
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2003

MATHEMATICS AND EDUCATION IN MATHEMATICS, 2003

Proceedings of the Thirty Second Spring Conference of

the Union of Bulgarian Mathematicians

Sunny Beach, April 5–8, 2003

ON SOME APPLICATIONS OF THE CONCEPT OF SET IN

COMPUTER SCIENCE COURSE

Krassimir Ia. Iordjev, Stefan M. Stefanov

In this work, the interrelation between mathematics and computer science is dis-
cussed, and especially the advantage of having thorough knowledge in mathematics
in writing efficient computer algorithms during the computer science course. An ex-
ample is presented how the concept of a set and operations with sets can be used in
computer programming. The problem of obtaining all n × n matrices of zeroes and
ones with exactly k ones in each row and column is considered. It is shown that using
sets and operations with sets, an efficient algorithm for solving this problem can be
constructed.

The purpose of this work is to show by examples from computer programming the
necessity of students’ thorough knowledge in mathematics in order to write more efficient
computer programs.

In connection with this we think that during the computer programming course,
knowledge of estimation of algorithms is especially useful, taking into account the esti-
mation of running time. Using particular examples, the running time of some polynomial
and exponential algorithms is given in abstract measures for an increasing parameter (see,
e.g. [4] or [9]). A specific question students should answer when discussing a computer
program is: how many times a particular operation is executed, where “operation” stands
not only for arithmetic and logical operation but also for any other operation which is
run during the algorithm performance, for example, call of a subroutine, insertion or
deletion of an element of a file, test whether a condition is satisfied, etc. The problem
under consideration becomes more complicated and more interesting when we have sev-
eral embedded cycles. In such a case, mathematical knowledge of operations with finite
sums is very useful.

Another – not less important aim we have posed – is to give a meaningful example for
using variables of type “set”. A classical example is the problem of finding prime numbers
via Eratosthenes method [1, 3, 5, 6, 7]. Note that in [7] in the implementation of this
algorithm using the Turbo-Pascal algorithmic language, the gross error of considering 1
as a prime number is done. Such an error is not allowable in a problem book because it
would lead to confusion and misunderstanding when used by students.

A large class of computer programming problems is reduced to the following: A de-
scription of a finite set M is given. Find all elements of M having a particular property.
In many specific cases it is not difficult for students to write a program for finding all
elements of M and verifying whether the corresponding element possesses this property.

249

This method for solving such problems is called explicit enumeration method. An algo-
rithm implemented via the explicit enumeration method will take time O (|M |), more
precisely time t1t2|M | where t1 is the time for obtaining each element of M , t2 is the
time for verifying whether an element possesses the corresponding property, and |M | is
the cardinality of M .

Problem 1. Find all square n × n matrices of zeroes and ones (Boolean matrices)
with exactly k (0 ≤ k ≤ n) ones in each row and column.

The experiment shows that solving Problem 1 by the explicit enumeration method is
not very difficult for students. However, this method is quite slow when n increases.

Denote by Bn the set of all square Boolean matrices of order n and by Λk
n the set of

all elements of Bn with exactly k ones in each row and each column. Let

(1) βn = |Bn|, λk
n = |Λk

n|.

It is not difficult to show that

(2) βn = 2n2

.

Therefore an algorithm for solving Problem 1 by the explicit enumeration method

will take time O
(

2n2

)

.

Following formulas for obtaining λk
n are known:

(3) λ1
n = λn−1

n = n!

(4) λ2
n = λn−2

n =
∑

2k2+3k3+···+nkn=n

(n!)
2

∏

j≥2

kj ! (2j)
kj

(5) λ3
n = λn−3

n =
n!2

6n

∑ (−1)
β

(β + 3γ)!2α3β

α!β!γ!26γ
,

Where the sum is over all
(n + 2) (n + 1)

2
non-negative solutions of the equation α+β +

γ = n. Formula (4) is published in [8] and (5) is published in [2]. Up to now a closed
form formula for calculating λk

n with k = 4, 5, . . . is not known.
In this paper we propose a considerably quicker algorithm for solving Problem 1. For

this purpose, students should have basic knowledge of set theory and combinatorics. We
would like here to once again underline the interdisciplinary relation between mathe-
matics and computer science. The next problem is a useful exercise for the simultaneous
assimilation of concepts like combinations (in mathematics) and operations with variables
and constants of type “set” (in computer science classes).

Problem 2. Write a computer program for obtaining all subsets of k elements of the
set Zn = {1, 2, . . . , n}, (0 ≤ k ≤ n).

As it is known, each subset of a n-element set M could be coded with the use of
a n-dimensional Boolean vector (array), where the i-th element of the array is 1 or 0
depending on whether i-th element of M belongs or does not belong to this subset. After
such hints, a useful exercise would be the individual task each student to make his/her
own package for operating with sets and operations with sets regardless the fact that
some programming languages like Turbo-Pascal have built-in resources for this purpose.
Thus, students would better perceive the basic principles for constructing such resources.

As a test whether Problem 2 is solved correctly we use the following formula known

250

from mathematics classes:

(6)

(
n

k

)

=
n!

k! (n − k)!
=

n (n − 1) . . . (n − k + 1)

k!
.

