MATEMATUKA W MATEMATUWYECKO OBPA3OBAHWE, 2003
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2003
Proceedings of the Thirty Second Spring Conference of
the Union of Bulgarian Mathematicians

Sunny Beach, April 5-8, 2003
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PROCESS WITH INCREASING TO INFINITY OFFSPRING
VARIANCE"

Kosto V. Mitov, George P. Yanev

Let Z,(Lk),n =0,1,2,..., be a Galton-Watson branching process with geometric off-
spring and large number k£ — oo of ancestors. Assume that offspring mean approaches
one and offspring variance increases to infinity as k& — co. We find a diffusion ap-
proximation of Z%) under an appropriate time and space scaling. The results are
extended to a process allowing immigration.

1. Introduction and Results. Diffusion models are useful as continuous time
approximation to discrete processes including sums of random variables. It is well known
that the Brownian motion process approximates scaled simple symmetric random walk.
The theory of branching processes provides another example, namely the convergence of
time and space scaled discrete time branching processes to Jifina processes or to diffusion
processes. For background and additional references on this topic see [2], [3], [5] as well
as the recent paper [1].

Consider a Galton-Watson branching process Z,(Lk), n=20,1,2,..., with k& ancestors.
Suppose that both offspring mean mj and offspring variance oi depend on k such that
(1) mk:1+%, and 0f — 0% < o0

where o — « > 0. Under these (and one more moment regularity condition) the
following classical Feller-Jifina limit theorem holds (see e.g. [1]). Let k — oo, then for
any t >0

where {X;,t > 0} is a diffusion process with drift az and variance o%x/2.

From now on we assume geometric offspring distribution depending on k and having
pgf
(2) FP(s)=1

~ mg(l—s)
1+ 52 (1—5)’

ka

where my, is the offspring mean and ¢, = d?f*)(1)/ds?, i.e. the second factorial moment
of the offspring distribution.
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Instead of (1), let for a > 0
(3) my =1+ % and ¢, = o(k) — 0.
Notice that, assumptions (3) imply that the offspring mean m;, approaches one as k — oo
and at the same time the offspring variance (equals ¢, (14 0(1))) increases to infinity with

k.

Theorem 1. Let the offspring distribution be geometric given by (2) and (3). If
k — oo, then fort >0
(k)

[th/cx] d

(4) — Xt

where { Xy, t > 0} is a diffusion process with drift ax and variance x/2.

)

We shall extend the above result to a process with immigration. Consider
y# =z® 11, n=1,2...,
and Yo(k) = k — oo, where I, is an immigration component independent from the

process’ reproduction. Assume that {I,,,n = 1,2,...} are i.i.d with pgf g(s) that satisfies
for s — 1

() g(s) =1—a(l —s)+o(l —s),
where 0 < a < co. The following result holds.

Theorem 2. Let the offspring distribution be geometric given by (2) and (3). If the
immigration pgf satisfies (5) and k — oo, then fort >0
v
o Tibjed 1, x,

where { Xy, t > 0} is a diffusion process with drift ax and variance x/2.

2. Proofs.
Proof of Theorem 1. Taking into account (2), it is not difficult to see that the pgf

k
5 _ 1 my (1 — s)
14 5 12mi (] )

2’177,;C lfmk

of the process Zy(Lk) is

Hence,

[tk/cy]

14 - 1=m (1 — e—u/k)

2’177,;C lfmk

tk/c _
E (e—(u/k)z[(f;/%]) =[1- mE“ / k](l —e )

On the other hand, from (3) we have as k — oo
mltk/en] (1 n Ozck)[tk/cd ot

- — e

k k
and therefore, using that 1 — e="%/* = u/k(1 + o(1)), as k — oo
mgk/ck](l _ e—u/k) uet
o Loml /] e k(= E (I —et))
1+ ﬁ lnikmk (1 —e u/k) ( 2a( ))

276



Now, it is not difficult to see that as k — oo

at k
— (u/k)Z ue
E fk/(‘ ] ~ 1—
< > ( k(l—%a—eat»)
ueat
- (i)
the last term in the right-hand side being the Laplace transform of the one dimensional

distribution of {X;,¢ > 0}, see e.g. [2], p.68. The theorem is proved.

