SOLUTIONS AND PERTURBATION THEORY OF A SPECIAL MATRIX EQUATION I: PROPERTIES OF SOLUTIONS*

Vejdi Ismailov Hasanov, Ivan Ganchev Ivanov
Dedicated to Milko Petkov on the occasion of his 70th birthday

Abstract

A special nonlinear matrix equation is considered. Theorems for the existence of a special positive definite solution X_{l} and a minimal positive definite solution X_{S} are proved. Some estimates of these solutions are derived.

1. Introduction. We consider the nonlinear matrix equation

$$
\begin{equation*}
X+A^{*} X^{-n} A=Q \tag{1}
\end{equation*}
$$

where $A, Q \in C^{m \times m}$, and Q is a positive definite matrix, and n is an integer. We study the properties of positive definite solutions of equation (1). The more general equation $X+A^{*} \mathcal{F}(X) A=Q$ has been investigated in $[2,5]$. Some necessary and sufficient conditions for the existence of a solution are derived in [5]. The Hermitian positive definite solutions of the equation (1) and its properties have been studied in [3]. The consideration of the nonlinear matrix equations $X \pm A^{*} X^{-n} A=Q$ and a perturbation theory for this equation is proposed in [4]. In this paper we continue to investigate properties of the solutions of the equation (1). Properties of the positive definite solutions of equation (1) with $n=1$ are studied in [6].

Let X_{S} and X_{L} be positive definite solutions of the equation (1). If every positive definite solution X satisfies $X_{S} \leq X \leq X_{L}$, then X_{S} and X_{L} are minimal and maximal solutions of (1), respectively.

We use the following notations. With $A>0(A \geq 0)$ we denote a positive definite (semidefinite) matrix A. If $A-B>0(A-B \geq 0)$ we write $A>B(A \geq B)$. The norm used in this paper is the spectral matrix norm.
2. Solutions of $X+A^{*} X^{-n} A=Q$.

Theorem 1. If equation (1) has a positive definite solution X, then

$$
\sqrt[n]{A Q^{-1} A^{*}}<X \leq Q-\frac{1}{\left(\|Q\|\left\|Q^{-1}\right\|\right)^{n-1}} A^{*} Q^{-n} A
$$

[^0]Proof. According to Theorem 4 [4] we have $\sqrt[n]{A Q^{-1} A^{*}}<X$. Since $X \leq Q$, then $X^{n} \leq\left(\frac{M_{Q}}{m_{Q}}\right)^{n-1} Q^{n}$, where $m_{Q} I \leq Q \leq M_{Q} I \quad[1]\left(m_{Q}=\left\|Q^{-1}\right\|^{-1}\right.$ and $\left.M_{Q}=\|Q\|\right)$. Hence

$$
X=Q-A^{*} X^{-n} A \leq Q-\frac{1}{\left(\|Q\|\left\|Q^{-1}\right\|\right)^{n-1}} A^{*} Q^{-n} A
$$

Corollary 2. If equation (1) has a positive definite solution, then

$$
Q-\frac{1}{\left(\|Q\|\left\|Q^{-1}\right\|\right)^{n-1}} A^{*} Q^{-n} A-\sqrt[n]{A Q^{-1} A^{*}}>0
$$

2.1. A Special Solution X_{l}.

Theorem 3. If $\|A\| \sqrt{\left\|Q^{-1}\right\|^{n+1}}<\sqrt{\frac{n^{n}}{(n+1)^{n+1}}}$, then there exists a positive definite solution X_{l} of the matrix equation (1) for which the inequalities

$$
\begin{equation*}
\frac{n}{(n+1)\left\|Q^{-1}\right\|} I<X_{l} \leq Q-\frac{1}{\left(\|Q\|\left\|Q^{-1}\right\|\right)^{n-1}} A^{*} Q^{-n} A \tag{2}
\end{equation*}
$$

hold. The inequalities (2) are satisfied for the solution X_{l} only.

