
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2003

MATHEMATICS AND EDUCATION IN MATHEMATICS, 2003

Proceedings of the Thirty Second Spring Conference of

the Union of Bulgarian Mathematicians

Sunny Beach, April 5–8, 2003

GENERATING AND IDENTIFICATION OF MONOTONE

BOOLEAN FUNCTIONS

Valentin Bakoev

Three algorithms, based on a matrix structure, are described here. First of them
generates all monotone Boolean functions of n variables in lexicographic order. The
second one determines the first (resp. the last) lexicographically minimal true (resp.
maximal false) vector of an unknown function. It serves the third algorithm, which
identifies an unknown monotone Boolean function f of n variables by using member-
ship queries only. For up to 6 variables it determines f with at most m.n queries,
where m is the combined size of the sets of minimal true and maximal false vectors
of f .

1. Introduction. The problems in the area of monotone Boolean functions (MBFs)
are important not only for the Boolean algebra. Many of them concern problems, aris-
ing in various fields, such as graph (hypergraph) theory, threshold logic, circuit theory,
computation learning theory, artificial intelligence etc. [2, 3, 6]. Many of them still
have open complexities and some scientists recommend new structures and tools to be
searched and used [2, 6]. Three of the well known problems, concerning MBFs are: (1)
Dedekind’s problem, (2) Identification problem, (3) Searching the maximal upper zeros
(resp. minimal lower ones) [7, 11].

In [1, 10] we introduced one matrix structure and summarized three algorithms, re-
lated to the solving of problems (1), (2) and (3). Here we present these algorithms and
our recent results about them.

2. Basic notions, definitions and preliminary results. Let α = (a1, . . . , an),
β = (b1, . . . , bn) be binary vectors from the n−dimensional Boolean cube {0, 1}n. An
ordinal number of the vector α is the number #(α) = a1.2

n−1 + a2.2
n−2 + · · · + an.20.

The vector α precedes lexicographically vector β, if there exists an integer k, 1 ≤ k ≤ n−1
such that ai = bi for i = 1, 2, . . . , k and ak+1 < bk+1. When the vectors from {0, 1}n are
in lexicographic order (as we consider further), their ordinal numbers form the sequence
0, 1, . . . , 2n − 1.

The relation “�” is defined over {0, 1}n × {0, 1}n as follows: α � β iff ai ≤ bi for
i = 1, 2, . . . , n. It is reflexive, antisymmetric and transitive and so {0, 1}n, towards the
relation “�”, is a partially ordered set (POSet). When α � β or β � α we call α and β

comparable, otherwise we call them incomparable.
A Boolean function (or simply a function) f of n variables is a mapping f : {0, 1}n →

{0, 1}. If α, β ∈ {0, 1}n and α � β always implies f(α) ≤ f(β), then the function f is

226

called monotone (or positive). If f(α) = 0 (resp. = 1) then α is called a false (resp.
true) vector of f . The set of all false vectors (resp. all true vectors) of f is denoted by
F (f) (resp. T (f)). When the set T (f) = ∅ (resp. F (f) = ∅) the corresponding function
is a constant 0̃ (resp. constant 1̃). The false vector α is called maximal if there is no
other vector α′ ∈ F (f), such that α � α′ and α 6= α′. The set of all maximal false
vectors is denoted by max F (f). Symmetrically, the true vector β is called minimal if
there is no other vector β′ ∈ T (f), such that β′ � β and β′ 6= β, also min T (f) denotes
the set of all minimal true vectors of f . If f is a monotone function, it has an unique
minimal disjunctive normal form (MDNF), consisting of all prime implicants of f , where
all literals are uncomplemented. There is a bijection between the set of prime implicants
in MDNF of f and the set min T (f), i. e. each prime implicant of the type xi1xi2 . . . xik

corresponds to the vector having ones in positions i1, i2, . . . , ik and zeros in all the rest
positions. Let Pn denotes the set of all MBFs of n variables and Cn - the set of all
possible prime implicants for Pn.

We define the matrix Mn = ||mi,j || with dimension 2n × 2n as follows: for each pair
of vectors α, β ∈ {0, 1}n, such that #(α) = i and #(β) = j, we put mi,j = 1 if α � β

and mi,j = 0 otherwise. Since “�” is reflexive, antisymmetric and also the vectors from
{0, 1}n are in lexicographic order, Mn is a triangular matrix, containing ones on its major
diagonal and zeros under it. For n = 1 and n = 2 the corresponding matrices are:

M1 =

(

1 1
0 1

)

M2 =









1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1









Theorem 1. Mn is a block matrix of the type

Mn =

(

Mn−1Mn−1

On−1 Mn−1

)

,

where Mn−1 denotes the same matrix with dimension 2n−1 × 2n−1, and On−1 denotes

the zero matrix with dimension 2n−1 × 2n−1.

