AN APPLICATION OF COMPUTER GRAPHICS TO GEOMETRY

Dobri St. Dobrev

Abstract

By moving line through a fixed point we cut a plane figure (square, rectangle, trapezium or polygon which sides are circles arcs) and rotate the line. Then we prove that the length function of the section is only a continuos function, but the area function is exactly once differentiable function in the vertices of the plane figure. Using the program MAPLE 6 we visualize the corresponding surfaces and results.

We consider a square $O A B C$ and a straight line $g=M N$ where $M(m, 0)$ and $N(0, n)$.
The straight line has an equation $M N: \frac{x}{m}+\frac{y}{n}=1$. We intersect the square with the line, then we rotate the line around the point $M(m, 0)$, and want to investigate what will happen when the line goes through the vertex C. Here we consider the case $m>1$.

We denote by P the intersection point of the line g and the segment $A B$ and by Q the intersection point of g with the segment $B C$. It is easy to find their coordinates:

$$
P\left[1 ; \frac{n}{m}(m-1)\right], \quad Q\left[\frac{m}{n}(n-1) ; 1\right] .
$$

Figure 1

Picture 1

[^0]For the lengths $P Q$ and $P N$ we have:

$$
\begin{gathered}
P Q^{2}(m, n)=(m+n-m n)^{2} \frac{\left(m^{2}+n^{2}\right)}{m^{2} n^{2}} . \\
P N^{2}(m, n)=\frac{m^{2}+n^{2}}{m^{2} n^{2}}
\end{gathered}
$$

The line g goes through the vertex C if $n=1$. We have:
Assertion 1. $P Q^{2}(m, n=1)=P N^{2}(m, n=1)=P C^{2}$.
For the derivative of the length functions with respect to n we have
Assertion 2. $\left(P Q^{2}\right)^{\prime}(m, n=1)=\left(P N^{2}\right)^{\prime}(m, n=1)$.
Thus it can be proved the following
Theorem 1. The length of the section of a moving line through a fixed point is only a continuos function in the vertices of the square, but not differentiable.

This theorem is proved by Prof. G. Stanilov in [1].
Now we want to investigate also the area functions for the corresponding sections in the vertices of the square. We find

$$
S_{O A P Q C O}(m, n)=-\frac{(m n-m-n)^{2}}{2 m n}, \quad S_{O A P N O}=\frac{(2 m-1) n}{2 m}
$$

Then we have
Assertion 3. $S_{O A P Q C O}(m, n=1)=S_{O A P N O}(m, n=1)$;
Assertion 4. $S_{O A P Q C O}^{\prime}(m, n=1)=S_{O A P N O}^{\prime}(m, n=1)$;
Assertion 5. $S_{O A P Q C O}^{\prime \prime}(m, n=1) \neq S_{O A P N O}^{\prime \prime}(m, n=1)$.
Theorem 2. The area of the section of a square with a moving line through a fixed point $(M(m))$ is exactly once differentiable function in the vertices of the square.

Picture 2

Picture 3

Using the programme MAPLE these theorems are visualized by pictures 1 and 2 .
Remark 1. The theorems 1 and 2 hold also for any $m<0$ and $0<m<1$.
Remark 2. Both theorems hold also for:
a) any rectangular trapezium;
b) any rectangle.

We omit the proofs for these cases. But we will prove Theorem 1 for more general case, namely, we consider the polygon $O A B C$ (Fig. 2) which consists of a segment $O A$, an $\operatorname{arc} A B$, an $\operatorname{arc} B C$ and an $\operatorname{arc} C O$, where:

Figure 2
the $\operatorname{arc} A B$ is a part of the circle k with radius $0.5 \sqrt{5}$ and center $O^{\prime}(0 ; 0.5)$; the $\operatorname{arc} B C$ is a part of the circle k_{1} with radius $\sqrt{0.5}$ and center $O_{1}(0.5 ; 0.5)$; the arc $C O$ is a part of the circle k_{2} with radius 0.5 and center $O^{\prime}(0 ; 0.5)$.

