
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2003

MATHEMATICS AND EDUCATION IN MATHEMATICS, 2003

Proceedings of the Thirty Second Spring Conference of

the Union of Bulgarian Mathematicians

Sunny Beach, April 5–8, 2003

FUNCTIONAL PROGRAMMING FOR THE HIGH-SCHOOL

CURRICULUM

Boyko B. Bantchev

Learning the elements of computing in high-school is seriously impeded by the use
of imperative languages, which appear to be of too low semantic level. We argue for
using a modern functional language instead.

1. Introduction. Teaching programming is necessarily bound to using a pro-
gramming language. The choice of a language determines how teaching is carried out.
Moreover, it tends to have a prevalent impact on what can be, and so is, being taught.

The current tradition dictates that in high-schools programming is taught in either
Basic or Pascal. Clearly, there are certain advantages as well as drawbacks for each of
the choices. Basic is interpreted as interactive, so it offers a more straightforward way
of doing computations, but its data and program structuring is rudimentary. Pascal is
much better with respect to structuring, but it gives no possibility for doing immediate
computations. The same is true of its arguably better replacement, C.

More importantly, however, all these languages suffer the deficiencies, innate to the
imperative style of programming. These are well known for at least twenty-five years and
it is pointed out that a functional style provides a better alternative [1]. The purpose of
this article is to analyze further the sources of inefficiency of imperative languages when
used in high-school teaching, and to bring more attention to the role of the functional
paradigm in teaching the essentials of computing and programming.

2. Impeded by the imperative. In the author’s opinion, the most important
goal of teaching computing in school is to convey to students what computation is about,
the word ‘computation’ being understood in the broadest sense, including manipulation
of various kinds of data, in different forms of presentation and organization. As the
time dedicated to teaching computing is usually short, this implies using a language
and environment that would permit showing the most with least effort and in smallest
resulting volume. In particular, the effort spent on learning the language/environment
by students should be minimal. In more detail, this includes:

• an environment that evaluates interactively any value that is programmable in the
language;

• natural, suggestive language notation, close to the tradition of mathematical writ-
ing;

• sufficiently developed modelling capabilities (rich type system, useful data struc-
tures);

305

• the required knowledge of the language should be proportional to the complexity
of the problems being solved; ideally, very simple problems require no knowledge.

Clearly, imperative languages are far from having the above properties. First of
all, values can be expressed in them indirectly only, by use of variables. Thus, we are
getting involved in assignments, loops, etc., boring details unrelated to the problem
being solved. In this way, too often even most simple solutions get obscured. Moreover,
aggregate values, such as tuples, lists and trees cannot be created dynamically (within
an expression), if at all. In the best case, these are built from smaller components by
means of pointers, and are not regarded as single values.

Secondly, imperative languages are weak at varying, composing, generalizing and
abstracting programs. The lack of reuse results in much code duplication.

Part of programming effort goes to writing lenghty declarations to provide typing
information, which should have been inferred by the system.

Next, student’s attention is preoccupied by the peculiarities of the language, because
of the overly rigid program structure that it imposes, instead of concentrating on the
problem being solved. The rules for properly sequencing procedures, declarations, ‘in-
clude’s/‘using’s, etc. exemplify this.

Maybe the clearest indication of how inefficient the use of imperative programming
languages is in teaching is the disappointing content of the most textbooks. In so much
volume they give so little knowledge on the subject. Flowcharts, for thirty years now
forgotten in the world, abound in our textbooks. Language details are of high esteem,
up to inviting the student to programming by means of an alphabet and lists of reserved
words for the language on the very first pages.

3. Doing it the functional way. Over the years, functional programming has
matured into a number of well designed languages. Of all these, currently most popular
are ML and Haskell, the former being the leader among the non-strictly functional
languages, while the latter is ‘the standard purely functional, lazy semantics language’.
Both are similar in many respects, most notably – their type systems are built on the so
called Hindley-Milner system, characterized by type strictness, constructivism, polymor-
phism and automatic inferrence of types for most values. Also, the common of them is
their pattern-matching and curried styles of function definition.

