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A special nonlinear matrix equation is considered. Theorems for the existence of a
special positive definite solution Xl and a minimal positive definite solution XS are
proved. Some estimates of these solutions are derived.

1. Introduction. We consider the nonlinear matrix equation

(1) X + A∗X−nA = Q ,

where A, Q ∈ Cm×m, and Q is a positive definite matrix, and n is an integer. We study
the properties of positive definite solutions of equation (1). The more general equation
X + A∗F(X)A = Q has been investigated in [2, 5]. Some necessary and sufficient
conditions for the existence of a solution are derived in [5]. The Hermitian positive
definite solutions of the equation (1) and its properties have been studied in [3]. The
consideration of the nonlinear matrix equations X ± A∗X−nA = Q and a perturbation
theory for this equation is proposed in [4]. In this paper we continue to investigate
properties of the solutions of the equation (1). Properties of the positive definite solutions
of equation (1) with n = 1 are studied in [6].

Let XS and XL be positive definite solutions of the equation (1). If every positive
definite solution X satisfies XS ≤ X ≤ XL, then XS and XL are minimal and maximal
solutions of (1), respectively.

We use the following notations. With A > 0 (A ≥ 0) we denote a positive definite
(semidefinite) matrix A. If A − B > 0 (A − B ≥ 0) we write A > B (A ≥ B). The norm
used in this paper is the spectral matrix norm.

2. Solutions of X + A∗X−nA = Q.

Theorem 1. If equation (1) has a positive definite solution X, then

n

√

AQ−1A∗ < X ≤ Q −
1

(

‖Q‖ ‖Q−1‖
)n−1 A∗Q−nA .
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Proof. According to Theorem 4 [4] we have n

√

AQ−1A∗ < X . Since X ≤ Q, then

Xn ≤

(

MQ

mQ

)n−1

Qn, where mQ I ≤ Q ≤ MQ I [1] (mQ = ‖Q−1‖−1 and MQ = ‖Q‖).

Hence

X = Q − A∗X−nA ≤ Q −
1

(

‖Q‖ ‖Q−1‖
)n−1 A∗Q−nA. �

Corollary 2. If equation (1) has a positive definite solution, then

Q −
1

(

‖Q‖ ‖Q−1‖
)n−1 A∗Q−nA − n

√

AQ−1A∗ > 0 .

2.1. A Special Solution Xl.

Theorem 3. If ‖A‖
√

‖Q−1‖n+1 <

√

nn

(n + 1)n+1
, then there exists a positive definite

solution Xl of the matrix equation (1) for which the inequalities

(2)
n

(n + 1)‖Q−1‖
I < Xl ≤ Q −

1
(

‖Q‖ ‖Q−1‖
)n−1 A∗Q−nA

hold. The inequalities (2) are satisfied for the solution Xl only.

Proof. Consider the recurrence equation

(3) Xk+1 = Q − A∗X−n
k A , X0 = γI,

where γ ∈

(

n

(n + 1)‖Q−1‖
,

1

‖Q−1‖

]

. We will show that
n

(n + 0)‖Q−1‖
I < Xk ≤ Q for

every matrix Xk of the matrix sequence (3). Since ‖A‖
√

‖Q−1‖n+1 <

√

nn

(n + 1)n+1
we

have A∗A <
nn

[

(n + 1)‖Q−1‖
]n+1 I. Consider the function

ϕ(α) = αn

(

1

‖Q−1‖
− α

)

. We have

max
α>0

ϕ(α) = ϕ

(

n

(n + 1)‖Q−1‖

)

=
nn

[

(n + 1)‖Q−1‖
]n+1 .

The function ϕ is continuous and monotone decreasing on

(

n

(n + 1)‖Q−1‖
,

1

‖Q−1‖

]

.

Hence for every γ ∈

(

n

(n + 1)‖Q−1‖
,

1

‖Q−1‖

]

there exists α0 ∈

(

n

(n + 1)‖Q−1‖
, γ

]

,

such that A∗A ≤ αn
0

(

1

‖Q−1‖
− α0

)

I .

We have X0 = γI ≥ α0I.
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Assume that Xk ≥ α0I. We have X−n
k ≤

1

αn
0

I. For Xk+1 we find

Xk+1 = Q − A∗X−n
k A ≥

1

‖Q−1‖
I −

A∗A

αn
0

≥
1

‖Q−1‖
I −

αn
0 (1 − α0 ‖Q

−1‖)

αn
0 ‖Q−1‖

I = α0I

Hence Xk ≥ α0I for every k = 1, 2, . . .. Obviously Xk ≤ Q. We obtain
n

(n + 1)‖Q−1‖
I < α0 I ≤ Xk ≤ Q , k = 0, 1, 2, . . .