Remark 1. The triangle of numbers, placed on and over the major diagonal of the
matrix Mn, is related to other well known structures:

a) it is a discrete variant of the fractal structure of the Serpinsky’s triangle (we due
this note to Prof. Krassimir Manev, Sofia University);

b) it coincides with the Pascal’s triangle with 2n rows, where all its numbers are taken
modulo 2.

By Rn = {r0, . . . , r2n−1} we denote the set of all rows of Mn (as binary vectors).

Theorem 2. Let α = (a1, a2, . . . , <) n) ∈ {0, 1}n, #(α) = i, 1 ≤ i ≤ 2n − 1 and

α has ones in positions (i1, i2, . . . , ir), 1 ≤ r ≤ n. Then the i−th row ri of the matrix

Mn is the vector with functional values of the prime implicant ci = xi1xi2 . . . xir
, being a

monotone function. When #(α) = 0, the zero row of Mn corresponds to the constant 1̃.

For n = 3, the assertion of Theorem 2 is illustrated by the following table:

227

α = (x1, x2, x3) i = #(α) M3 ci

(0 0 0) 0 1 1 1 1 1 1 1 1 1̃
(0 0 1) 1 0 1 0 1 0 1 0 1 x3

(0 1 0) 2 0 0 1 1 0 0 1 1 x2

(0 1 1) 3 0 0 0 1 0 0 0 1 x2x3

(1 0 0) 4 0 0 0 0 1 1 1 1 x1

(1 0 1) 5 0 0 0 0 0 1 0 1 x1x3

(1 1 0) 6 0 0 0 0 0 0 1 1 x1x2

(1 1 1) 7 0 0 0 0 0 0 0 1 x1x2x3

Remark 2. Theorem 2 states the bijection ϕ : Rn → Cn, the bijection between
the vector representation and the formula representation of the prime implicants. The
disjunction (resp. conjunction) over the set Rn we understand as a bit-serial disjunction
(resp. conjunction). For ri, rj ∈ Rn, ϕ(ri∨rj) = ci∨cj and ϕ(ri.rj) = ci.cj , and so ϕ is an
isomorphism. Any monotone function f can be expressed in terms of a linear combination
f(x1, x2, . . . , xn) = a0r0∨a1r1∨· · ·∨a2n−1r2n−1, where the coefficients a0, a1, . . . , a2n−1 ∈
{0, 1} (the trivial combination corresponds to 0̃). When f(x1, x2, . . . , xn) = ri1 ∨ ri2 ∨
· · · ∨ rik

is a MDNF of f , then rij
and ril

, 1 ≤ j < l ≤ k, are pairwise incomparable.

3. Algorithms, based on the matrix structure. The Dedekind’s problem is a
problem for enumerating all MBFs of n variables (or all antichains of subsets of a given
POSet) [7]. A general formula for |Pn| is still not derived. Till 1999 this number was
known only for 0 ≤ n ≤ 6 variables. Few years we tried to find the cardinality of |P7|,
applying the principle “generating and counting” [10]. It was not enough powerful and
in 1999 Vl. Jovovic etc. succeeded to derive a formulae for |P7| and |P8|, using analytic
techniques mostly [8].

An algorithm for generating all MBFs for a given n is outlined in [7], its C++ realiza-
tion (destined to test sorting the networks) is given in [8]. It is based on the statement,
that if g, h ∈ Pn−1 and g � h, then their concatenation f = gh is also a monotone
function and f ∈ Pn. So the program generates and stores all MBFs of n − 1 variables
to obtain all these of n variables, for 1 ≤ n ≤ 7. Some aspects of the generating problem
are considered and investigated in [3].