Both mentioned languages are successfully used in industry as well as in higher edu-
cation. For more than fifteen years now in some universities in Germany, UK, USA and
Australia ML or Haskell is used as the first language to teach programming in.

In the following, we are going to present several examples in Haskell, our purpose
being to provide evidence that teaching essentials of programming can be done much
more effectively in a functional setting.

We shall demonstrate, that, in a functional setting:

• solutions to problems at the level of those typically given in high-school can be
presented more clearly and straighforwardly, and also, where appropriate – in a
more generic way than in an imperative language;

• even at an introductory-programming level, our modelling tools – data structures
and computations on them – can cover a broader domain than the one they tradi-
tionally do (simple computations on numbers or text);

• combining already found solutions in order to obtain solutions to new problems

306

appears to be much easier than it is in an imperative setting;
• ‘scaling’ the level of teaching, i. e. moving to harder to programming problems, is

also easier; a great variety of problems become solvable with less effort and smaller
programs.

For a beginning, let us consider a very standard example: find the roots of a quadratic
equation ax2 + bx + c = 0. The solution can be programmed as the following function,
rootsq:

rootsq (a,b,c) = ((-b-d)/a’,(-b+d)/a’) where

a’ = 2*a

d = sqrt(b^2-4*a*c)

which, given a triple of coefficients (a, b, c), returns a pair of the computed roots. Now,
evaluating a call to the function, e. g. rootsq(2,-1,-6), returns the value (-1.5,2.0).

Although the example is a very simple one, it shows several advantages of the func-
tional style used. Firstly, the result is a single value, although an aggregate one – a
pair. This has the advantage that it can be named, passed as an argument to a function,
embedded in another aggregate value, etc. as a whole entity, without having to split it
into two separate values. If such a pair is named, say z, each of the two roots can be
obtained by fst z or snd z, fst and snd being selector functions on pairs, defined as
follows:

fst (x,y) = x

snd (x,y) = y

Secondly, the argument to rootsq is also a tuple – a triple in this case – with the same
advantageous implications as for the result. Thirdly, for solving the problem, testing and
seeing the result we did not have to introduce variables (a’ and d are just locally defined
names) or issues of ‘main program’ and input/output. As we are using an interactive
system, it is it which caters for taking our input and displaying the result, and there is
no notion of main program.

Having devised rootsq as a single-argument, single-value function, we can think of
aggregated applications of this function. The following definition

rootslist = map rootsq

creates the function rootslist which can be applied to a list of triples of coefficients to
return a corresponding list of pairs of roots. Also, the function rootspos:

rootspos = filter ((>0).fst)

can be applied to a list of pairs of roots to give a list of only those pairs for which both
roots are positive (it suffices to check the first root in each pair, as it is the smaller one).
The two functions map and filter are defined as:

map f xs = [f x| x<-xs]

filter p xs = [x| x<-xs, p x]

map transforms each element of a list xs by a function f, and filter forms a list of only
those entries in a list xs, which satisfy a predicate function p. The . (dot), also used
above, is the composition function:

(f . g) x = f (g x)

Note that the functions fst, snd, map, filter and . are all polymorphic – which the

307

system infers by their definitions – and can be applied to arguments of any type. Such
polymorphic definitions are one of the sources of genericity – a characteristic feature of
Haskell programs. Because of the transparency of polymorphic type usage, it is often
not necesary at all to think of the types of values. Besides, these and many other useful
functions are standard in the language and are predefined, so they can be readily used
as shown above.

map and filter, as well as some other functions, capture typical, frequently emerging
patterns of recursion on lists, thus allowing a large number of list functions to be coded
in a purely applicational style, without explicitly resorting to recursion. This simplifies
programming. Other functions of more general applicability also appear to be useful and
are provided by the language.

Note also, in the definitions of map and filter, the list comprehension notation, which
is borrowed from the set-theoretic notation in mathematics because of its conciseness and
clarity.