From (6) it follows that Problem 2 can be solved by an algorithm with running time
O

(
nk

)
and a student, perceived the basic principles of computer programming, would

not be handicapped by this problem.
Denote by Ck

n the set of all k-element subsets of the set Zn (which can be obtained
by the computer program of Problem 2) and by Dk

n the Cartesian product

(7) Dk
n = Ck

n × Ck
n × · · · × Ck

n
︸ ︷︷ ︸

n

= {(A1, A2, · · · , An) | Ai ∈ Ck
n, i = 1, 2, . . . , n}

Consider the subset Mk
n ⊂ Dk

n of all elements (A1, A2, . . . , An) of Dk
n such that for

each i = 1, 2, · · · , n, the number i is contained in exactly k sets among A1, A2, . . . , An.
The following problem is connected with the topic “data of type set” in the tutorials

of computer programming. As it will be seen below, the solution of this problem will
give us more “elegant” solution of Problem 1.

Problem 3. Write a program for obtaining all elements of the set Mk
n.

Problem 3 can be solved by using Problem 2 for obtaining all elements of Ck
n . Elements

of Ck
n could be written in a file or in a list, from which they could be derived until

obtaining all elements of Dk
n and after excluding the unnecessary elements to obtain

all elements of the set Mk
n (explicit enumeration method). Of course, operations with

files and dynamical structures are studied at a later stage of computer programming
education. Fortunately, for educational purposes for comparatively small values of n and
k (how much small values depends on the computer available) we can use array of sets.
Since we must declare dimension of the array in advance, we need again formula (6).

Essentially, Problem 3 solves Problem 1 because the following proposition holds true.
Theorem 1. There exists a one-to-one correspondence between element of Λk

n and

Mk
n.

Proof. Let α = (αij) ∈ Λk
n and for each i = 1, 2, . . . , n, (αi1, αi2, . . . , αin) be the

i-th row of α in which there are exactly k ones by definition. Consider the set Ai ⊆ Zn

such that j ∈ Ai if and only if αij = 1. Because in each row of α there are exactly
k ones then Ai ∈ Ck

n and since in each column of α there are exactly k ones then for
every j = 1, 2, . . . , n, the number j is met exactly in k sets among the obtained sets
A1, A2, . . . , An. Therefore there exists an injective mapping from Λk

n into Mk
n.

Conversely, let µ = (A1, A2, . . . , An) ∈ Mk
n. For each i = 1, 2, . . . , n construct the

n-dimensional Boolean vector ai = (αi1, αi2, . . . , αin) with αij = 1 if and only if j ∈ Ai.
Since Ai ∈ Ck

n then in ai there are exactly k ones and since for each j = 1, 2, . . . , n the
number j is met in exactly k sets among A1, A2, . . . , An, then in each row and column
of matrix α = (αij) there are exactly k ones, that is, α = (αij) ∈ Λk

n. Therefore there
exists injective mapping from Mk

n into Λk
n. The proof of Theorem 1 is complete. �

Theorem 1 and its proof give us a way for coding elements of Λk
n.

Using the facts that |Dk
n| = |Ck

n|
n, |Ck

n | =

(
n

k

)

and formula (6) we conclude that an

algorithm based on the explicit enumeration method will take time O
(
nkn

)
for solving

Problem 3. Although this algorithm is not polynomial, it is considerably quicker than
every algorithm for solving Problem 1 by the explicit enumeration method. The proof of

251

this assertion follows from the following equality:

(8) lim
n→∞

nkn

2n2
= lim

n→∞

(
nk

2n

)n

= 0.

REFERENCES

[1] D. J. Dahl, E. W. Dijkstra, C. A. R. Hoare. Structured Programming. Academic
Press Inc., 1972.
[2] I. Good, J. Grook. The enumeration of arrays and generalization related to contingency
tables. Discrete Math., 19 (1977), 23–45.
[3] В. Г. Абрамов, Н. П. Трифонов, Г. Н. Трифонова. Введение в язык Паскаль.
Москва, Наука, 1988.
[4] А. Ахо, Дж. Хопкрофт, Дж. Ульман. Построение и анализ вычислительных алго-
ритмов. Москва, Мир, 1979.
[5] К. Йенсен, Н. Вирт. Паскаль – руководство для пользователя и описание языка.
Москва, Финансы и статистика, 1982.
[6] Д. Прайс. Программирование на языке Паскаль: Практическое руководство. Москва,
Мир, 1987.
[7] Р. Стоянова, Г. Гочев. Програмиране на Pascal с 99 примерни програми. Учебно
помагало (издателство и година не отбелязани).
[8] В. Е. Тараканов. Комбинаторные задачи на бинарных матрицах. Комбинаторный
анализ, Москва, изд-во МГУ, 1980, вып. 5, 4-15.
[9] Н. Уирт. Алгоритми + структури от данни = програми. София, Техника, 1980.

Krassimir Iordjev
Stefan M. Stefanov
Department of Informatics
Faculty of Mathematics and Natural Sciences
Neofit Rilski South-West University
Blagoevgrad, Bulgaria
e-mail: iordjev@yahoo.com

e-mail: stefm@aix.swu.bg

ЗА НЯКОИ ПРИЛОЖЕНИЯ НА ПОНЯТИЕТО МНОЖЕСТВО В
КУРСА ПО ПРОГРАМИРАНЕ

Красимир Я. Йорджев, Стефан М. Стефанов

В работата се разисква междупредметната връзка математика – информатика и
по-конкретно ползата от задълбочени знания по математика при съставянето на
ефективни алгоритми в часовете по информатика. Показан е пример за изпол-
зването на понятието множество и операции над множества в програмирането.
Разгледана е задачата за получаване на всички n × n матрици, съставени от 0
и 1 и имащи точно k единици на всеки ред и всеки стълб. Показано е, че с по-
мощта на езика на множествата и операциите над тях може да бъде конструиран
значително по-бърз алгоритъм, решаващ тази задача.

252