Our first algorithm, called “GEN”, generates all MBFs, whose vectors are in lexico-
graphic order, for a given n (1 ≤ n ≤ 7). It is based on the matrix Mn as follows: if
the i−th row ri of Mn has zero in position j, i < j < 2n − 1, then the rows ri and
rj are incomparable and f = ri ∨ rj = ci ∨ cj is a MBF. If f has zero in position k,
i < k < 2n − 1, then f and rk are incomparable and f = ri ∨ vj ∨ vk = ci ∨ cj ∨ ck is a
MBF. And so on.
Algorithm Gen

Input: the number of the variables n

Output: the vectors of Pn in lexicographic order
Procedure:

1) Set f = 0̃. Output f .
2) For each row ri, i = 2n − 1, . . . , 0, set f = ri and:

a) output f ;
b) for each position j, j = 2n − 2, . . . , i check whether f [j] = 0. If “Yes” then set

(recursively) f = f ∨ rj . Go to a).

228

The Pascal-code of Gen, given below, is very simple.

Procedure Gen (G: BoolFun; i : byte);

var j : byte;

begin

for j:= i to dim do { disjunction between the i-th row }

if M[i,j]=1 then G[j]:= 1; { and the current function }

Output (G);

for j:= dim-1 downto i+1 do { searching zero for the next }

if G[j]=0 then Gen (G, j); { disjunction (function) }

end; { Gen }

Begin {Main}

...

readln (n); { number of variables }

dim:= 1 shl n - 1; { dim:= 2^n-1 }

Fill_Array; { filling in the matrix M }

FillChar (F, dim, 0); { the constant zero - separately }

Output (F);

for k:= dim downto 0 do Gen (F, k);

End.

Comments.

a) The Procedure Fill Array generates and stores the matrix M– by using either
Remark 1 b), or Theorem 1). For n > 7 the matrix becomes large – so bit-representation
of the matrix or other program environment must be used. A similar algorithm, which
does not store the matrix in the memory, was invented about five years ago by Prof.
Stoyan Kapralov (Technical University in Gabrovo).

b) GEN works correctly because the cycles have decreasing step. So, the rightmost
zero of the serial function is selected for a disjunction on each step of the recursion.

c) GEN can generate all functions, which are lexicographically after given function f

– it must be assigned to F (instead of 0̃) initially. Also the cycle in the main program
must begin from i – the position of the leftmost one in f .

d) GEN works in incremental polynomial time [5], i. e. the serial MBF is generated
in time polynomial towards the combined size of: the input, the last configuration and a
certain row from Rn.

e) GEN can be modified easily to generate all antichains of a given POSet in a specific
order.

The next algorithm, called “SEARCH”, determines a minimal (resp. maximal) true
(resp. false) vector (problem (3)) of an unknown MBF f ∈ Pn, by using membership

queries only. In the terms of computational learning theory, this serves to the exact
learning by queries to an oracle: it answers “Yes” or “No” to the asking f(α) = 0 (or
f(α) = 1), for some unknown vectors α ∈ {0, 1}n [2, 6]. A similar and most popular
algorithm is the algorithm of Gainanov [2, 6], which finds a new vector for minT (f) or
maxF (f) and enlarges one of them. It uses at most n+1 membership queries and needs
O(n) total time to perform certain operations on the vectors.

229

SEARCH is based on Theorem 1 and it is simply a binary search. When it searches
the first (resp. the last) lexicographically vector of minT (f) (resp. maxF (f)), it tests
only the corresponding odd (resp. even) positions of the unknown function f ∈ Pn.
Each time it starts from position 2n−1 − 1 (resp. 2n−1) and chooses the half of the
function (subfunction) for the next step. So SEARCH uses exactly n queries without
any operations on the vectors.

The problem (2) (precisely its restricted version) is studied extensively by Makino,
Ibaraki etc. [6, 2]. They propose some new algorithms, which decide whether an unknown
function f ∈ Pn is 2−monotonic or not, and if f is 2−monotonic output both minT (f)
and maxF (f). These algorithms work in polynomial total time towards the combined
size of the input n and of the output m = |minT (f)| + |maxF (f)|, and use polynomial
(towards n and m) number of queries. Applying these results Shmulevich etc. proved,
that almost all MBFs are polynomially learnable using membership queries [9].

The third algorithm is called “IDENTIFY” and it is an example of exact learning.
It identifies an unknown f ∈ Pn, without any restrictions, by using membership queries
only and determines its sets minT (f) and maxF (f). IDENTIFY works recursively.
On each step it determines the leftmost one and the rightmost zero in f (by using
SEARCH), and it splits f into two subfunctions g, h ∈ Pn−1, whose concatenation is
f . After that it identifies recursively each of the subfunctions g and h. Splitting of the
subfuction continues until the position of the rightmost zero in the serial subfunction
becomes smaller than the position of the leftmost one in it. Then a separation of its
prime implicants starts. IDENTIFY submits to the dynamic-programming strategy. Its
main idea is realized by the procedure “ID”, given below (some details are omitted).

