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ON PROPERTIES OF PERTURBATION BOUNDS
*

M. Konstantinov, P. Petkov, V. Mehrmann, D. Gu

In this paper we introduce and study properties of perturbation bounds such as
asymptotical sharpness, asymptotical exactness and exactness. These properties are
essential in the perturbation analysis of algebraic matrix equations in linear algebra
and control theory.

1. Introduction. In this paper we discuss the main properties of perturbation
bounds that are used in the analysis of computational problems with either explicit or
implicit solution. Some important concepts in this area are introduced and illustrated
by examples. We consider matrix explicit X = Φ(A) or implicit F (A, X) = 0 problems,
where X is the matrix solution and A is a collection of data matrices. Typical problems
here are the computation of the matrix exponential X = exp(A) and the solution of the
matrix quadratic equation A1 + A2X + XA3 + XA4X = 0, A = (A1, . . . , A4). In what
follows ‖ ·‖ is a matrix norm, ‖A‖g = [‖A1‖, . . . , ‖Ar‖]⊤ ∈ Rr

+ is the generalized norm of
the matrix r-tuple A = (A1, . . . , Ar) and � is the component-wise partial order relation
on Rr.

2. Definitions and properties. The literature in perturbation theory is rich in
various types of perturbation bounds [3, 2, 1]. However, for many of them no quan-
titative or qualitative measures of exactness are discussed. Also, often the domains of
applicability of some bounds are not known (or not stated) clearly. This is particularly
true for local perturbation bounds, based on condition numbers.

We believe that a perturbation bound should obey some natural requirements: (i) the
bound should be rigourous in the sense that its domain of applicability should be a priori
known and clearly displayed. In its domain of applicability the bound should give true
estimates for the perturbed quantities; (ii) the bound should be sharp or exact in some
sense, which also must be clear to the potential user; (iii) if the bound is too pessimistic
for some cases, this should be clearly stated.

The list may continue, e.g., we may require that the bound is general in the sense that
it imposes minimum restrictions and is thus applicable to a general class of problems.

These requirements do not mean that bounds with unknown domain of applicability,
as well as some heuristic (or experimentally stated) bounds are practically useless. Such
bounds are of practical use, but one should be aware of the fact that the bound is not
proven to be rigorous.
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Perturbation and error estimates should be included in software tools for solving
engineering and scientific problems. Without such estimates the corresponding software
can not be recognised as reliable.

In what follows we present the concepts of sharpness, exactness and attainability of
perturbation bounds.

Let X be the matrix solution of a regular computational problem with matrix data
A = (A1, . . . , Ar), and X + δX be a solution, corresponding to the perturbed data
A+δA. In case of an explicit problem we have X = Φ(A), where the Φ function is locally
Lipschitz, and δX = Ψ(A, δA) := Φ(A + δA) − Φ(A). In case of an implicit problem,
let X be the solution of the equation F (A, X) = 0. Here Φ satisfies F (B, Φ(B)) = 0 for
all B from a neighbourhood of the nominal data A. We set δX := ‖δX‖ = ‖Ψ(A, δA)‖,
δX = δX(δA), denoting the dependence of δX only on δA for a fixed A.

Suppose that we have a perturbation bound

δX ≤ f(‖δA‖g), δA ∈ D,(1)

where the domain D ⊂ Rr
+ contains a set {z ∈ Rr : 0 ≤ zi ≤ ρi} of positive measure

(ρi > 0 for all i = 1, . . . , r). Let also ω(δ) := max{δX(δA) : ‖δA‖g � δ}.
Definition 1. The perturbation δA = (δA1, . . . , δAr) is full if all δAi are non-zero.

The bound (1) is asymptotically sharp if there exists E such that δX(εE) = f(ε‖E‖g)
+o(ε), ε → 0.

Thus, the asymptotical sharpness is a property, connected with the existence of an one-
parametric family of full perturbations {εE}, ε → 0, for which the bound (1) is asymptot-
ically equivalent to the maximum possible perturbation in the solution. More precisely,
an asymptotically sharp bound is asymptotically equivalent to the actual perturbation for
the given family of full perturbations in the sense that limε→+0 f(ε‖E‖g)/δX(εE) = 1.

A perturbation bound should be asymptotically sharp, otherwise it may be substan-
tially improved. Unfortunately, many bounds that are used in the literature, are not as-
ymptotically sharp. Moreover, some wide spread bounds are not even bounds in the strict
sense, since they may underestimate the actual perturbation in the solution nevetheless
how small the perturbation in the data is. Consider for example the scalar problem
x = ϕ(a) with ϕ differentiable at a. The chopped condition number based bound is
|δx| ≤ |ϕ′(a)| |δa|. For ϕ(a) = a2 and a = 0 this bound reduces to δx = 0 which is not
true for all δa 6= 0.