Proof. Consider the recurrence equation

$$
\begin{equation*}
X_{k+1}=Q-A^{*} X_{k}^{-n} A, \quad X_{0}=\gamma I \tag{3}
\end{equation*}
$$

where $\gamma \in\left(\frac{n}{(n+1)\left\|Q^{-1}\right\|}, \frac{1}{\left\|Q^{-1}\right\|}\right]$. We will show that $\frac{n}{(n+0)\left\|Q^{-1}\right\|} I<X_{k} \leq Q$ for every matrix X_{k} of the matrix sequence (3). Since $\|A\| \sqrt{\left\|Q^{-1}\right\|^{n+1}}<\sqrt{\frac{n^{n}}{(n+1)^{n+1}}}$ we have $A^{*} A<\frac{n^{n}}{\left[(n+1)\left\|Q^{-1}\right\|\right]^{n+1}} I$. Consider the function
$\varphi(\alpha)=\alpha^{n}\left(\frac{1}{\left\|Q^{-1}\right\|}-\alpha\right)$. We have

$$
\max _{\alpha>0} \varphi(\alpha)=\varphi\left(\frac{n}{(n+1)\left\|Q^{-1}\right\|}\right)=\frac{n^{n}}{\left[(n+1)\left\|Q^{-1}\right\|\right]^{n+1}} .
$$

The function φ is continuous and monotone decreasing on $\left(\frac{n}{(n+1)\left\|Q^{-1}\right\|}, \frac{1}{\left\|Q^{-1}\right\|}\right]$. Hence for every $\gamma \in\left(\frac{n}{(n+1)\left\|Q^{-1}\right\|}, \frac{1}{\left\|Q^{-1}\right\|}\right]$ there exists $\alpha_{0} \in\left(\frac{n}{(n+1)\left\|Q^{-1}\right\|}, \gamma\right]$, such that $A^{*} A \leq \alpha_{0}^{n}\left(\frac{1}{\left\|Q^{-1}\right\|}-\alpha_{0}\right) I$.

We have $X_{0}=\gamma I \geq \alpha_{0} I$.

Assume that $X_{k} \geq \alpha_{0} I$. We have $X_{k}^{-n} \leq \frac{1}{\alpha_{0}^{n}} I$. For X_{k+1} we find

$$
\begin{aligned}
X_{k+1} & =Q-A^{*} X_{k}^{-n} A \geq \frac{1}{\left\|Q^{-1}\right\|} I-\frac{A^{*} A}{\alpha_{0}^{n}} \\
& \geq \frac{1}{\left\|Q^{-1}\right\|} I-\frac{\alpha_{0}^{n}\left(1-\alpha_{0}\left\|Q^{-1}\right\|\right)}{\alpha_{0}^{n}\left\|Q^{-1}\right\|} I=\alpha_{0} I
\end{aligned}
$$

Hence $X_{k} \geq \alpha_{0} I$ for every $k=1,2, \ldots$. Obviously $X_{k} \leq Q$. We obtain

$$
\frac{n}{(n+1)\left\|Q^{-1}\right\|} I<\alpha_{0} I \leq X_{k} \leq Q, \quad k=0,1,2, \ldots
$$

We prove that $\left\{X_{k}\right\}$ is a Cauchy sequence. Since

$$
\begin{aligned}
X_{k+1}-X_{k} & =A^{*} X_{k}^{-n}\left(X_{k}^{n}-X_{k-1}^{n}\right) X_{k-1}^{-n} A \\
& =A^{*} \sum_{i=1}^{n} X_{k}^{-i}\left(X_{k}-X_{k-1}\right) X_{k-1}^{i-(n+1)} A,
\end{aligned}
$$

then we obtain

$$
\begin{aligned}
\left\|X_{k+1}-X_{k}\right\| & \leq\|A\|^{2} \sum_{i=1}^{n}\left\|X_{k}^{-i}\right\|\left\|X_{k-1}^{i-(n+1)}\right\|\left\|X_{k}-X_{k-1}\right\| \\
& \leq \frac{n\|A\|^{2}}{\alpha_{0}^{n+1}}\left\|X_{k}-X_{k-1}\right\| \leq \ldots \\
& \leq\left[\frac{n\|A\|^{2}}{\alpha_{0}^{n+1}}\right]^{k}\left\|X_{1}-X_{0}\right\|=q^{k}\left\|X_{1}-X_{0}\right\|
\end{aligned}
$$