Procedure Id (l, r, l1, r0 : word);

{ l is the left, r is the right boundary of the subfunction; }

{ l1 and r0 are the positions of the leftmost 1 and }

{ of the rightmost 0 in it, respectively }

var m : word; { position of the median }

p0, { positions of the leftmost 1 and }

p1 : word; { the rightmost 0 in the subfunctions }

begin

if l1 > r0 then Registrate_Prime_Implicants (l1, r)

else

begin

m:= (l+r) div 2;

p0:= Search_Zero (l, m);

Id (l, m, l1, p0);

p1:= Search_One (m+1, r);

Id (m+1, r, p1, r0);

end;

end; {Id}

IDENTIFY is still in development and investigation. The recent experimental results
show, that it identifies an unknown function f ∈ Pn (1 ≤ n ≤ 6) by using at most n.m

membership queries. Other results are given in the following table, where qn denotes the
corresponding number of queries for n variables.

230

n Maximal qn Average qn n Maximal qn Average qn

1 2 1.66 4 12 8.95
2 3 2.66 5 22 16.94
3 6 4.70 6 41 31.23

Our future goals concern IDENTIFY and they are:
1) to prove that it uses at most n.m queries for n > 6;
2) to reduce the recent exponential time complexity of the algorithm to a polynomial

one (towards n and m).

REFERENCES

[1] V. Bakoev. Some properties of one matrix structure at monotone Boolean functions. Proc.
of the EWM Intern. Workshop on Groups and Graphs. Varna, Bulgaria, 2002, 5–8.
[2] E. Boros, P. L. Hammer, T. Ibaraki, K. Kawakami. Polynomial time recognition of
2-monotonic positive Boolean functions given by an oracle. SIAM J. Comput. 26, No 1 (Feb.
1997) 93–109.
[3] V. Gurvich, L. Khachiyan. On generating the irredundant conjunctive and disjunctive
normal forms of monotone Boolean functions. Discr. Appl. Mathematics, 96–97 (1999), 363–
373.
[4] http://home.san.rr.com/ronz/Articles/998Dedekind.cpp.html

[5] D. S. Johnson, M. Yannakakis. On generating all maximal independent sets. Inform.

Process. Letters, 27, (1988), 119–123.
[6] K. Makino, T. Ibaraki. A fast and simple algorithm for identifying 2-monotonic positive
Boolean functions. J. Algorithms, 26 (1998), 291–305.
[7] http://mathpages.com/home/kmath030.htm, Dedekind’s Problem
[8] http://mathpages.com/home/kmath094.htm, Generating the M. B. Functions
[9] I. Shmulevich, A. Korshunov, J. Astola. Almost all monotone Boolean functions are
polynomially learnable using membership queries. Inform. Process. Letters, 79 (2001), 211–213.
[10] В. Бакоев. Генериране на подмножествата на частично наредено множество със за-
пазване на сянката. Докл. от IV конф. “Приложения на математиката в икономиката и
проблеми на обучението по математика и информатика”, 1995, ВФСИ “Д.А. Ценов” и СМБ-
Свищов, 186–192.
[11] М. М. Ковалев, П. Миланов. Монотонные функции многозначной логики и супер-
матроиды, Журнал вычисл. математики и математ. физики, 24, є 5 (1984), 786–789.

Valentin P. Bakoev
Faculty of Pedagogy
University of Veliko Tarnovo
V. Tarnovo, Bulgaria

231

ГЕНЕРИРАНЕ И ИДЕНТИФИЦИРАНЕ НА МОНОТОННИТЕ

БУЛЕВИ ФУНКЦИИ

Валентин П. Бакоев

В работата са представени три алгоритъма, основаващи се на една матрична
структура. Първият от тях генерира лексикографски монотонните булеви фун-
кции на n променливи. Вторият определя лексикографски първия минимален
истинен (респ. последния максимален неистинен) вектор на непозната функция.
Той обслужва третия алгоритъм, който идентифицира непозната монотонна фун-
кция f на n променливи чрез използване само на т. нар. „въпроси за членство“ –
дали стойността на функцията върху даден вектор е равна на нула. При n про-
менливи, 1 ≤ n ≤ 6, алгоритъмът разпознава f , използвайки не повече от n.m

такива въпроси, като m е сумарната големина на множествата от минималните
истинни и максималните неистинни вектори на f .

232

