MATEMATИKA И MATEMATИЧЕСКО ОБРАЗОВАНИЕ, 2003 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2003 Proceedings of the Thirty Second Spring Conference of the Union of Bulgarian Mathematicians Sunny Beach, April 5–8, 2003

SOLUTIONS AND PERTURBATION THEORY OF A SPECIAL MATRIX EQUATION I: PROPERTIES OF SOLUTIONS^{*}

Vejdi Ismailov Hasanov, Ivan Ganchev Ivanov

Dedicated to Milko Petkov on the occasion of his 70th birthday

A special nonlinear matrix equation is considered. Theorems for the existence of a special positive definite solution X_l and a minimal positive definite solution X_S are proved. Some estimates of these solutions are derived.

1. Introduction. We consider the nonlinear matrix equation

$$) X + A^* X^{-n} A = Q \,,$$

(1)

where $A, Q \in C^{m \times m}$, and Q is a positive definite matrix, and n is an integer. We study the properties of positive definite solutions of equation (1). The more general equation $X + A^* \mathcal{F}(X)A = Q$ has been investigated in [2, 5]. Some necessary and sufficient conditions for the existence of a solution are derived in [5]. The Hermitian positive definite solutions of the equation (1) and its properties have been studied in [3]. The consideration of the nonlinear matrix equations $X \pm A^* X^{-n} A = Q$ and a perturbation theory for this equation is proposed in [4]. In this paper we continue to investigate properties of the solutions of the equation (1). Properties of the positive definite solutions of equation (1) with n = 1 are studied in [6].

Let X_S and X_L be positive definite solutions of the equation (1). If every positive definite solution X satisfies $X_S \leq X \leq X_L$, then X_S and X_L are minimal and maximal solutions of (1), respectively.

We use the following notations. With A > 0 $(A \ge 0)$ we denote a positive definite (semidefinite) matrix A. If A - B > 0 $(A - B \ge 0)$ we write A > B $(A \ge B)$. The norm used in this paper is the spectral matrix norm.

2. Solutions of $X + A^*X^{-n}A = Q$.

Theorem 1. If equation (1) has a positive definite solution X, then

$$\sqrt[n]{AQ^{-1}A^*} < X \le Q - \frac{1}{(\|Q\| \|Q^{-1}\|)^{n-1}} A^* Q^{-n} A.$$

^{*}This work was supported by the Shoumen University under contract 27/9.05.2002. 244

Proof. According to Theorem 4 [4] we have $\sqrt[n]{AQ^{-1}A^*} < X$. Since $X \leq Q$, then $X^n \leq \left(\frac{M_Q}{m_Q}\right)^{n-1} Q^n$, where $m_Q I \leq Q \leq M_Q I$ [1] $(m_Q = ||Q^{-1}||^{-1} \text{ and } M_Q = ||Q||)$. Hence

$$X = Q - A^* X^{-n} A \le Q - \frac{1}{\left(\|Q\| \|Q^{-1}\| \right)^{n-1}} A^* Q^{-n} A.$$

Corollary 2. If equation (1) has a positive definite solution, then $Q - \frac{1}{\left(\|Q\| \|Q^{-1}\|\right)^{n-1}} A^* Q^{-n} A - \sqrt[n]{AQ^{-1}A^*} > 0.$

2.1. A Special Solution X_l .

Theorem 3. If $||A|| \sqrt{||Q^{-1}||^{n+1}} < \sqrt{\frac{n^n}{(n+1)^{n+1}}}$, then there exists a positive definite solution X_l of the matrix equation (1) for which the inequalities

(2)
$$\frac{n}{(n+1)\|Q^{-1}\|} I < X_l \le Q - \frac{1}{\left(\|Q\| \|Q^{-1}\|\right)^{n-1}} A^* Q^{-n} A$$

hold. The inequalities (2) are satisfied for the solution X_l only.

Proof. Consider the recurrence equation
(3)
$$X_{k+1} = Q - A^* X_k^{-n} A$$
, $X_0 = \gamma I$,
where $\gamma \in \left(\frac{n}{(n+1)\|Q^{-1}\|}, \frac{1}{\|Q^{-1}\|}\right]$. We will show that $\frac{n}{(n+0)\|Q^{-1}\|} I < X_k \leq Q$ for
every matrix X_k of the matrix sequence (3). Since $\|A\|\sqrt{\|Q^{-1}\|^{n+1}} < \sqrt{\frac{n^n}{(n+1)^{n+1}}}$ we
have $A^*A < \frac{n^n}{[(n+1)\|Q^{-1}\|]^{n+1}} I$. Consider the function
 $\varphi(\alpha) = \alpha^n \left(\frac{1}{\|Q^{-1}\|} - \alpha\right)$. We have
 $\max_{\alpha>0} \varphi(\alpha) = \varphi \left(\frac{n}{(n+1)\|Q^{-1}\|}\right) = \frac{n^n}{[(n+1)\|Q^{-1}\|]^{n+1}}$.
The function φ is continuous and monotone decreasing on $\left(\frac{n}{(n+1)(n+1)}, \frac{1}{(n+1)(n+1)}\right)$.