Proof of Theorem 2. Let us denote by fy(Lk) (s) the pgf of 7™ Then the pef of the
process Y,fk) can be written as

(k)
EsY = (fF)(s))* H g(f

The statement of the theorem is equivalent to (as k — o)

(u/k)Y(k)C wedt
b ( we ) — e\ Sy )

On the other hand, the last equation in the proof of Theorem 1 implies for the Laplace
transform of the properly time and space scaled process
f(k) ( _u/k) s exp ueat
(5] Sl (eot — 1)
Thus, to complete the proof it is sufficient to see that as k — oo
[tk/ck

H f(k) fu/k)) 1.

Applying (5) we can write

[tk‘/ck]—l [tk/(;k]—l
gl M) =exp | > tog (1-a(l = f{P (/M) (1 +0(1)))
j=0 7=0

This reduces the proof to show

[th/cr]—1
3 log (1 —a(l— fM e )+ 0(1)))
j=0
[tk/ck]—1
~—a o (1= =0
§=0
as k — oo for any fixed numbers ¢ and u. The following estimates hold

[th/ck]—1

0 < Y =)
§=0
[th/ck]—1 mi(l 7u/k)

1- k —u
4 g I (1= o)
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_ ST Gy
= gy (L= (L4 207 (L= e/

3=0 - 2amy,

(Lt =)o) ™ (1 o)

< Z
- ac c jck [k —u
o<j<th/en 1~ samy (1 — (1 + g )k/ex)? ) (1 —e—uw/k)
u ) ek Z edck/k
— w1 _ gogen/k) (7
ck | k o<i<in/en 1 — (1 —exdon/k)

since 1 — e~ ¥* ~u/k, (14 2&)F/ex — e and my, — 1 as k — oo.
Note that, the sum in the curly brackets is a partial sum of

t ax
e
——dx,
/0 1 — 5= (1 —eo®)

that tends to the integral as k — co and the integral itself is finite for any fixed ¢. On
the other hand, the factor u/cy — 0. Therefore,

[tk/(;k]—l
. N (k) —u/kyy —
i 3 (g <

which completes the proof.

3. Final Remarks. In this note we consider the special case of geometric offspring.
It is natural to seek similar results in the general offspring distribution case under the
assumption for increasing to infinity variance.

A further extension would be to find diffusion approximation of branching processes
with migration. In a recent article, Dyakonova [1] has obtained diffusion approximation
of a branching process when the migration component is both stopped at zero and has
mean zero. It seems that under the assumption for increasing to infinity variance it is
possible to extend these results to processes with migration (stopped or non-stopped at
zero) having positive mean.

Finally, this note can be considered as a further step in studying branching processes
with increasing to infinity offspring variance, which was initiated in [3].
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LARGE CXOAVMMOCT HA PA3KJIOHABAIIN CE ITPOIIECU C
PACTAHAIIA JUCIIEPCUA K'BbM JNPY3INOHHN

Kocto B. MutoB, I'eopru II. fueB

Pasrexx1a ce mpoct pa3kiIoHSBAIL ce TPOIEC Z,(Lk)7 n =0,1,2,..., 3anmo4Ball c ToJIsIM
6poit yactunu k. Ilpeamosrara ce, e MaTeMaTHYIECKOTO OYaKBaHe Ha Opost Ha IPEKUTE
IIOTOMIIA Ha eJHa JacTuna my — 1, a aucnepcusara o — 0o, Koraro k — oo. Ilpu
Te3W YCJIOBUs € HaMePEHO CKaJupaHe Ha BPEMETO U MPOCTPAHCTBOTO OT ChCTOSHMUSI-
Ta Ha Z,(L’C , TIPM KOETO TPOIEChT KJIOHM KbM JIU(Y3UOHEH MPOIEC, KOraTo k — 00.
AHajIorudeH pesysTar e JOKa3aH 3a Pa3KJIOHSIBAIIN CE IPOIECH C UMHUTDAIHSL.
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