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In this paper we derive perturbation bounds for general real algebraic continuous-time
coupled matrix Riccati equations related to modern control theory.

Introduction. In this paper we present a complete perturbation analysis of real
algebraic continuous-time coupled matrix Riccati equations (CAMRE). Equations of this
type arise in modern control theory. The results obtained below are based on the tech-
nique proposed in [2].

Throughout the paper we use the following notations: R™*™ — the space of m x n real
matrices and R = R™*™; R™ = R™*'; R, = [0,00); AT - the transpose of the matrix A;
=< — the component-wise (partial) order relation on R™*"; vec(A4) € R™" — the column-
wise vector representation of the matrix A € R™*™; Mat(L)e RP?*™" — the matrix rep-
resentation of the linear matrix operator L:R™*" — RP*Y vec(L)(X)) =Mat(L)vec(X)
for all X € R™*™; I,, — the unit n X n matrix; A ® B = [ap,B] — the Kronecker product
of the matrices A = [apq] and B; || - || — the Euclidean norm in R™ or the spectral (or
2-) norm in R™*"; || - ||[p — the Frobenius (or F-) norm in R™*"; || - || — a replacement of
either || - ||z or || - ||r; rad(A) — the spectral radius of the square matrix A; det(A) — the
determinant of the square matrix A.

The space of linear operators £1 — Lo, where L1, Lo are linear spaces, is denoted by
Lin(Lq, £2). We also use the abbreviation Lin=Lin(R,R).

Problem statement. Consider the system of real continuous-time CAMRE

G1(X1,Xo,P1) = AnXi+XiBii+C1+X1D11 X1+ A12Xo
1) + XoB1a + XoDo Xo + X1 E1 Xo + XoF1 X =0,
G2(X1, X9, P) = AnXi1+ X1Bo +Cy 4+ X1D21 X1 + A Xo

+ XoBos + XoDoo Xo + XoEo X1 + X1 Fo X =0,
where X; € R are the unknown matrices A;;, Bij, C;, Dyj, E;j, Fy € R, 4,5 = 1,2 are
given matrix coefficients and P; := (A, By, Ci, Dy, Ei, F;) € R?, r = 1,2.
We set P := (P, P2) = (A1, A1z, B11, Bi2,C1, D11, D12, By, Aa1, Aaz, Boy, Bya, Co,
D1, Do, Eo, F5). Denote the individual matrix members of P as &1, ..., Es.
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P =:(&,8,85,64,E5,E6,E7,E8,E9, E10, €11, E12, €13, E14, €15, E16, E17, E18) € RIS, The
generalized norm of the matrix 18-tuple P is the vector ||| P||| := [||€1]|r, . .-, ||€1s|[rERLS.

Denote G := (G1,G2). Then the system (1) may be written as G(X, P) = 0, where
G is considered as a mapping R?® — R2, or R™*?" x R8 — R™"*?"

Denote by Gx (X, P)(-) € Lin(R? R?) the partial Fréchet derivative of G in X,
computed at the point (X, P).

We assume that the system (1) has a solution X = (X1, X3) € R? such that the
partial Fréchet derivative Gx (X, P)(-) of G in X at the point (X, P) is invertible. Then
the solution X is isolated.

Let the matrices from P; be perturbed as A;; — A;; + §A;;, etc. Denote by P; + 6 F;
the perturbed collection F;, in which each matrix Z € P; is replaced by Z + §Z and let
P = (§P1,0P2). Then the perturbed version of the equation is G(X 4+ §X, P+6P) = 0.
Since the operator Gx is invertible, the perturbed equation has a unique isolated solution
Y = X 46X € R? in the neighbourhood of X if the perturbation § P is sufficiently small.

Denote by & := [6] ,65]T € RS, where 6; := [0a,,,05..,0c,,0p,.,0m:, 0] €RL, r=
1,2, the vector of absolute Frobenius norm perturbations dz := ||0Z||r in the data
matrices Z € P.

The perturbation problem for CAMRE (1) is to find bounds dx, < fi(d), § € @ C R%®,
for the perturbations dx, := ||0X;|lr. Here Q is a certain set and f; are continuous
functions, non-decreasing in each of their arguments and satisfying f;(0) = 0. The
inclusion § € ) guarantees that the perturbed CAMRE has a unique solution Y = X +§ X
in a neighbourhood of the unperturbed solution X such that the elements of 6 X7, § X2
are analytic functions of the elements of the matrices 67, Z € P, provided ¢ is in the
interior of (2.