The function φ is continuous and monotone decreasing on $\left(\frac{n}{(n+1)\|Q^{-1}\|}, \frac{1}{\|Q^{-1}\|}\right)$. Hence for every $\gamma \in \left(\frac{n}{(n+1)\|Q^{-1}\|}, \frac{1}{\|Q^{-1}\|}\right)$ there exists $\alpha_0 \in \left(\frac{n}{(n+1)\|Q^{-1}\|}, \gamma\right]$, such that $A^*A \leq \alpha_0^n \left(\frac{1}{\|Q^{-1}\|} - \alpha_0\right) I$. We have $X_0 = \gamma I \geq \alpha_0 I$.

245

Assume that $X_k \ge \alpha_0 I$. We have $X_k^{-n} \le \frac{1}{\alpha_0^n} I$. For X_{k+1} we find

$$\begin{aligned} X_{k+1} &= Q - A^* X_k^{-n} A \ge \frac{1}{\|Q^{-1}\|} I - \frac{A^* A}{\alpha_0^n} \\ &\ge \frac{1}{\|Q^{-1}\|} I - \frac{\alpha_0^n (1 - \alpha_0 \|Q^{-1}\|)}{\alpha_0^n \|Q^{-1}\|} I = \alpha_0 I \end{aligned}$$

Hence $X_k \ge \alpha_0 I$ for every $k = 1, 2, \dots$ Obviously $X_k \le Q$. We obtain $\frac{n}{(n+1)\|Q^{-1}\|} I < \alpha_0 I \le X_k \le Q, \quad k = 0, 1, 2, \dots$

We prove that $\{X_k\}$ is a Cauchy sequence. Since

$$X_{k+1} - X_k = A^* X_k^{-n} (X_k^n - X_{k-1}^n) X_{k-1}^{-n} A$$

= $A^* \sum_{i=1}^n X_k^{-i} (X_k - X_{k-1}) X_{k-1}^{i-(n+1)} A$

then we obtain

$$\begin{aligned} \|X_{k+1} - X_k\| &\leq \|A\|^2 \sum_{i=1}^n \|X_k^{-i}\| \|X_{k-1}^{i-(n+1)}\| \|X_k - X_{k-1}\| \\ &\leq \frac{n\|A\|^2}{\alpha_0^{n+1}} \|X_k - X_{k-1}\| \leq \dots \\ &\leq \left[\frac{n\|A\|^2}{\alpha_0^{n+1}}\right]^k \|X_1 - X_0\| = q^k \|X_1 - X_0\|, \\ &= \frac{n\|A\|^2}{\alpha_0^{n+1}} < 1, \text{ due to } \alpha_0 > \frac{n}{(n+1)\|Q^{-1}\|} \text{ and } \|A\|^2 < \frac{n^n}{\left[(n+1)\|Q^{-1}\|\right]} \end{aligned}$$

 $> \frac{n}{(n+1)\|Q^{-1}\|}$ and $\|A$ where q $\overline{\left[(n+1)\|Q^{-1}\|\right]^{n+1}}.$ α_0

Hence the sequence $\{X_k\}$ forms a Cauchy sequence in the Banach space and this sequence converges to X_l and $\frac{n}{(n+1)\|Q^{-1}\|}I < X_l \leq Q$.

From Theorem 1 we have $X_l \le Q - \frac{1}{(\|Q\| \|Q^{-1}\|)^{n-1}} A^* Q^{-n} A$.

Assume that there exist two solutions X', X'' of the equation (1), such that $\frac{n}{(n+1)\|Q^{-1}\|}\,I < X' \leq Q$ and $n(n+1)\|Q^{-1}\|\,I < X'' \leq Q.$ Then

$$\begin{aligned} \|X' - X''\| &\leq \|A\|^2 \sum_{i=1}^n \|(X')^{-i}\| \|(X'')^{i-(n+1)}\| \|X' - X''\| \\ &< n \|A\|^2 \left(\frac{(n+1)\|Q^{-1}\|}{n}\right)^{n+1} \|X' - X''\| < \|X' - X''\| \end{aligned}$$

Hence $X' \equiv X''$. \Box

Hence $X' \equiv X''$. \Box **Remark 1.** If $||A|| \sqrt{||Q^{-1}||^{n+1}} < \sqrt{\frac{n^n}{(n+1)^{n+1}}}$ and if the equation (1) has a maximal positive definite solution X_L , then $X_L \equiv X_l$. We know $X_L \ge X_l$. Hence the inequalities (2) are satisfied for X_L . Using the Theorem 3 we have $X_L \equiv X_l$. 246

Corollary 4. If $||A|| \sqrt{||Q^{-1}||^{n+1}} < \sqrt{\frac{n^n}{(n+1)^{n+1}}}$, then the solution X_l of the matrix equation (1) satisfies the inequality

$$||X_l^{-1}|| < \frac{n+1}{n} ||Q^{-1}||.$$

Corollary 5. If $||A|| \sqrt{||Q^{-1}||^{n+1}} < \sqrt{\frac{n^n}{(n+1)^{n+1}}}$, then the solution X_l of the matrix equation (1) satisfies the inequality $\frac{n}{n+1} ||Q|| < ||X_l||$.