Definition 2. The bound (1) is asymptotically exact if ω(δ) = f(δ) + o(‖δ‖), δ → 0,
and exact if D = Ω and f = ω.

Exact bounds are available only in rare cases. For example, given the scalar problem
x = a2, the exact bound is f(δ) = δ(2|a| + δ).

If a bound is not exact or even asymptotically exact, then one would like to estimate
quantitatively how far is this bound from the set of asymptotically exact bounds.

Definition 3. The quantity mes(f) := lim
α→0

sup {f(δ)/ω(δ) : ‖δ‖ ≤ α} is the measure

of asymptotic exactness of the bound (1).

If it is possible to find the true value of mes(f) for a bound, which is only asymptot-
ically sharp but not asymptotically exact, then for each τ > 1, close to 1, we can define
a new local bound δX ≤ τf(δ)/mes(f) + o(‖δ‖), δ → 0, which is asymptotically close to
ω(δ).
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Some perturbation bounds known in the literature have a property which may be
defined as follows. Denote by D+ ⊂ D the set of all δ ∈ D with δ ≻ 0.

Definition 4. The bound (1) is attainable if there exists a manifold M ⊂ D+ of

dimension dim(M) = r − 1, such that f(δ) = ω(δ) for δ ∈ M.

Definition 5. The bound (1) is almost achievable if for any positive τ < 1 there exists

a pertutbation δA such that ‖δX‖ = τf(‖δA‖g).

Often, attainable bounds are not even asymptotically sharp. In turn, an asymptoti-
cally exact bound may not be attainable.

The next two examples of scalar linear equations illustrate the above concepts.
Example 1. Consider the scalar equation ax = c, a 6= 0, with solution x = c/a, and

let δc := |δc|, δa := |δa| and δx := |δx| be the absolute perturbations in c, a and x. For
δa 6= −a we have δx = (δc − xδa)/(a + δa). Hence ω(δ) = (δc + |x|δa)/(|a| − δa) and
the domain Ω for δ = [δc, δa]⊤ is R+ × [0, |a|). Consider the following expression in δ,
depending on two parameters α ≥ 1 and β ≥ 0, fα,β(δ) := (α(δc + |x|δa))/(|a| − βδa).

We have the following five possible cases.
1. If α = 1 and β < 1, then the inequality δx ≤ f1,β(δ) may not be true and hence

f1,β(δ) is not a bound in the strict sense.
2. If α = β = 1, then the bound is exact, and hence asymptotically sharp, asymptot-

ically exact and attainable.
3. If α = 1 and β > 1, then the bound is asymptotically exact and hence asymp-

totically sharp, but not exact and not attainable. Here D = R+ × [0, |a|/β) is a proper
subset of Ω.

4. If α > 1 and β < 1, then the bound is not asymptotically sharp (and hence
not asymptotically exact and not exact), but it is attainable. In this case it is valid in
the domain D = R+ × [0, a0], where a0 := (α − 1)|a|/(α − β). The manifold M (see
Definition 4) here is R+ × {a0}.

5. If α > 1 and β ≥ 1, then the bound has none of the properties of sharpness and
exactness but is nevertheless rigorous. Its measure of asymptotic exactness is α.

In Fig. 1 we compare the exact quantity ω with the bound from case 4 with |a| = 1,
x = 1 and α = 2, β = 0 in the 3-dimensional space of the parameters δ1 = δc, δ2 = δa and
f . After the intersection of the surface ω = (δc+δa)/(1−δa) with the plane f = 2(δc+δa)
the expression for f is not a rigorous bound.

The next example shows that a bound may be asymptotically sharp without being
asymtotically exact.

Example 2. Consider the equation from Example 1 together with the bound
f(δ) :=

√
1 + x2

√

δ2
c + δ2

a/(|a| − δa). This bound is defined in the set D = Ω but it
is not asymptotically exact. At the same time it is asymptotically sharp and attain-
able. Indeed, we have f(δ) = ω(δ) at the one-dimensional manifold M, defined via
δa = |x|δc < |a|.

In Fig. 2 we show the exact quantity ω and the bound f for |a| = x = 1.
We have stated that a bound should at least be asymptotically sharp. This property

should take place not only for a particular equation but for a large class of equations. A
more desirable property of a bound is to be asymptotically exact. Here again asymptot-
ical exactness should be established for a wide class of equations rather than for a single
equation and the equations close to it. Attainability should also be proved for possibly
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Fig. 1. An attainable bound which is not asymptotically sharp
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Fig. 2. An attainable asymptotically sharp bound which is not asymptotically exact

wide classes of equations, although this is a property of restricted value. Finally, the top
property of a bound to be exact usually is valid, or may be proven as such, only for small
classes of equations.