Local perturbation analysis. Since G;(X ) 0, 2 = 1,2, then the perturbed
equations may be written as Gi(X+5X,PZ+5PZ) X (X, P)(0X)+>"5cp, Giz(0Z)+
HZ((SX, (5PIL) = 0, where Gi,X(X, PZ)(Y) = Gi,Xl (X P)(Yi) + G'i,)@()(7 PZ)O/Q) are the
partial Fréchet derivative of G;(X, P;) in X at (X, P) and G; z(-) := G, z(X, P;)(.) € Lin,
Z € P, are the Fréchet derivatives of G;(X, P;) in the matrix argument Z, evaluated
at the point (X, P;). The matrix expressions H;(6X,6P;) = O (||[0.X,6F]||?), 6X — 0,
dP; — 0, contain second and higher order terms in 60X, §P;. In fact, for Y = (Y7,Y3) €
R?, we have

H,(Y,6P1) = X1(0D11Y1 +0E1Ys) + (Y10D11 + Y20 F1) X,
+ Xo(0F1Y1 + 6D12Ys) 4+ (Y10E 4 Y26 D12) Xo
(2) + 0A Y1 +Y10B11 + 0 A12Ys + Y20B12
+ Yi(Du1 +0D1)Y1 + Yi(EL + 0E)Y>
+ Yo (Fy + 0F1)Y1 + Ya(D12 + 6D12)Ya

and
Hy(Y,0P) = X1(6D21Y:1 + 6F2Ys) + (Y16Da1 + YadEo) X
+ Xo(0E2Y1 + 6D22Ya) 4+ (Y16 Fs + Y20 Da2) Xo
(3) + 0A21Y1 + Y10Bo1 + 6 A2Ys + Y20 Bag

+ Yi(Day + 0Do1)Y1 + Vi (Fy + 6F,)Ys

+ Y2(E2 + 0E2)Y1 + Ya(Daa + §D22)Ya.
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) 1 X(X P)(.), G2 x (X P)(.)) is calculated via

The linear operator Gx (X, P)(-) =
= L;(-), J(XP)()Z ii(4), 4,5 = 1,2, A direct

the operators G; x, (X, P;)(:)
calculation gives
(4) Gix,(X,P)(2) = Si;Z + 2T},
where S” = A” + XZD” —+ X]'Fi, Sij = Aij + XjDij + XiEZ', Tiz’ = B“ + D”Xl + EZ'Xj,
Tij = Bij + Dij X + Fi X;.
Further on we use the following abbreviations for the partial Fréchet derivatives of
G and G; L(-) := Gx(X,P)(-) € Lin(R* R?), L;(-) := Gix(X,P)(-) € Lin(R* R),
Ll]() = Gi,Xj ()(7 Pz)() (S Lll’l(]R7 R) ThU.S Gx(X, P)(Y) = (Ll(Y),LQ(Y)) = (Lll(yl)
+L12(Y3), Lo1 (Y1) + Laa(Y2)). Applying the vec operation to the pair Gx (X, P)(Y)
we find that the matrix representation of the linear operator L(-) is L :=Mat(L(-))
= [ L Lnz } € R¥ % where Lij := I, ® Sij + T} ® I,. Here Li; € R *™ s the
Loy Lo I
matrix of the operator L;(-).
We also have G 4,,(Z) = Z
Gip(2)=X,ZX;, Gz r(Z)=
The inverse M(-) := L™'(-) € Lln(R2 x R?) of the operator L =Gx(X, )( ) m
be represented as L™'(-) = (M;(:),Ma(.)), where, for Z := (Z1,Z,) € R? M;(Z )
= M,1(Z1) + My2(Z2), M;;(-) € Lin. Hence

(5) 5X = —M(W1(5X,5P)), W (5X,0P)),

G; B” (Z) = XjZa Gi,Ci (Z):Zv Ginij (Z):XJZXja

2
where W;(Y,6P,):= Y G; z(6Z)+H;(Y,6P;). In this way 6 X,=—»  M,;(W;(0X,5P;)),
A Jj=1

which gives

(6) ZZMUOGJMZ ZM” (60X, 0P))), i=1,2.

j=1ZeP;
Therefore dx, < 2321 > zep, Kijz0z + O(||(5|| ), 0 — 0, where K;j z = |[|M;; o
Gj.zllLin, 4,7 = 1,2, is the absolute condition number of the solution component X
with respect to the matrix Z € P;. Here ||.|Lin is the induced norm in the space Lin of
linear operators R — R.

If X; # 0, estimates in terms of relative perturbations are ex, < 2521 ZZGH_ kij,.zez
+0(||6]]?), 6 — 0, where the quantity k;; z := Kij.z|| Z||r
| Xillr, 4,5 = 1,2, is the relative condition number of the solution component X; with
respect to the matrix coefficient 0 # Z € P;.