where $q=\frac{n\|A\|^{2}}{\alpha_{0}^{n+1}}<1$, due to $\alpha_{0}>\frac{n}{(n+1)\left\|Q^{-1}\right\|}$ and $\|A\|^{2}<\frac{n^{n}}{\left[(n+1)\left\|Q^{-1}\right\|\right]^{n+1}}$.
Hence the sequence $\left\{X_{k}\right\}$ forms a Cauchy sequence in the Banach space and this sequence converges to X_{l} and $\frac{n}{(n+1)\left\|Q^{-1}\right\|} I<X_{l} \leq Q$.

From Theorem 1 we have $X_{l} \leq Q-\frac{1}{\left(\|Q\|\left\|Q^{-1}\right\|\right)^{n-1}} A^{*} Q^{-n} A$.
Assume that there exist two solutions $X^{\prime}, X^{\prime \prime}$ of the equation (1), such that $\frac{n}{(n+1)\left\|Q^{-1}\right\|} I<X^{\prime} \leq Q$ and $n(n+1)\left\|Q^{-1}\right\| I<X^{\prime \prime} \leq Q$. Then

$$
\begin{aligned}
\left\|X^{\prime}-X^{\prime \prime}\right\| & \leq\|A\|^{2} \sum_{i=1}^{n}\left\|\left(X^{\prime}\right)^{-i}\right\|\left\|\left(X^{\prime \prime}\right)^{i-(n+1)}\right\|\left\|X^{\prime}-X^{\prime \prime}\right\| \\
& <n\|A\|^{2}\left(\frac{(n+1)\left\|Q^{-1}\right\|}{n}\right)^{n+1}\left\|X^{\prime}-X^{\prime \prime}\right\|<\left\|X^{\prime}-X^{\prime \prime}\right\|
\end{aligned}
$$

Hence $X^{\prime} \equiv X^{\prime \prime}$.
Remark 1. If $\|A\| \sqrt{\left\|Q^{-1}\right\|^{n+1}}<\sqrt{\frac{n^{n}}{(n+1)^{n+1}}}$ and if the equation (1) has a maximal positive definite solution X_{L}, then $X_{L} \equiv X_{l}$. We know $X_{L} \geq X_{l}$. Hence the inequalities (2) are satisfied for X_{L}. Using the Theorem 3 we have $X_{L} \equiv X_{l}$.

Corollary 4. If $\|A\| \sqrt{\left\|Q^{-1}\right\|^{n+1}}<\sqrt{\frac{n^{n}}{(n+1)^{n+1}}}$, then the solution X_{l} of the matrix equation (1) satisfies the inequality

$$
\left\|X_{l}^{-1}\right\|<\frac{n+1}{n}\left\|Q^{-1}\right\|
$$

Corollary 5. If $\|A\| \sqrt{\left\|Q^{-1}\right\|^{n+1}}<\sqrt{\frac{n^{n}}{(n+1)^{n+1}}}$, then the solution X_{l} of the matrix equation (1) satisfies the inequality $\frac{n}{n+1}\|Q\|<\left\|X_{l}\right\|$.

Proof. Note that from Corollary 4 we obtain $\left\|X_{l}^{-1}\right\|<\frac{n+1}{n}\left\|Q^{-1}\right\|$. Hence

$$
\begin{aligned}
\left\|X_{l}\right\| & =\left\|Q-A^{*} X_{l}^{-n} A\right\| \geq\|Q\|-\|A\|^{2}\left\|X_{l}^{-n}\right\| \\
& >\|Q\|-\|A\|^{2}\left(\frac{n+1}{n}\left\|Q^{-1}\right\|\right)^{n} \\
& >\|Q\|-\frac{n^{n}}{\left[(n+1)\left\|Q^{-1}\right\|\right]^{n+1}}\left(\frac{n+1}{n}\left\|Q^{-1}\right\|\right)^{n} \\
& =\|Q\|-\frac{1}{(n+1)\left\|Q^{-1}\right\|} \geq\|Q\|-\frac{1}{n+1}\|Q\| .
\end{aligned}
$$