The concepts of asymptotical sharpness, asymptotical exactness, exactness and at-
tainability are applicable to general matrix equations (as well as to operator equations
in abstract spaces) and in particular to polynomial and fractional-polynomial equations,
arising in linear algebra, control theory and other scientific applications.

3. Conservativeness of ‘worst case’ bounds. Consider a rigorous perturbation
bound δX ≤ f(δ), δ ∈ D, for the problem X = Φ(A), where

δX = Ψ(δA, A) := Φ(A + δA) − Φ(A) and ‖δA‖g � δ.

272



Since the bound is rigorous, it is also a ‘worst case’ perturbation bound in the following
sense. The bound is valid for all perturbations δA � δ, including those for which the
norm-wise perturbation δX in the solution is maximal. At the same time, for other
perturbations, the actual perturbation δX may be much less (or even zero) than the
bound f(δ) predicts. Thus all rigorous perturbation bounds are conservative for certain
classes of particular perturbations. This is true even for exact bounds f(δ) = ω(δ), where
ω(δ) := max{‖Φ(A+ δA)−Φ(A)‖ : ‖δA‖g � δ} is the maximal perturbation in δX when
δA varies over the set of admissible perturbations Ω.

Next we discuss the interesting phenomenon when, for a given class Q of perturbations
δA, the perturbation δX in the solution X is zero. For an explicit problem X = Φ(A)
we have Q := {E : Ψ(E, A) = 0}.

For an implicit problem, defined via an equation F (A, X) = 0, the set Q is
Q := {E ∈ D : F (A + E, X) = 0}. In the generic case when the problem is regu-
lar and the partial Fréchet derivative FA(A, X) at (A, X) is surjective, the set Q is a
manifold of dimension dim(A) − dim(X ).

Let the matrix collection A be represented as A = (B, C), where B and C are in
turn matrix collections. Suppose that we may rewrite the equation F (A, X) = 0 in
the equivalent form G(B, X) = H(C), where G and H are continuous functions. If B
and C are perturbed to B + δB and C + δC, then we obtain the perturbed equation
G(B + δB, X + δX) = H(C + δC). Suppose that we have the perturbation bound
δX ≤ f(β, γ), (β, γ) ∈ Ω provided ‖δB‖g � β, ‖δC‖g � γ

If the perturbations δB, δC satisfy the additional relation G(B+δB, X) = H(C+δC),
then the perturbed equation has a solution δX = 0 and accordingly δX = 0. Hence,
nevertheless how good the bound f(β, γ) is, it may be very conservative in this particular
case.

Note that relation G(B+δB, X) = H(C +δC) will be fulfilled if e.g. H is the identity
operator and δC = G(B + δB, X) − C.

A simple example here is the linear equation BX = C, where B and C, X are m×m
and m × n matrices, respectively, with B being non-singular, and C 6= 0. Supposing
that ‖C−1‖‖δB‖ < 1 and δC = δBX = δBB−1C, we see that the perturbed equation
(B + δB)(X + δX) = C + δC has a unique solution δX = 0 and hence εX = ‖δX‖/‖X‖
= 0. At the same time, setting εB = ‖δB‖/‖B‖, we have the standard perturbation
bound εX ≤ f(εB) := (2cond(B)εB)/(1 − cond(B)εB). For εB approaching 1/cond(B)
the bound f(εB) becomes arbitrarily large while the exact estimated quantity is zero.

This effect of extreme conservatism is not generic and is destroyed in any neighbour-
hood of the perturbation (δC, δB). Indeed, the relation δC = δBX = δBB−1C defines
a m2-dimensional subspace Q in the m(n + m)-dimensional linear space of pairs (C, B).
Let (δC, δB) ∈ Q be such that B + δB is close to a singular matrix. Then there exists
a perturbation δC such that (δC, δB) /∈ Q, the quantity ‖δC − δC‖ is small, and the
relative perturbation in the solution, corresponding to the perturbation (δC, δB), is close
to the bound f(εB).
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ВЪРХУ СВОЙСТВАТА НА ПЕРТУРБАЦИОННИТЕ ГРАНИЦИ

М. Константинов, П. Петков, Ф. Мерман, Д. Гу

Въведени и изучени са някои свойства на пертурбационните граници като асим-

птотична острота, асимптотична точност и точност. Тези свойства са важни за

пертурбационния анализ на алгебричните матрични уравнения, възникващи в

линейната алгебра и теория на управлението.
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