The calculation of the condition numbers K;; 7 is straightforward when the Frobenius
norm is used in R. Indeed, let U € Lin. Then ||U||Lin := max [[[|[U(Z)||r : | Z]lr = 1}
= max{|vec(U(Z))|2 : |lvec(Z)]2 = 1} = max{||Mat (U)vec (Z)l|z : [[vec(Z)[]2 = 1}
= |[Mat (U)]l2 = omax(Mat (U)), where omax(A) is the maximum singular value of the
matrix A.

LetL; z € R”2 xn? be the matrix of the operator GG; 7 € Lin. Then a direct calculation
vields Lja,, = X ® Iy, Lip,;, = In ® Xj, Lic, = L2, Lip,, = X ® X;, L p,
=X/ ®Xi, Lip, = X ® Xj.

Let the matrix representation of the operator M(-) = G5 (X, P)(-) € Lin(R?, R?) be
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denoted as M := Mat (M) = L1 := [ %ﬂ %12 ], M;; € R™ Having in mind the
21 22
expressions for the matrix representations L; z of the linear matrix operators L; z, the
absolute condition numbers are calculated from K;; z = | Mi;Lj zll2, Z € P}, i,j =1, 2.
The operator equations (6) for the perturbation §X; may be written in a vector form
as
(7) vec (0X;) Z Z N;. zvec (02) Zvaec i(0X,0P;)), i=1,2.

j=1ZePp;

Note that the bounds estz(-l)(-) are linear functions in the perturbation vector § € R*®.
Relations (7) give a perturbation bound Jx, < estl@(é) + O(||8]|?), § — 0, where
est!? (8) := | Ni|l2]|6]l2 and N; := [Niy, Nio] € R¥*¥% N, o :— [Ny 4, Nip,,, Nic,,
Ni.p,;» Ni,g;» Ni,r,] € R"2X9"2, i,r = 1,2. We also have 6% = vec ' (6X;)vec(6X;)
=n" N, Nin+ O(||6]|?), § — 0, where n := [vec T (§411),vec " (§412),vec " (6B11),. .-,
vec T (0F,)]T € R'®"*. We shall represent the matrix N,/'N; € Rfr8"2><18"2 as a 18 x 18
block matrix with n? x n? blocks as follows. Let the n? x n? blocks of N; be denoted
as ﬁi,k, k=1,...,18, ie.,, N; = []’\\fi71,]’\\fi,2,...,ﬁi718} , f\\fi,k € R"*" | where Ni,l

~

= i, A1 Ni,2 = Ni,An; Ni,3 = Ni,Blla .. -aNi,18 = Ni,Fg- Then 7’]TN,LTNZ7’] S (STNi(S,

where ]Vl = [nip € fow, 1t = 1,2, is a matrtix with elements

]/\\TZTPJVW . p,q = 1,...,18. Therefore we find a perturbation bound dx;

< est P (8) + O(||6]|2), § — 0, where est ) (8) := /6T N;o.

We have the overall estimates
Sx;, = est;(8) +O(||6)|*), 6 — 0, i=1,2,
where est ;(4) := min < est 5-2) (), est 53)(5)} . The local bounds considered in this section

are continuous, first order homogeneous, non-linear functions in §. Also, for § # 0 these
functions are real analytic.

Ni,pg =

The bounds est Ek) are in fact majorants for the solution of a complicated optimization
problem, defining the conditioning of the problem as follows. Set & 1= vec (0X;), and ¢
= [61,...,018] " = [6ayy,---,0m] € RI®. Then we have & = Zk L Nigne + O([10]1%),
d — 0 and dx, = ||&]]2 < Ki(9) —i—O(||<5||2 0 — 0. Here

K(6) —max{ ZNmk

is the exact upper bound for the ﬁrst order term in the perturbation bound for the
solution component X;.
The calculation of K;(d) is a difficult task. Instead, one can use a bound such as
est;(0) > K;(9).
Let v € Rf be a given vector. Then we may define the relative conditioning of the
problem as follows.
Ki(v)

Let X; # 0. The quantity x;(v) := W
illF

respect to .
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If ||| P||| is the generalized norm of P, then «;(|||P|||) is the relative norm-wise condi-
tion number of Xj;.

If all elements ~y, of v are zero except one, equal to ||&]|r in the I-th position, then
k;i(7y) is the individual relative condition number of X; with respect to perturbations in
the matrix &;.

Non-local perturbation analysis. The perturbed equation F(X+6X, P+dP) =0
may be rewritten as an operator equation for § X
(8) 0X =TI(6X,0P), II = (14, I15),
where II(Y,6P) := —M(Gp(X,P)(6P) + H(Y,6P)). Here H(Y,6P) := (H1(Y,dP),
Hy(Y,0P,)) contains second and third order terms in Y and 6 P.