Here is an example of using a list comprehension to construct an infinite list:

pyTriple = [(x,y,z)| z<-[2..], y<-[2..z-1], x<-[2..y-1],

x^2+y^2==z^2, x ‘gcd‘ y ‘gcd‘ z == 1]

pyTriple is the list of all triples (x, y, z) where x < y < z, x2 + y2 = z2 and x, y and z

and relatively prime numbers (distinct Pythagorean triples).
Infinite lists and other structures are not actually constructed. Because the language

has lazy semantics, only those expressions are computed which are used to compute other
expressions. Thus, the expression pyTriple!!10 has to return the 10-th triple and so it
will compute only the first 10 triples.

Next, consider a function that implements the Euclid’s algorithm for computing the
g. c. d. of two numbers:

gcd a b

| a<b = gcd a (b-a)

| a>b = gcd (a-b) b

| a==b = a

The definition uses guarded expressions, which makes it resemble a mathematical state-
ment about the properties of the function, although it actually describes a recurrent
process that computes the g. c. d.

Our next example shows a sorting function:

qSort [] = []

qSort (x:xs) = qSort [y| y<-xs, y<=x] ++ [x] ++

qSort [y| y<-xs, y>x]

The definition makes use of pattern matching on the function’s argument against two
patterns. It says: ‘a list with a head x and a tail xs is sorted by first sorting those
elements of xs that are less than or equal to x, also sorting those elements of xs that
are greater than x, and putting x between the two sorted lists.’ Note how the use of list
comprehensions in this definition leads to maximum conciseness and clarity.

Here is a bit more complex function that constructs a list of the sublists of a given list
(hence, a set of the subsets of a set), in the lexicographic order induced by the succession
of the elements in the list:

308

subLst [] = [[]]

subLst [x] = [[x]]

subLst (x:xs) = [x] : [y++ys| y<-[[x],[]], ys<-subLst xs]

The definition says that in order to form the wished list, first (by use of recursion) such
a list is formed from the tail xs, then each element of that list is once prepended by [x]

(a singleton list, x being the head of the given list), and once taken as it is. Finally, the
result is prepended by [x].

Let f be a two-argument function. f can be viewed as an infix operation, ⊙, so
that f p q = p ⊙ q for any p and q. Suppose f is applied to the elements of a list
x = x1, x2, . . . , xn, giving the expression x1 ⊙ (x2 ⊙ . . . (xn ⊙ v) . . .), where v is some
appropriate ’initial value’. We can think of a function of arguments f , v and x, which
produces the above expression. A definition of such a function, foldr, in Haskell is
naturally a recursive one:

foldr f v [] = v

foldr f v (x:xs) = f x (foldr f v xs)

A similar function foldl can be defined to compute the expression (. . . ((v ⊙x1)⊙ x2)⊙
. . .) ⊙ xn.

A great number of functions is readily defined by applying foldr or foldl to some
appropriate function, thus avoiding explicit recursion. Examples are the already defined
functions map and filter. Several other examples follow.

sum = foldr (+) 0

sum = foldr (-) 0

product = foldr (*) 1

fac n = product [1..n]

These compute a sum, an alternating sum (x1 − x2 + x3 − · · ·+ (−1)n−1xn), a product,
and a factorial.

A somewhat less obvious application of foldl is the function poly:

poly c x = foldl (\a b -> a*x+b) 0 c

which computes for an argument x the value of a polynomial whose coefficients are
taken from the list c. The (anonymous) function \a b -> a*x+b ensures applying the
Horner’s rule for this computation. Thus e. g. pp = poly [2,7,-3,1] is the definition
of a function pp which computes 2x3 + 7x2

− 3x + 1 (as ((2*x+7)*x-3)*x+1) for any x,
so that, say, pp 2 returns 39.

Not all important or interesting things have to do with numbers, and we would like
to define other sorts of data and do useful computations on them. We have already seen
(besides map, filter etc.) one function of combinatorial nature, subLst, which can be
used to deal with sets. In our last example, we build, by defining an appropriate data
type, a simple model of calendar dates.

We start by defining two data types, Mname and Wd, to represent months and days
of the week, respectively. To this end, we provide constructors for each of the twelve
months as well as for each of the seven days:

data Mname = Jan | Feb | Mar | Apr | May | Jun |

Jul | Aug | Sep | Oct | Nov | Dec

309

data Wd = Mon | Tue | Wed | Thu | Fri | Sat | Sun

The constructors can be thought of as parameterless functions. Calling a constructor
produces a value of the corresponding type – Mname or Wd.