Proof. Note that from Corollary 4 we obtain $||X_l^{-1}|| < \frac{n+1}{n} ||Q^{-1}||$. Hence

$$\begin{aligned} \|X_{l}\| &= \|Q - A^{*}X_{l}^{-n}A\| \geq \|Q\| - \|A\|^{2} \|X_{l}^{-n}\| \\ &> \|Q\| - \|A\|^{2} \left(\frac{n+1}{n} \|Q^{-1}\|\right)^{n} \\ &> \|Q\| - \frac{n^{n}}{\left[(n+1)\|Q^{-1}\|\right]^{n+1}} \left(\frac{n+1}{n} \|Q^{-1}\|\right)^{n} \\ &= \|Q\| - \frac{1}{(n+1)\|Q^{-1}\|} \geq \|Q\| - \frac{1}{n+1} \|Q\|. \end{aligned}$$

2.2. The Minimal Solution X_S .

Theorem 6. If the matrix equation (1) with nonsingular matrix A has a positive definite solution, then it has a minimal solution X_S . Moreover, the iterative algorithm (4) $X_{k+1} = \sqrt[n]{A(Q-X_k)^{-1}A^*}, \quad X_0 = \sqrt[n]{AQ^{-1}A^*}$

converges to X_S .

Proof. The proof is analogous to the proof of the Theorem 6 [3]. It is easy to prove that the matrix sequence (4) is increasing and bounded by any positive definite solution of (1). Hence this sequence converges to the minimal solution X_S . \Box

Theorem 7. If
$$||A|| \sqrt{||Q^{-1}||^{n+1}} \le \sqrt{\frac{n^n}{(n+1)^{n+1}}}$$
, then X_S satisfies the inequality $X_S \le \frac{n}{(n+1)||Q^{-1}||} I$.

Proof. According to Theorem 3 and Theorem 6 it follows that there exists X_S . Consider the iterative equation (4) with $X_0 = \frac{n}{(n+1)\|Q^{-1}\|} I$. Using induction it is easy to prove that the matrix sequence $\{X_k\}$ is monotonically decreasing and bounded from below. Hence this sequence converges to a solution X with $X \leq \frac{n}{(n+1)\|Q^{-1}\|} I$. \Box

REFERENCES

[1] T. FURUTA. Operator Inequalities Associated with Hölder-McCarthy and Kantorovich Inequalities. J. Inequal. Appl., 6 (1998), 137–148.

[2] S. M. EL-SAYED, A. C. M. RAN. On an Iteration Method for Solving a Class of Nonlinear Matrix Equations. *SIAM J. Matrix Anal. Appl.*, **23** (2001), 632–645.

[3] V. HASANOV, I. IVANOV. Positive Definite Solutions of the Equation $X + A^*X^{-n}A = I$. In: Numerical Analysis and Application, LNCS 1988. Springer-Verlag Berlin Heidelberg, 2001, 377–384.

[4] V. HASANOV, I. IVANOV. Solutions and Perturbation Estimates for the Matrix Equations $X \pm A^* X^{-n} A = Q$. XXVIII Summer School Applications of Mathematics and Engineering and Economics, Sozopol, June 2002.

[5] I. C. M. RAN, M. C. B. REURINGS. On the Nonlinear Matrix Equation $X + A^* \mathcal{F}(X)A = Q$: Solution and Perturbation Theory. *Linear Algebra Appl.*, **346** (2002), 15–26.

[6] X. ZHAN, J. XIE On ehe Matrix Equation $X + \hat{A}^T X^{-1} A = I$. Linear Algebra Appl., 147 (1996), 337–342.

Ivan Ganchev Ivanov	Vejdi Ismailov Hasanov
Faculty of Economics and	Laboratory of Mathematical Modelling
Business Administration	Shoumen University
Sofia University,	9712 Shoumen, Bulgaria
1113 Sofia, Bulgaria	e-mail v.hasanov@fmi.shu-bg.net
e-mail i_ivanov@feb.uni-sofia.bg	

РЕШЕНИЯ И ПЕРТУРБАЦИОННА ТЕОРИЯ ЗА СПЕЦИАЛНО МАТРИЧНО УРАВНЕНИЕ I: СВОЙСТВА НА РЕШЕНИЯТА

Вежди Исмаилов Хасанов, Иван Ганчев Иванов

Разгледано е едно специално нелинейно матрично уравнение. Доказани са теореми за съществуване на специално положително дефинитно решение X_l и минималното положително дефинитно решение X_S . Получени са неравенства за тези решения.