2.2. The Minimal Solution X_{S}.

Theorem 6. If the matrix equation (1) with nonsingular matrix A has a positive definite solution, then it has a minimal solution X_{S}. Moreover, the iterative algorithm

$$
\begin{equation*}
X_{k+1}=\sqrt[n]{A\left(Q-X_{k}\right)^{-1} A^{*}}, \quad X_{0}=\sqrt[n]{A Q^{-1} A^{*}} \tag{4}
\end{equation*}
$$

converges to X_{S}.
Proof. The proof is analogous to the proof of the Theorem 6 [3]. It is easy to prove that the matrix sequence (4) is increasing and bounded by any positive definite solution of (1). Hence this sequence converges to the minimal solution X_{S}.

Theorem 7. If $\|A\| \sqrt{\left\|Q^{-1}\right\|^{n+1}} \leq \sqrt{\frac{n^{n}}{(n+1)^{n+1}}}$, then X_{S} satisfies the inequality

$$
X_{S} \leq \frac{n}{(n+1)\left\|Q^{-1}\right\|} I
$$

Proof. According to Theorem 3 and Theorem 6 it follows that there exists X_{S}. Consider the iterative equation (4) with $X_{0}=\frac{n}{(n+1)\left\|Q^{-1}\right\|} I$. Using induction it is easy to prove that the matrix sequence $\left\{X_{k}\right\}$ is monotonically decreasing and bounded from below. Hence this sequence converges to a solution X with $X \leq \frac{n}{(n+1)\left\|Q^{-1}\right\|} I$.

REFERENCES

[1] T. Furuta. Operator Inequalities Associated with Hölder-McCarthy and Kantorovich Inequalities. J. Inequal. Appl., 6 (1998), 137-148.
[2] S. M. El-Sayed, A. C. M. Ran. On an Iteration Method for Solving a Class of Nonlinear Matrix Equations. SIAM J. Matrix Anal. Appl., 23 (2001), 632-645.
[3] V. Hasanov, I. Ivanov. Positive Definite Solutions of the Equation $X+A^{*} X^{-n} A=I$. In: Numerical Analysis and Application, LNCS 1988. Springer-Verlag Berlin Heidelberg, 2001, 377-384.
[4] V. Hasanov, I. Ivanov. Solutions and Perturbation Estimates for the Matrix Equations $X \pm A^{*} X^{-n} A=Q$. XXVIII Summer School Applications of Mathematics and Engineering and Economics, Sozopol, June 2002.
[5] I. C. M. Ran, M. C. B. Reurings. On the Nonlinear Matrix Equation $X+A^{*} \mathcal{F}(X) A=Q$: Solution and Perturbation Theory. Linear Algebra Appl., 346 (2002), 15-26.
[6] X. Zhan, J. Xie On ehe Matrix Equation $X+A^{T} X^{-1} A=I$. Linear Algebra Appl., 147 (1996), 337-342.

Ivan Ganchev Ivanov
Faculty of Economics and
Business Administration
Sofia University,
1113 Sofia, Bulgaria
e-mail i_ivanov@feb.uni-sofia.bg

Vejdi Ismailov Hasanov
Laboratory of Mathematical Modelling Shoumen University 9712 Shoumen, Bulgaria
e-mail v.hasanov@fmi.shu-bg.net

РЕШЕНИЯ И ПЕРТУРБАЦИОННА ТЕОРИЯ ЗА СПЕЦИАЛНО МАТРИЧНО УРАВНЕНИЕ I: СВОЙСТВА НА РЕШЕНИЯТА

Вежди Исмаилов Хасанов, Иван Ганчев Иванов

Разгледано е едно специално нелинейно матрично уравнение. Доказани са теореми за съществуване на специално положително дефинитно решение X_{l} и минималното положително дефинитно решение X_{S}. Получени са неравенства за тези решения.

[^0]: * This work was supported by the Shoumen University under contract 27/9.05.2002.

