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Perturbation theory of a special nonlinear matrix equation is discussed. New pertur-
bation bounds for a special solution X; of this equation are derived. The results are
illustrated by numerical examples.

1. Introduction. We consider the nonlinear matrix equation
(1) X+ A X T"A=0Q,
where A, @ € C™*™ and @ is a positive definite matrix. The same equation is considered
n [1, 2.
According to Theorem 3 [1] there exists a solution X; of (1), such that
A*Q™"A
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If the equation (1) has a maximal positive definite solution Xy, then X; = X;. Ran and
Reurings [3] have considered the more general nonlinear matrix equation X +A*F(X)A =
(Q and perturbation bounds for its solutions. New perturbation bounds for the solution X;
of equation (1) are derived. Numerical experiments for computing perturbation bounds
for X; are executed. We use the notations introduced in [1].

2. Perturbation estimates. We consider the perturbed equation

@) X+ A xAi=0.
Theorem 1. Let A, A, Q, Q € C™™ with Q and Q Hermitian positive definite. If
n"
£= - [AVIQ~ "+t >0,
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then the solutions X; and X; of the matriz equations (1) and (2) exist and satisfy
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where & = 1 — || A||2 (T) Dol QT
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Proof. Let AQ = Q- Q, AA = A— Aand AX; = X; — X;. According to the
identity Q71 = Q7! — Q7 'AQ Q™! and using (4) we obtain the estimate

107 < Q7+ (1- A -97) IQ7-

Then
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(5) J1g-reer < VI "f_! .

Combining (3) and (5), we obtain
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According to Theorem 3 [1] it follows the existence of the solutions X; and X; of the
equations (1) and (2). From Corollary 4 and Corollary 5 [1] it follows that these solutions
satisfy the inequalities

_ _ n+1
(6) R < IX7 M < —IlQ7';
n+1
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X7 < [to]p

(7) Q=1

Note that
= ~ nn"
Al Q7™ < ([[Al+ [AA] )/ [lQ-*+! < \V (n+ 1)+t

Consider the identity
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n ~ ~
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(8) AQ =AX; + A*Xl_nAA + AA*Xl_n/I _A* ZXI—'L'AXI Xli—(n—f—l) A
i=1
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Using inequalities (6) and (7) we obtain

R =
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where5717|\A||2( = ) STt > 0.

Hence, from identity (8) we have
clax) < k= HAQJrA*X*"AAJrAA*X*”AH
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Combining the last estimates, we obtain
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The theorem is proved. [

Theorem 2. Let HAH\/ HQ 1||n+1 W

matriz, which approximates the solution X; of the matriz equation (1). If
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and X be a positive definite

then
1 -
IAX] < ~IRX)]
and
AX 1 ||R(X
) [AX] _ n+1 |IR( )H7
X1 = o QI

where R(X) = X + A*X"A— Q.

Proof. Note that X is a solution of the matrix equation X + A*X "4 = Q, where
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Q = Q + R(X). Then the identity (8) can be written as follows

RX)=X-X,— A" Y X7(X - x))Xx; "V 4.

=1
We obtain
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Since <1l < nt we have
Xl =
X-X 1 X 1 X
I dl o LIRE) QI nt 1 IRCOI -
X v IRl Xl = nr Q]

Corollary 3. Let [|A|/]Q@7*H! < (‘FRW and X is a positive definite
V (n

matriz, which approximates the solution X; of the matriz equation (1).
n+1

IR <L 1) then
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where v =1 - CEVapiQ 1t and BT = X+ XA Q.

Example. Consider the equation (1) with coefficient matrices
0 a 10 1 0
A_(O 0)’Q_(01 0 1—a?
where 0 < a < 1. For the perturbed equation X + AT X 24 = Q we have
5 1 €
X = < e 1—

Some numerical results on the relative perturbation bounds (9) and Ran and Reurings
[3] perturbation bound are shown in Table 1.

) and the solution X = (

)

2 > and Q = X + AT(X)72A, where e=10"%, j =2 3,4.

Table 1. a =3 —1077.

Jj | Real error (9) Ran & Reurings [3]
Il res, Prop. 4.1 Mg,y = Z[Q |3

2 | 1.0000e — 04 | 2.4673e — 04 1.9499e — 003

3 | 1.0000e — 06 | 2.5605e — 06 1.9270e — 004

4 | 1.0000e — 08 | 2.5703e — 08 1.9248e — 005
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The results show that our perturbation estimate (9) is better than the Ran and
Reurings estimate for the considered example.
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PEINTEHNA N ITEPTYPBAIIMOHHA TEOPUA 3A CITEIITUAJIHO
MATPUYHO YPABHEHUE II: IIEPTYPBAIIMOHHA TEOPUA

NBau I'anves NBanos, Bexxaun McmanioB XacaHos

Pasrsienano e neprypbanonsa Teopust Ha CHEIUAIHO HEJIMHEHHO MATPUYHO ypaBHe-
nue. ajmenu ca mepTypOAIMOHHA OIEHKY 38 CIIEIHAJIHO pelrieHne X; Ha pa3riielaHoToO
ypaBHeHnue. PesysitaTure ca WIIOCTPUPAHU C YUCJIEHU IIPUMEPH.
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