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A special nonlinear matrix equation is considered. Theorems for the existence of a
special positive definite solution X; and a minimal positive definite solution Xg are
proved. Some estimates of these solutions are derived.

1. Introduction. We consider the nonlinear matrix equation
(1) X+ A* X "A=Q,
where A, Q € C™*™ and @ is a positive definite matrix, and n is an integer. We study
the properties of positive definite solutions of equation (1). The more general equation
X + A*F(X)A = @ has been investigated in [2, 5]. Some necessary and sufficient
conditions for the existence of a solution are derived in [5]. The Hermitian positive
definite solutions of the equation (1) and its properties have been studied in [3]. The
consideration of the nonlinear matrix equations X + A*X ™" A = ) and a perturbation
theory for this equation is proposed in [4]. In this paper we continue to investigate
properties of the solutions of the equation (1). Properties of the positive definite solutions
of equation (1) with n = 1 are studied in [6].

Let Xg and X, be positive definite solutions of the equation (1). If every positive
definite solution X satisfies Xg < X < X, then Xg and X are minimal and maximal
solutions of (1), respectively.

We use the following notations. With A > 0(A > 0) we denote a positive definite
(semidefinite) matrix A. If A— B > 0(A — B > 0) we write A > B(A > B). The norm
used in this paper is the spectral matrix norm.

2. Solutions of X + A*X ™A = Q.
Theorem 1. If equation (1) has a positive definite solution X, then

VAQTA* < X < Q — L AT QA
(ley—pn""
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Proof. According to Theorem 4 [4] we have {/AQ~1A* < X. Since X < @, then

M, n—1
xv< (32) @ where mgl <Q < Mol 1] (mg = Q™ and Mg = Q)
Hence

1

X=Q-A*X"A<Q-— —
(el Q-

A*Q " A. O

Corollary 2. If equation (1) has a positive definite solution, then

0- L S ATQT"A — YAQTTA* > 0.
(lQie=11)

2.1. A Special Solution Xj.
Theorem 3. If[|A[|/|| Q" < 4 /(Jrnﬁ’ then there ezists a positive definite
n n

solution X of the matriz equation (1) for which the inequalities
n 1

(2) —— I <X <Q - —
(n+ DR~ (Il ="
hold. The inequalities (2) are satisfied for the solution X; only.

A*Q A

Proof. Consider the recurrence equation
(3) X1 =Q - A X, "A, Xo =11,

n 1
where v € < ) — } . We will show that
(n+ Q7" lQtl

n
— T <X < f
E

every matrix X of the matrix sequence (3). Since || A||/||Q||"t! < 1 we

n

n
have A*A < i =1 I. Consider the function
[(n+1)[|Q 1]

ola) =a™ (HQ—11|| - a). We have

nn

maxpla) = ¢ (<n+ 1)IQ1I) Tl

n 1
The function ¢ is continuous and monotone decreasing on ( ]

(n+DIQ™HI" Q|

n .
there exists ag €

1
(n+1WQ‘W’HQ‘W}

n
Hence for every v € CEENEE 7

such that A*A < af < ag | I.

1
Q-1
We have Xg =1 > apl.
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1
Assume that X > agl. We have X,;" < —1I. For Xy we find
«

0
1 A*A
X = Q-AX,"A> ——T—-—
w k PR
1 nil — —1
> L gl naoyg D} oo
Q7] ag 1O

Hence X, > apl for every k =1,2,.... Obviously X; < Q. We obtain

n
— I <al<Xy<Q, k=012,...
(n+ DR~
We prove that {X}} is a Cauchy sequence. Since
X1 — Xy = A'X (X — X)X, A
— A*ZX (Xy — X)X, ("0 4,
i=1
then we obtain
— 71— n+1
[ X1 = Xell < AP Z X I P IIX = X
n|lA
< ”,H”l 1Xs = Xeall < ...
Qg
n||A|I21"
< [ Hn+H1 ] 1X1 = Xoll = ¢"[| X1 — Xol|,
Qg
|| ||2 n n"
where ¢ = <1,duetoag > ————— and [A4]? < —
ag’ (n+1)Q7! [(n+D)Q-1]"
Hence the sequence {X}} forms a Cauchy sequence in the Banach space and this
sequence converges to X; and —————— 1 < X; < Q.
(n+ 1)@~
1
From Theorem 1 we have X; < Q — —ATQ™"A
(lelne=1

Assume that there exist two solutions X', X" of the equation (1), such that
n
—— I < X' <Qand n(n+1)|[|Q Y I < X" < Q. Then
(m+ 1)@~

X" = X" < [lAlP? ZH T XT - X

1 -1 n+1
< n|A||2(7(”+ NI - e < - x.

Hence X' = X". O

’I’l

Remark 1. If ||A|/||QY||"+! < ,/W and if the equation (1) has a max-

imal positive definite solution X, then X; = X;. We know X; > X;. Hence the
inequalities (2) are satisfied for X . Using the Theorem 3 we have X = X.
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n
Corollary 4. If ||A|l\/||Q ™! < (_'_nw , then the solution X; of the matriz
\V (n

equation (1) satisfies the inequality

n+1
QM.

X <

Corollary 5. If [|A||/||Q ™! < / Fa TR then the solution X; of the matriz

equation (1) satisfies the inequality —||Q|| < |1 Xull -
Proof. Note that from Corollary 4 we obtain || X; || L AT ||Q !|. Hence
X0 = 1Q—-AX Al = Q] - IAlI® HXz_"H

n+1

> lal- i (o)
n" n+1 1

> Q- —

[(n+D)lIQ]
= el - = 2 el - o ]
N (n+IQM ~ nt 1770

O
2.2. The Minimal Solution Xg.

Theorem 6. If the matriz equation (1) with nonsingular matriz A has a positive
definite solution, then it has a minimal solution Xg. Moreover, the iterative algorithm

(4) Xk;Jrl = v/ A(Q — Xk)flA* , Xo = vV AQilA*
converges to Xg.

Proof. The proof is analogous to the proof of the Theorem 6 [3]. Tt is easy to prove
that the matrix sequence (4) is increasing and bounded by any positive definite solution
of (1). Hence this sequence converges to the minimal solution Xg. O

Theorem 7. If ||A||/]||Q1||nt! < (_i_nw, then Xg satisfies the inequality
V (n

n
X< —77—+—1.
(n+ DR~

Proof. According to Theorem 3 and Theorem 6 it follows that there exists Xg.

_n
(n+DIQ~

easy to prove that the matrix sequence { Xy} is monotonically decreasing and bounded

Consider the iterative equation (4) with X, = I. Using induction it is

from below. Hence this sequence converges to a solution X with X < —— 1. [J

(n+ D[R~
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PEINTEHNA N ITEPTYPBAIIMOHHA TEOPUA 3A CITEIIUAJIHO
MATPUYHO YPABHEHIUE I: CBOMCTBA HA PEIIIEHUSTA

Bexxgu UcmanioB XacanoB, WBau I'amveB VBanoB

Pasrsiesano e efno crenuaHo HeJIMHEHHO MATPpUYHO ypaBHenue. [loka3anu ca teope-
MM 38 CBIIECTBYBaHe Ha CIEIUAJTHO MTOJIOKUTETHO JePUHUTHO pernenne X; U MUHU-
MAJIHOTO ITOJIOXKUTEHO fAeduHuTHO pemterune X g. [Tosyyenn ca HepaBeHCTBa 3a TE3U
perienust.
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