Now, we define the data type Day to represent a date in any of the popular forms,
such as day-month-year or day-month, month-day-year or month-day, and day-of-week:

data Day = DMY (Dn,Month,Year) | MDY (Month,Dn,Year) |

DM (Dn,Month) | MD (Month,Dn) |

WD Wd | Today | Yest | Tomr

type Dn = Int

type Year = Int

For each form of date there is a constructor (DMY, MDY etc.) in Day with the appropriate
tuple value as a parameter. The days within months and the years are represented as
numbers, using type synonym declarations for Dn and ‘verb—Year—. Because a month
can be represented by either a name or a number, we provide a separate data type,
Month, to handle the two cases:

data Month = Mn Mname | Mi Int

and use this type for referring to months in the definition of Day.
Day also has three constructors with no parameters to represent the notions of today,

yesterday and tomorrow. So, DMY(28,Mn Nov,2002), MD(Mi 11,28), WD Thu and Today

are some valid expressions of type Day. A bit of more coding – defining specific instances
of the output function show for Month and Day (we do not do it here) – lets any date be
represented, when printed, in its best known form: 28 Nov 2002, but 28/11/2002, also
Nov 28, 2002, but 11/28/2002 etc.

Of course, we can now define lists, tuples, as well as whatever other data type we
choose to devise, where dates are embedded values. All defined constructors can be
used in pattern-matching to define functions on dates. As an example of the latter,
we define a function that converts the month-day-year and the month-day forms into
day-month-year, in the latter case putting 2002 as the year value:

cnv (MDY(m,d,y)) = DMY(d,m,y)

cnv (MD(m,d)) = DMY(d,m,2002)

cnv day = day

If a list of Days is given, we can apply map cnv to it to transform those values constructed
by MDY or MD, while leaving the others unchanged.

4. Concluding remarks. Modern functional languages provide a terse and expres-
sive notation for specifying computations. A number of features make them attractive
for teaching programming:

• interactive programming systems;
• rich type systems, including tuples, lists, function types, and a world of user-

constructed types, with natural (generic) polymorphism;
• a declarative style of defining functions, by use of pattern matching and guarded

expressions;
• simplicity and economy of expression; in particular, almost no need for explicit

declarations of types, due to automatic inference; currying and partial application
of functions;

310

• high degree of modularity, by use of higher-order functions, allowing program con-
struction by ‘glueing’ simpler programs together [2];

• encouragement of purely applicative style of programming, as opposed to undisci-
plined recursion [3];

• carefully designed libraries of utility functions.
The set of examples shown here can easily be extended to more advanced domains,

such as text parsing, simple databases and graphs.

REFERENCES

[1] J. Backus. Can programming be liberated from the von Neumann style. A functional
style and its algebra of programs. (1977 ACM Turing Award Lecture) Comm. ACM, 21 (1978),
No. 8, 613–641.
[2] J. Hughes. Why functional programming matters? Computer Journal, 32, No 2, (1989).
[3] E. Meijer, M. Fokkinga, R. Paterson. Functional programming with bananas, lenses,
envelopes and barbed wire. Proc. Conf. FPLCA, Aug. 1991 (Lect. Notes in Comp. Sci. 523),
Springer-Verlag, 1991.

Boyko B. Bantchev
Institute of Mathematics and Informatics
Acad. G. Bontchev Str., Bl. 8
1113 Sofia, Bulgaria
e-mail: bantchev@math.bas.bg

ФУНКЦИОНАЛНО ПРОГРАМИРАНЕ ЗА СРЕДНОТО УЧИЛИЩЕ

Бойко Бл. Банчев

Изучаването на основите на програмирането в средното училище е сериозно зат-

руднено поради използването за тази цел на императивни езици за програмиране.

Тези езици са в семантично отношение на твърде ниско равнище. Затова пред-

лагаме за обучение по програмиране да се използва съвременен функционален

език.

311