We prove that {Xk} is a Cauchy sequence. Since

Xk+1 − Xk = A∗X−n
k (Xn

k − Xn
k−1)X

−n
k−1A

= A∗

n
∑

i=1

X−i
k (Xk − Xk−1)X

i−(n+1)
k−1 A,

then we obtain

‖Xk+1 − Xk‖ ≤ ‖A‖2
n

∑

i=1

‖X−i
k ‖ ‖X

i−(n+1)
k−1 ‖ ‖Xk − Xk−1‖

≤
n‖A‖2

αn+1
0

‖Xk − Xk−1‖ ≤ . . .

≤

[

n‖A‖2

αn+1
0

]k

‖X1 − X0‖ = qk‖X1 − X0‖ ,

where q =
n‖A‖2

αn+1
0

< 1, due to α0 >
n

(n + 1)‖Q−1‖
and ‖A‖2 <

nn

[

(n + 1)‖Q−1‖
]n+1 .

Hence the sequence {Xk} forms a Cauchy sequence in the Banach space and this

sequence converges to Xl and
n

(n + 1)‖Q−1‖
I < Xl ≤ Q.

From Theorem 1 we have Xl ≤ Q −
1

(

‖Q‖ ‖Q−1‖
)n−1 A∗Q−nA .

Assume that there exist two solutions X ′, X ′′ of the equation (1), such that
n

(n + 1)‖Q−1‖
I < X ′ ≤ Q and n(n + 1)‖Q−1‖ I < X ′′ ≤ Q. Then

‖X ′ − X ′′‖ ≤ ‖A‖2
n

∑

i=1

‖(X ′)−i‖ ‖(X ′′)i−(n+1)‖ ‖X ′ − X ′′‖

< n‖A‖2

(

(n + 1)‖Q−1‖

n

)n+1

‖X ′ − X ′′‖ < ‖X ′ − X ′′‖ .

Hence X ′ ≡ X ′′. �

Remark 1. If ‖A‖
√

‖Q−1‖n+1 <

√

nn

(n + 1)n+1
and if the equation (1) has a max-

imal positive definite solution XL, then XL ≡ Xl. We know XL ≥ Xl. Hence the
inequalities (2) are satisfied for XL. Using the Theorem 3 we have XL ≡ Xl.
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Corollary 4. If ‖A‖
√

‖Q−1‖n+1 <

√

nn

(n + 1)n+1
, then the solution Xl of the matrix

equation (1) satisfies the inequality

‖X−1
l ‖ <

n + 1

n
‖Q−1‖ .

Corollary 5. If ‖A‖
√

‖Q−1‖n+1 <

√

nn

(n + 1)n+1
, then the solution Xl of the matrix

equation (1) satisfies the inequality
n

n + 1
‖Q‖ < ‖Xl‖ .

Proof. Note that from Corollary 4 we obtain ‖X−1
l ‖ <

n + 1

n
‖Q−1‖. Hence

‖Xl‖ = ‖Q − A∗X−n
l A‖ ≥ ‖Q‖ − ‖A‖2‖X−n

l ‖

> ‖Q‖ − ‖A‖2

(

n + 1

n
‖Q−1‖

)n

> ‖Q‖ −
nn

[

(n + 1)‖Q−1‖
]n+1

(

n + 1

n
‖Q−1‖

)n

= ‖Q‖ −
1

(n + 1)‖Q−1‖
≥ ‖Q‖ −

1

n + 1
‖Q‖ .

�

2.2. The Minimal Solution XS.

Theorem 6. If the matrix equation (1) with nonsingular matrix A has a positive
definite solution, then it has a minimal solution XS. Moreover, the iterative algorithm

(4) Xk+1 = n

√

A(Q − Xk)−1A∗ , X0 = n

√

AQ−1A∗

converges to XS.

Proof. The proof is analogous to the proof of the Theorem 6 [3]. It is easy to prove
that the matrix sequence (4) is increasing and bounded by any positive definite solution
of (1). Hence this sequence converges to the minimal solution XS . �

Theorem 7. If ‖A‖
√

‖Q−1‖n+1 ≤

√

nn

(n + 1)n+1
, then XS satisfies the inequality

XS ≤
n

(n + 1)‖Q−1‖
I .

Proof. According to Theorem 3 and Theorem 6 it follows that there exists XS .

Consider the iterative equation (4) with X0 =
n

(n + 1)‖Q−1‖
I. Using induction it is

easy to prove that the matrix sequence {Xk} is monotonically decreasing and bounded

from below. Hence this sequence converges to a solution X with X ≤
n

(n + 1)‖Q−1‖
I. �
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РЕШЕНИЯ И ПЕРТУРБАЦИОННА ТЕОРИЯ ЗА СПЕЦИАЛНО
МАТРИЧНО УРАВНЕНИЕ I: СВОЙСТВА НА РЕШЕНИЯТА

Вежди Исмаилов Хасанов, Иван Ганчев Иванов

Разгледано е едно специално нелинейно матрично уравнение. Доказани са теоре-

ми за съществуване на специално положително дефинитно решение Xl и мини-

малното положително дефинитно решение XS . Получени са неравенства за тези

решения.
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