The moving line $M N$ cut the sides of the polygon in the points:

$$
P=M N \cap A B, \quad Q=M N \cap B C, \quad R=M N \cap C O
$$

These circles have equations:

$$
\begin{aligned}
& k: x^{2}+(y-0.5)^{2}=\frac{5}{4} \\
& k_{1}:(x-0.5)^{2}+(y-0.5)^{2}=0.5 \\
& k_{2}: x^{2}+(y-0.5)^{2}=0.25
\end{aligned}
$$

The coordinates of the intersection points are:

$$
\begin{gathered}
P(x(P), y(P)), Q(x(Q), y(Q)), R(x(R), y(R)) \text { where } \\
x(P)=\frac{m n(2 n-1)+\sqrt{D}}{2\left(m^{2}+n^{2}\right)}, \\
y(P)=\frac{n}{m}[m-x(P)], D=m^{2}\left[5 m^{2}+4 m^{2}\left(n+1-n^{2}\right)\right]
\end{gathered}
$$

$$
\begin{gathered}
x(Q)=\frac{m\left(2 n^{2}+m-n\right)-\sqrt{D_{1}}}{2\left(m^{2}+n^{2}\right)}, \\
y(Q)=\frac{n}{m}[m-x(Q)], D_{1}=m^{2}\left[(m-n)^{2}+4 m n(m+n-m n)\right] ; \\
x(R)=\frac{m n\left(2 n-1-\sqrt{D_{2}}\right)}{2\left(m^{2}+n^{2}\right)}, \\
y(R)=\frac{n}{m}[m-x(R)], D_{2}=m^{2} n\left(n+4 m^{2}-4 m^{2} n\right)
\end{gathered}
$$

We find the following length functions:

$$
\begin{gathered}
P Q^{2}(m, n)=\frac{\left(\sqrt{D}+\sqrt{D_{1}}-m^{2}\right)^{2}}{4\left(m^{2}+n^{2}\right)} \\
P R^{2}(m, n)=\frac{\left(\sqrt{D}+\sqrt{D_{2}}\right)^{2}}{4\left(m^{2}+n^{2}\right)}
\end{gathered}
$$

Then we have:
Assertion 6. $P Q^{2}(m, n=1)=P R^{2}(m, n=1)$;
Assertion 7. $\left(P Q^{2}\right)^{\prime}(m, n=1)=\left(P R^{2}\right)^{\prime}(m, n=1)$.
Thus the Theorem 1 holds also for the polygon $O A B C$ (Fig. 2).
Assertions 6 and 7 are visualized by Picture 3.
Having in mind such results Prof. G. Stanilov has stated the following
Conjecture. Let it be given an arbitrary plane convex polygon with sides which are sufficiently differentiable curves. We consider a straight line g which will be rotated around a fixed point M. Then for the length functions $P Q$ and $P R$ is holds Theorem 1, and for the area functions it holds Theorem 2.

REFERENCES

[1] G. Stanilov, P. Boychev, J. Cankov. Mittels Computer zu mathematischen Entdeckungen. Beitraege zum Mathematikunterricht 2001, Vortraege auf der 35. Tagung der Didaktik der Mathematik vom 5. bis 9. März in Ludwigsburg, S.592-595.
[2] G. Stanilov, L. Stanilova. Mittels Computer zu mathematischen Entdeckungen. Technology in Mathematics Teaching.Proc. of ICTMT 5 in Klagenfurt, Schriftenreihe Didaktik der Mathematik v. 26 oebv\&hpt, Vienna 2002, 227-230.

Добри Станилов Добрев
Бул. Никола Петков блок 45, ет. 10
Стара Загора 6000
e-mail: stanilov@fmi.uni-sofia.bg

ЕДНО ПРИЛОЖКЕНИЕ НА КОМПЮТЪРНАТА ГРАФИКА В ГЕОМЕТРИЯТА

Добри Ст. Добрев

Пресичаме равнинна фигура (квадрат, правоъгълник, трапец или изпъкнал полигон със страни дъги от окръжности) с подвижна права, минаваща през фиксирана точка, след което въртим правата около тази точка. Доказваме, че функцията дължина на сечението е само непрекъсната функция, обаче лицето на сечението, ограничено от фигурата и правата, е точно еднократно гладка функция във върховете на фигурата. С помоща на програмата Maple визуализираме получените повърхнини и резултати.

[^0]: MSC 51M04, 53A05, 5204, 52A38

