MATEMATUKA И MATEMATUYECKO ОБРАЗОВАНИЕ, 2003 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2003

Proceedings of the Thirty Second Spring Conference of the Union of Bulgarian Mathematicians Sunny Beach, April 5–8, 2003

SOLUTIONS AND PERTURBATION THEORY OF A SPECIAL MATRIX EQUATION II: PERTURBATION THEORY *

Ivan Ganchev Ivanov, Vejdi Ismailov Hasanov

Dedicated to Milko Petkov on the occasion of his 70th birthday

Perturbation theory of a special nonlinear matrix equation is discussed. New perturbation bounds for a special solution X_l of this equation are derived. The results are illustrated by numerical examples.

1. Introduction. We consider the nonlinear matrix equation

$$(1) X + A^*X^{-n}A = Q,$$

where $A, Q \in \mathbb{C}^{m \times m}$ and Q is a positive definite matrix. The same equation is considered in [1, 2].

According to Theorem 3 [1] there exists a solution X_l of (1), such that

$$\frac{n}{(n+1)\|Q^{-1}\|}I < X_l \le Q - \frac{1}{(\|Q\|\|Q^{-1}\|)^{n-1}}A^*Q^{-n}A.$$

If the equation (1) has a maximal positive definite solution X_L , then $X_l \equiv X_L$. Ran and Reurings [3] have considered the more general nonlinear matrix equation $X + A^* \mathcal{F}(X) A = Q$ and perturbation bounds for its solutions. New perturbation bounds for the solution X_l of equation (1) are derived. Numerical experiments for computing perturbation bounds for X_l are executed. We use the notations introduced in [1].

2. Perturbation estimates. We consider the perturbed equation

(2)
$$\tilde{X} + \tilde{A}^* \tilde{X}^{-n} \tilde{A} = \tilde{Q}.$$

Theorem 1. Let $A, \tilde{A}, Q, \tilde{Q} \in \mathbb{C}^{m \times m}$ with Q and \tilde{Q} Hermitian positive definite. If

$$\xi = \sqrt{\frac{n^n}{(n+1)^{n+1}}} - ||A||\sqrt{||Q^{-1}||^{n+1}} > 0,$$

(3)
$$\|\tilde{A} - A\| < \frac{\sqrt{(n+1)^{n+1}} - \sqrt{n^n}}{\sqrt{\left[(n+1)\|Q^{-1}\|\right]^{n+1}}} \xi,$$

(4)
$$\|\tilde{Q} - Q\| \le \frac{1}{\|Q^{-1}\|} \left(1 - \sqrt[n+1]{(1-\xi)^2}\right),$$

^{*}This work was supported by the Shoumen University under contract 24/9.05.2002.

then the solutions X_l and \tilde{X}_l of the matrix equations (1) and (2) exist and satisfy

$$\|\tilde{X}_l - X_l\| \le \frac{1}{\varepsilon} \left[\|\Delta Q\| + \left(\frac{n+1}{n}\right)^n \|\tilde{Q}^{-1}\|^n \left(\|A\| + \|\tilde{A}\|\right) \|\Delta A\| \right]$$

and

$$\frac{\|\tilde{X}_{l} - X_{l}\|}{\|X_{l}\|} \leq \frac{1}{\varepsilon} \left[\frac{\|\Delta Q\|}{\|Q\|} \frac{n+1}{n} + \frac{1}{n} \left(2 + \frac{\|\Delta A\|}{\|A\|} \right) \frac{\|\Delta A\|}{\|A\|} \right],$$
where $\varepsilon = 1 - \|A\|^{2} \left(\frac{n+1}{n} \right)^{n+1} \sum_{i=1}^{n} \|\tilde{Q}^{-1}\|^{i} \|Q^{-1}\|^{n+1-i}.$

Proof. Let $\Delta Q = \tilde{Q} - Q$, $\Delta A = \tilde{A} - A$ and $\Delta X_l = \tilde{X}_l - X_l$. According to the identity $\tilde{Q}^{-1} = Q^{-1} - Q^{-1} \Delta Q \tilde{Q}^{-1}$, and using (4) we obtain the estimate

$$\|\tilde{Q}^{-1}\| \le \|Q^{-1}\| + \left(1 - {}^{n+1}\sqrt{(1-\xi)^2}\right)\|\tilde{Q}^{-1}\|.$$

