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PROCESS WITH INCREASING TO INFINITY OFFSPRING
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*

Kosto V. Mitov, George P. Yanev

Let Z
(k)
n , n = 0, 1, 2, . . . , be a Galton-Watson branching process with geometric off-

spring and large number k → ∞ of ancestors. Assume that offspring mean approaches
one and offspring variance increases to infinity as k → ∞. We find a diffusion ap-
proximation of Z

(k)
n under an appropriate time and space scaling. The results are

extended to a process allowing immigration.

1. Introduction and Results. Diffusion models are useful as continuous time
approximation to discrete processes including sums of random variables. It is well known
that the Brownian motion process approximates scaled simple symmetric random walk.
The theory of branching processes provides another example, namely the convergence of
time and space scaled discrete time branching processes to Jǐrina processes or to diffusion
processes. For background and additional references on this topic see [2], [3], [5] as well
as the recent paper [1].

Consider a Galton-Watson branching process Z
(k)
n , n = 0, 1, 2, . . . , with k ancestors.

Suppose that both offspring mean mk and offspring variance σ2
k depend on k such that

(1) mk = 1 +
αk

k
, and σ2

k → σ2 < ∞

where αk → α ≥ 0. Under these (and one more moment regularity condition) the
following classical Feller-Jǐrina limit theorem holds (see e.g. [1]). Let k → ∞, then for
any t > 0

Z
(k)
[kt]

k

d
→ Xt,

where {Xt, t ≥ 0} is a diffusion process with drift αx and variance σ2x/2.
From now on we assume geometric offspring distribution depending on k and having

pgf

(2) f (k)(s) = 1 −
mk(1 − s)

1 + ck

2mk
(1 − s)

,

where mk is the offspring mean and ck = d2f (k)(1)/ds2, i.e. the second factorial moment
of the offspring distribution.
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Instead of (1), let for α > 0

(3) mk = 1 +
αck

k
and ck = o(k) → ∞.

Notice that, assumptions (3) imply that the offspring mean mk approaches one as k → ∞
and at the same time the offspring variance (equals ck(1+o(1))) increases to infinity with
k.

Theorem 1. Let the offspring distribution be geometric given by (2) and (3). If

k → ∞, then for t > 0

(4)
Z

(k)
[tk/ck]

k

d
→ Xt,

where {Xt, t ≥ 0} is a diffusion process with drift αx and variance x/2.

We shall extend the above result to a process with immigration. Consider

Y (k)
n = Z(k)

n + In, n = 1, 2, . . . ,

and Y
(k)
0 = k → ∞, where In is an immigration component independent from the

process’ reproduction. Assume that {In, n = 1, 2, . . .} are i.i.d with pgf g(s) that satisfies
for s → 1

(5) g(s) = 1 − a(1 − s) + o(1 − s),

where 0 < a < ∞. The following result holds.

Theorem 2. Let the offspring distribution be geometric given by (2) and (3). If the

immigration pgf satisfies (5) and k → ∞, then for t > 0

(6)
Y

(k)
[tk/ck]

k

d
→ Xt,

where {Xt, t ≥ 0} is a diffusion process with drift αx and variance x/2.

2. Proofs.

Proof of Theorem 1. Taking into account (2), it is not difficult to see that the pgf

of the process Z
(k)
n is

EsZ(k)
n =

(

1 −
mn

k (1 − s)

1 + ck

2mk

1−mn
k

1−mk
(1 − s)

)k

.

Hence,

E

(

e
−(u/k)Z

(k)

[tk/ck]

)

=



1 −
m

[tk/ck]
k (1 − e−u/k)

1 + ck

2mk

1−m
[tk/ck]

k

1−mk
(1 − e−u/k)





k

.

On the other hand, from (3) we have as k → ∞

m
[tk/ck]
k =

(

1 +
αck

k

)[tk/ck]

→ eαt

and therefore, using that 1 − e−u/k = u/k(1 + o(1)), as k → ∞

m
[tk/ck]
k (1 − e−u/k)

1 + ck

2mk

1−m
[tk/ck]

k

1−mk
(1 − e−u/k)

∼
ueαt

k(1 − u
2α (1 − eαt))

.
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Now, it is not difficult to see that as k → ∞

E

(

e
−(u/k)Z

(k)

[tk/ck]

)

∼

(

1 −
ueαt

k(1 − u
2α (1 − eαt))

)k

→ exp

(

−
ueαt

1 + u
2α (eαt − 1)

)

,

the last term in the right-hand side being the Laplace transform of the one dimensional
distribution of {Xt, t ≥ 0}, see e.g. [2], p.68. The theorem is proved.

