Therefore, each temporal operator
can be processed in time m©(")| leading to the overall complexity bound.

For the lower bounds, the construction of [2] can be modified to reduce the satisfaction
of a given quantified Boolean formula ® to Fair ATL model checking of a fixed formula of
the form <a>>Vp over 2-player turn-based synchronous game structure of size O(|®|).

Theorem 2.5. The model-checking problem for ATL* is 2EXPTIME-complete. The
model-checking problem for ATL* formulas of bounded size is PTIME-complete.

Proof. As in the algorithm for CTL* model checking, we label each state q of S
by all state subformulas of ¢ that are satisfied in q, starting from the innermost state
subformulas of ¢. Let ¢’ = <A>W¥. We construct a Rabin tree automaton Ay that
accepts precisely the trees that satisfy the CTL* formula V ¥. For each state q of S,
we construct a Biichi tree automaton Ag,a = (27,Q,n,q,F) that accepts the (q, A)-
execution trees. The product of the two automata is a Rabin tree automaton that accepts

223

the (q, A)-execution trees that satisfy VU. The size of the Ag q a is bounded by the size
of game structure S. The nonemptiness problem for a Rabin tree automaton of size n

with r Rabin pairs can be solved in time O(n.r)*" [12]. Labeling a single state with ¢’
20(1%D)

requires at most time (|S|.220(M)) = |S|20(M)

most || subformulas, membership in 2EXPTIME follows.
The lower bound for the program complexity follows from Theorem 2.2 and theorem
2.3, and the upper bound from fixing |¥| in the analysis of the joint complexity above.

. Since there are |Q| states and at

Systems/ Logic Complexity
full program time
Open systems
ATL PTIME [1] PTIME [1] O(m.])
Fair ATL PSPACE PSPACE mO™)
ATL* 2EXPTIME | PTIME m2"" [1]
Closed systems
CTL PTIME [5 NLOGSPACE [10] | O(m.log?(m.n)) [8]
Fair CTL PTIME [5 PTIME [9] O(m.log?(n.1)) [8]
CTL* PSPACE [5] | NLOGSPACE [10] | O(m(m + logn)?) [8]
Table 1

3. Conclusions. While closed systems are naturally modeled as Kripke structures,
a general model for open systems is the concurrent game structure. Closed systems
correspond to the special case of a single player. Game structure degenerates to Kripke
structure, ATL degenerates to CTL and ATL* to CTL* in this case. The model —
checking complexity results are summarized in Table 1. All complexities in the table
denote tight bounds. m is the size of the structure and 1 is the length of the formula.

REFERENCES

[1] R. ALUR, TH. HENZINGER, O. KUPFERMAN. A Hernating-time Temporal Logic. Pro-
ceedings of the 38th IEEE Symposium on Foundations of Computer Science (FOCS), 1997,
100-109.

[2] R. ALUR, S. LA TORRE, P. MADHUSUDAN. Playing Games with Boxes and Diamonds.
Technical report, University of Pennsylvania, 2002.

[3] C. BEERL. On the membership problem for functional and multi-valued dependencies in
relational databases. ACM Transactions on Database Systems, 5 (1980), 241-259.

[4] E. M. CLARKE, E. A. EMERSON. Design and synthesis of synchronization skeletons using
branching-temporal logic. In: Proceedings of the International Workshop on Logic of Programs.
Springer-Verlag, 131, 1981, 52-71.

[5] E. M. CLARKE, E. A. EMERSON, A. P. SISTLA. Automatic Verification of finite-state
concurrent systems using temporal-logic specifications. ACM Transactions on Programming
Languages and Systems, 8 (1986), No 2, 244-263.

[6] E. A. EMERSON, J. Y. HALPERN. Sometimes and not never revisited: On branching versus
linear time. Journal of the ACM, 33 (1986), No 1, 151-178.

224

[7] N. D. JONES. Space-bounded reducibility among combinatorial problems. Journal of Com-
puter and System Sciences, 11 (1975), 68-75.

[8] O. KuPFERMAN. Model Checking for Branching-Time Temporal Logic. PhD Thesis, 1995.

[9] O. KUPFERMAN, M. VARDI. Verification of fair transition systems. Chicago Journal of
Theoretical Computer Science, (1998).

[10] O. KUPFERMAN, M. VARDI, P. WOLPER. An automata-theoretic approach to branching-
time model checking. Journal of the ACM, 47 (2000), No 2, 312-360.

[11] K. L. McMILLAN. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[12] A. PNUELI, R. ROSNER. On the synthesis of a reactive module. In: Proceedings of the
16th International Symposium on Principles of Programming Languages. ACM Press, 1989,
179-190.

[13] W. VisseEr. Efficient CTL* Model Checking Using Games and Automata. PhD Thesis,
1998.

Irena Atanasova

Southwestern University “N. Rilski”
Department of Computer Science
66, Ivan Mihajlov Str.

2700 Blagoevgrad, Bulgaria
e-mail: irenatm@aix.swu.bg

OTBOPEHUTE CUCTEMMU CPEILY 3ATBOPEHUTE CUCTEMMUI

Upena Aranacosa

JlokaTo uHeiiHaTa BB BPEMETO U PA3KJIOHEHATAa BbB BPEMETO TEMIIOPAJIHHU JIOTUKH
LTL u BTL ca ecrecTBeru e3uru 3a crienpuKaIus 3a 3aTBOPEHN CUCTEMHU, TO aJITep-
HaTUBHATA BbB BpemeTo Jjioruka ATL e ecrecTBen e3uk 3a crienuduKariys 3a OTBOPEHN
cucremu. LTL monycka camo KBaHTH(MUKAIUS HA OOITHOCT HAJ| BCUYKH II'bTHINA, KOW-
TO ca TeHepUPaHU Ype3 U3IbJIHeHneTo Ha cucrema. BTL mosposisiBa KBaHTU(MDUKAIMS
3a OOIIHOCT M ChINecTByBaHe HaJl Bcmuku mbruina. ATL mpejmara kBanTUMUKAIMST
10 U30MpP HaJI TE3U II'bTHUINA, KOUTO Ca Bb3MOXKHU pe3ysraTu oT urpure. B rabmuma 1
ca MOKa3aHU Pe3yJITaTUTE 3a CJIO0XKHOCTTA Ha MpobjieMa Ha MPOBEpKaTa Ha MOJENIA 33
BTL u ATL norukure.

225