Then

(5)
$$\sqrt{\|\tilde{Q}^{-1}\|^{n+1}} \le \frac{\sqrt{\|Q^{-1}\|^{n+1}}}{1-\xi}.$$

Combining (3) and (5), we obtain

$$\begin{split} \|\tilde{A}\|\sqrt{\|\tilde{Q}^{-1}\|^{n+1}} & \leq \left(\|A\| + \|\Delta A\|\right)\sqrt{\|\tilde{Q}^{-1}\|^{n+1}} \\ & < \left(\|A\| + \frac{\sqrt{(n+1)^{n+1}} - \sqrt{n^n}}{\sqrt{\left[(n+1)\|Q^{-1}\|\right]^{n+1}}} \, \xi\right) \frac{\sqrt{\|Q^{-1}\|^{n+1}}}{1 - \xi} \\ & = \frac{\|A\|\sqrt{\left[(n+1)\|Q^{-1}\|\right]^{n+1}} + \left(\sqrt{(n+1)^{n+1}} - \sqrt{n^n}\right)\xi}{(1 - \xi)\sqrt{(n+1)^{n+1}}} \\ & = \sqrt{\frac{n^n}{(n+1)^{n+1}}} \, . \end{split}$$

According to Theorem 3 [1] it follows the existence of the solutions X_l and \tilde{X}_l of the equations (1) and (2). From Corollary 4 and Corollary 5 [1] it follows that these solutions satisfy the inequalities :

(6)
$$\|Q^{-1}\| \le \|X_l^{-1}\| < \frac{n+1}{n}\|Q^{-1}\|; \frac{n}{n+1}\|Q\| < \|X_l\| \le \|Q\|;$$

Note that

$$||A||\sqrt{||\tilde{Q}^{-1}||^{n+1}} \le (||A|| + ||\Delta A||)\sqrt{||\tilde{Q}^{-1}||^{n+1}} < \sqrt{\frac{n^n}{(n+1)^{n+1}}}.$$

Consider the identity

(8)
$$\Delta Q = \Delta X_l + A^* \tilde{X}_l^{-n} \Delta A + \Delta A^* \tilde{X}_l^{-n} \tilde{A} - A^* \sum_{i=1}^n \tilde{X}_l^{-i} \Delta X_l X_l^{i-(n+1)} A$$

Using inequalities (6) and (7) we obtain

$$\kappa \equiv \left\| \Delta X_{l} - A^{*} \sum_{i=1}^{n} \tilde{X}_{l}^{-i} \Delta X_{l} X_{l}^{i-(n+1)} A \right\|$$

$$\geq \|\Delta X_{l}\| - \|A\|^{2} \|\Delta X_{l}\| \sum_{i=1}^{n} \|\tilde{X}_{l}^{-i}\| \|X_{l}^{i-(n+1)}\| \geq \delta \|\Delta X_{l}\|,$$

where $\delta = 1 - \|A\|^2 \left(\frac{n+1}{n}\right)^{n+1} \sum_{i=1}^n \|\tilde{Q}^{-1}\|^i \|Q^{-1}\|^{n+1-i} > 0$.

Hence, from identity (8) we have

$$\varepsilon \|\Delta X_{l}\| \leq \kappa = \|\Delta Q + A^{*} \tilde{X}^{-n} \Delta A + \Delta A^{*} \tilde{X}^{-n} \tilde{A}\|
\leq \|\Delta Q\| + \|A\| \|\tilde{X}^{-n}\| \|\Delta A\| + \|\Delta A\| \|\tilde{X}^{-n}\| \|\tilde{A}\|
\leq \|\Delta Q\| + \left(\frac{n+1}{n}\right)^{n} \|\tilde{Q}^{-1}\|^{n} \left(\|A\| + \|\tilde{A}\|\right) \|\Delta A\|.$$