Proof of Theorem 2. Let us denote by f
(k)
n (s) the pgf of Z

(k)
n . Then the pgf of the

process Y
(k)
n can be written as

EsY (k)
n = (f (k)

n (s))k
n−1
∏

j=0

g(f
(k)
j (s)).

The statement of the theorem is equivalent to (as k → ∞)

E

(

e
−(u/k)Y

(k)

[tk/ck]

)

→ exp

(

−
ueαt

1 + u
2α (eαt − 1)

)

.

On the other hand, the last equation in the proof of Theorem 1 implies for the Laplace
transform of the properly time and space scaled process

f
(k)

[ tk
ck ]

(e−u/k) → exp

(

−
ueαt

1 + u
2α (eαt − 1)

)

.

Thus, to complete the proof it is sufficient to see that as k → ∞
[tk/ck]−1
∏

j=0

g(f
(k)
j (e−u/k)) → 1.

Applying (5) we can write

[tk/ck]−1
∏

j=0

g(f
(k)
j (e−u/k)) = exp





[tk/ck]−1
∑

j=0

log
(

1 − a(1 − f
(k)
j (e−u/k))(1 + o(1))

)



 .

This reduces the proof to show
[tk/ck]−1
∑

j=0

log
(

1 − a(1 − f
(k)
j (e−u/k))(1 + o(1))

)

∼ −a

[tk/ck]−1
∑

j=0

(1 − f
(k)
j (e−u/k)) → 0

as k → ∞ for any fixed numbers t and u. The following estimates hold

0 ≤

[tk/ck]−1
∑

j=0

(1 − f
(k)
j (e−u/k))

=

[tk/ck]−1
∑

j=0

mj
k(1 − e−u/k)

1 + ck

2mk

1−mj
k

1−mk
(1 − e−u/k)
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=

[tk/ck]−1
∑

j=0

(1 + αck

k )j(1 − e−u/k)

1 − k
2αmk

(

1 − (1 + αck

k )j
)

(1 − e−u/k)

≤
∑

0≤j≤tk/ck

(

(1 + αck

k )k/ck
)jck/k

(1 − e−u/k)

1 − k
2αmk

(

1 −
(

(1 + αck

k )k/ck

)jck/k
)

(1 − e−u/k)

∼
u

ck







ck

k

∑

0≤j≤tk/ck

eαjck/k

1 − u
2α (1 − eαjck/k)







,

since 1 − e−u/k ∼ u/k, (1 + αck

k )k/ck → eα and mk → 1 as k → ∞.
Note that, the sum in the curly brackets is a partial sum of

∫ t

0

eαx

1 − u
2α (1 − eαx)

dx,

that tends to the integral as k → ∞ and the integral itself is finite for any fixed t. On
the other hand, the factor u/ck → 0. Therefore,

lim
k→∞

[tk/ck]−1
∑

j=0

(1 − f
(k)
j (e−u/k)) = 0,

which completes the proof.

3. Final Remarks. In this note we consider the special case of geometric offspring.
It is natural to seek similar results in the general offspring distribution case under the
assumption for increasing to infinity variance.

A further extension would be to find diffusion approximation of branching processes
with migration. In a recent article, Dyakonova [1] has obtained diffusion approximation
of a branching process when the migration component is both stopped at zero and has
mean zero. It seems that under the assumption for increasing to infinity variance it is
possible to extend these results to processes with migration (stopped or non-stopped at
zero) having positive mean.

Finally, this note can be considered as a further step in studying branching processes
with increasing to infinity offspring variance, which was initiated in [3].
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LARGE СХОДИМОСТ НА РАЗКЛОНЯВАЩИ СЕ ПРОЦЕСИ С

РАСТЯЩА ДИСПЕРСИЯ КЪМ ДИФУЗИОННИ

Косто В. Митов, Георги П. Янев

Разглежда се прост разклоняващ се процес Z
(k)
n , n = 0, 1, 2, . . . , започващ с голям

брой частици k. Предполага се, че математическото очакване на броя на преките

потомци на една частица mk → 1, а дисперсията σk → ∞, когато k → ∞. При

тези условия е намерено скалиране на времето и пространството от състояния-

та на Z
(k)
n , при което процесът клони към дифузионен процес, когато k → ∞.

Аналогичен резултат е доказан за разклоняващи се процеси с имиграция.
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