Hence

$$\|\Delta X_l\| \le \frac{1}{\varepsilon} \left[\|\Delta Q\| + \left(\frac{n+1}{n}\right)^n \|\tilde{Q}^{-1}\|^n \left(\|A\| + \|\tilde{A}\|\right) \|\Delta A\| \right].$$

Note that

$$||X_l|| \ge \frac{n}{n+1} ||Q|| \ge \frac{n}{n+1} ||Q^{-1}||^{-1}.$$

Combining the last estimates, we obtain

$$\begin{split} \frac{\|\Delta X_l\|}{\|X_l\|} & \leq & \frac{1}{\varepsilon} \left[\frac{\|\Delta Q\|}{\|X_l\|} + \left(\frac{n+1}{n}\right)^n \|\tilde{Q}^{-1}\|^n \left(\|A\| + \|\tilde{A}\|\right) \frac{\|\Delta A\|}{\|X_l\|} \right] \\ & = & \frac{1}{\varepsilon} \left[\frac{\|\Delta Q\|}{\|Q\|} \frac{\|Q\|}{\|X_l\|} + \left(\frac{n+1}{n}\right)^n \|\tilde{Q}^{-1}\|^n \left(\|A\| + \|\tilde{A}\|\right) \frac{\|\Delta A\|}{\|A\|} \frac{\|A\|}{\|X_l\|} \right] \\ Q^{-1}\|^n \|Q^{-1}\| & \leq & \frac{1}{\varepsilon} \left[\frac{\|\Delta Q\|}{\|Q\|} \frac{n+1}{n} + \frac{1}{n} \left(2 + \frac{\|\Delta A\|}{\|A\|}\right) \frac{\|\Delta A\|}{\|A\|} \right]. \end{split}$$

The theorem is proved. \Box

Theorem 2. Let $||A||\sqrt{||Q^{-1}||^{n+1}} < \sqrt{\frac{n^n}{(n+1)^{n+1}}}$ and \tilde{X} be a positive definite matrix, which approximates the solution X_l of the matrix equation (1). If

$$\nu = 1 - ||A|| \sum_{i=1}^{n} ||\tilde{X}^{-i}A|| \left(\frac{n+1}{n} ||Q^{-1}||\right)^{n+1-i} > 0,$$

then

$$\|\Delta X\| \le \frac{1}{\nu} \|R(\tilde{X})\|$$

and

(9)
$$\frac{\|\Delta X\|}{\|X\|} \le \frac{n+1}{n\nu} \frac{\|R(X)\|}{\|Q\|},$$

where $R(\tilde{X}) = \tilde{X} + A^* \tilde{X}^{-n} A - Q$

Proof. Note that \tilde{X} is a solution of the matrix equation $X + A^*X^{-n}A = \tilde{Q}$, where 260

 $\tilde{Q} = Q + R(\tilde{X})$. Then the identity (8) can be written as follows

$$R(\tilde{X}) = \tilde{X} - X_l - A^* \sum_{i=1}^n \tilde{X}^{-i} (\tilde{X} - X_l) X_l^{i-(n+1)} A.$$

We obtain

$$||R(\tilde{X})|| \geq ||\tilde{X} - X_l|| - ||\tilde{X} - X_l|| \sum_{i=1}^n ||\tilde{X}^{-i}A|| ||X^{i-(n+1)}A||$$

$$\geq ||\tilde{X} - X_l|| - ||A|| ||\tilde{X} - X_l|| \sum_{i=1}^n ||\tilde{X}^{-i}A|| ||X_l^{i-(n+1)}||$$

$$\geq ||\tilde{X} - X_l|| \left(1 - ||A|| \sum_{i=1}^n ||\tilde{X}^{-i}A|| \left(\frac{n+1}{n} ||Q^{-1}||\right)^{n+1-i}\right)$$

$$= \nu ||\tilde{X} - X_l||.$$

Since $\frac{\|Q\|}{\|X_l\|} \le \frac{n+1}{n}$ we have

$$\frac{\|\tilde{X} - X_l\|}{\|X_l\|} \le \frac{1}{\nu} \frac{\|R(\tilde{X})\|}{\|Q\|} \frac{\|Q\|}{\|X_l\|} \le \frac{n+1}{n\nu} \frac{\|R(\tilde{X})\|}{\|Q\|} \equiv res_{\nu}.$$

Corollary 3. Let $||A||\sqrt{||Q^{-1}||^{n+1}} < \sqrt{\frac{n^n}{(n+1)^{n+1}}}$ and \tilde{X} is a positive definite matrix, which approximates the solution X_l of the matrix equation (1). If $||\tilde{X}^{-1}|| \leq \frac{n+1}{n} ||Q^{-1}||$, then

$$\|\tilde{X} - X_l\| \le \frac{1}{\nu_1} \|R(\tilde{X})\|$$
 and $\frac{\|\tilde{X} - X_l\|}{\|X_l\|} \le \frac{n+1}{n \nu_1} \frac{\|R(\tilde{X})\|}{\|Q\|}$,

where
$$\nu_1 = 1 - \frac{(n+1)^{n+1}}{n^n} \|A\|^2 \|Q^{-1}\|^{n+1}$$
 and $R(\tilde{X}) = \tilde{X} + A^* \tilde{X}^{-n} A - Q$.

Example. Consider the equation (1) with coefficient matrices

$$A = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}, \ Q = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and the solution $X = \begin{pmatrix} 1 & 0 \\ 0 & 1 - a^2 \end{pmatrix}$,

where 0 < a < 1. For the perturbed equation $\tilde{X} + A^T \tilde{X}^{-2} A = \tilde{Q}$ we have

$$\tilde{X} = \begin{pmatrix} 1 & \epsilon \\ \epsilon & 1 - a^2 \end{pmatrix}$$
 and $\tilde{Q} = \tilde{X} + A^T (\tilde{X})^{-2} A$, where $\epsilon = 10^{-2j}$, $j = 2, 3, 4$.

Some numerical results on the relative perturbation bounds (9) and Ran and Reurings [3] perturbation bound are shown in Table 1.

Table 1.
$$a = \frac{1}{3} - 10^{-j}$$
.

j	Real error	(9)	Ran & Reurings [3]
	$\frac{\ \Delta X\ }{\ X\ }$	res_{ν}	Prop. 4.1 $M_{S(m)} = \frac{27}{4} Q^{-1} ^3$
2	1.0000e - 04	2.4673e - 04	1.9499e - 003
3	1.0000e - 06	2.5605e - 06	1.9270e - 004
4	1.0000e - 08	2.5703e - 08	1.9248e - 005

The results show that our perturbation estimate (9) is better than the Ran and Reurings estimate for the considered example.

REFERENCES

- [1] V. HASANOV, I. IVANOV. Solutions and Perturbation Theory of a Special Matrix Equation I: Properties of Solutions. *Mathematics and Education in Mathematics*, **32** (2003), 244–248.
- [2] V. HASANOV, I. IVANOV. Solutions and Perturbation Estimates for the Matrix Equations $X \pm A^* X^{-n} A = Q$. XXVIII Summer School Applications of Mathematics and Engineering and Economics, Sozopol, June 2002.
- [3] A. C. M. RAN, M. C. B. REURINGS. On the Nonlinear Matrix Equation $X+A^*\mathcal{F}(X)A=Q$: Solution and Perturbation Theory. Linear Algebra Appl., **346** (2002), 15–26.

Ivan Ganchev Ivanov Faculty of Economics and Business Administration Sofia University 1113 Sofia, Bulgaria

e-mail: i_ivanov@feb.uni-sofia.bg

Vejdi Ismailov Hasanov Laboratory of Mathematical Modelling Shoumen University 9712 Shoumen, Bulgaria

e-mail: v.hasanov@fmi.shu-bg.net

РЕШЕНИЯ И ПЕРТУРБАЦИОННА ТЕОРИЯ ЗА СПЕЦИАЛНО МАТРИЧНО УРАВНЕНИЕ II: ПЕРТУРБАЦИОННА ТЕОРИЯ

Иван Ганчев Иванов, Вежди Исмаилов Хасанов

Разгледано е пертурбационна теория на специално нелинейно матрично уравнение. Дадени са пертурбационни оценки за специално решение X_l на разгледаното уравнение. Резултатите са илюстрирани с числени примери.