Equation (8) comprizes two equations, namely

©)) 0X, =11,(6X,0P;), i =1,2,
where the right-hand side of (9) is defined by relations (6). Setting &; := vec (0X;) € R"2,
1=1,2,¢:= [ ? ] S RQ”Q, we obtain the vector operator equation
2
(10) ¢=m(&m e R,

which is reduced to two coupled vector equations & = m;(&,n) € R”z, i = 1,2 with

2
mi(§,m) = Nimi+i(&,m), where ¥;(§,n):=—vec (Z Mjvec (Hj (vec ™' (§), vec _1(77]‘))))-
j=1
Next we apply the method of Lyapunov majorants and the fixed point principles of Ba-
nach and Schauder [1] for the analysis of operator equation (10) in order to find non-local
perturbation bounds for dx, = ||&]|2-
The vectorizations of the matrices H;(Y,dF;) are

vec (H1(Y,0P1)) = (I, ® X1)vec(0D11Y1 + 0E1Y3)
+ (X]' @ I,)vec (Y10Dq1 + Y26 FY)
+ (I, ® Xo)vec (0F1 Y1 + 0D12Y3)
(11) + (XJ @ I,)vec (Y16 Ey + Y26D15)
+ vec (0A11Y7 + 0A12Y3) + vec (Y10B11 + Y20B12)
+ vec (Ya(F1 + 6F1)Y1 + Yi(Er + 0E1)Ya)
+ vec (Y1(D11 + 0D11)Y7) + vec (Ya(D12 + 6D12)Y2)

and
vec (Hy(Y,0P2)) = (I, ® X1)vec (6Da1Y1 + §F2Y3)

+ (X| ® I,)vec (Y10Da1 + Yo6 Ey)

+ (I, ® Xo)vec (6D22Ya + §E2Y7)
(12) + (Xy @ I,)vec (Ya0 Doy + Y16 F3)

+ vec (0A21Y1 4+ 0A22Y2) 4 vec (Y10 Ba1 + Y20 Bag)

+ vec (Ya(E2 + 0E2)Y1 + Y1(Fa + 0F»)Y3)

+ vec (Y1(Da1 + 6D21)Y1) + vec (Ya(Dag + §D22)Ys) .
Let ||Yillr < pi, @ = 1,2, where p; are non-negative constants. Then it follows from
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(11), (12) that [[7;(&,n)ll2 < est(8) + 35—, | Mijvec (H;(Y,0P;))|l, < hi(p, ), where

p=[p1,p2]" €RZ and hi(p1, pa,6) = est () +ai1(8)p1+aia(8)p2+2bi(6) p1p2+cir (8)p?
+cin(8)p3, i =1,2. Here

a;i1(0) = ||Mall2(da,, +9B11) + | Mi2ll2(d4, + 9B,,)
+ (Vi11 +vi13)0p,, + Vi12dr, + vi1adE,
+ (Vi21 + Vi23)0D,, + VizadE, + VioaOr,,
a;i2(0) = ||Mall2(da,, +96B1,) + | Mi2ll2(d4,, + 9B,,)
+ (Vi2 + vi14)0D,, + Vi110E, + Vit3dr
+ (Viza + Vi24)0Dy, + Vi21OF, + Vi230E,,

bi(6) = [[Mall2(|F1ll2 + 0r + | Erll2 + 68,)
+ [[Maz|l2(|1 F2ll2 + 0r, + || E2ll2 + 08,),
cii(0) = [[Maull2(|Du1ll2 + 0p,,) + [[Miz|[2([| D212 + 6,y )
ci2(0) = [[Mull2(| Di2ll2 + 0py,) + [[Miz|[2([| D22[l2 + 6p,,), @ = 1,2,
and viy = [ Mo ® X))l vz = [|Maa(In ® Xo)lly, vins = | Maa(XT © L)),
Vilg = HM'L'I(X2T®I7L)||27 Vig1 = ||Mi2(In®X1)||27 Viga = ||Mi2(In®X2)”2a

Vigs = || Mia(X\ ® I,)||,, vioa := || Mia( X3 @ L),

The function A : Ri X Rf — Ri is a vector Lyapunov majorant for the operator
equation (10).

Consider the majorant system of two scalar quadratic equations
(13) pi = hi(p1, p2,9), i=1,2,
which may also be written in vector form as p = h(p, ), where h := [hy, ha]". We have
h(0,0) =0, h,(0,0) = 0. Therefore, according to the theory of Lyapunov majorants, for
§ sufficiently small, the system (13) has a solution p = f(§) = [f1(5), f2(9)] ", which is
continuous, real analytic in § # 0 and satisfies p(0) = 0. The function f(-) is defined
in a domain  C Rf whose boundary 92 may be obtained by excluding p from the
system of equations p = h(p,d), det(Ia — h,y(p,d)) = 0. The second equation is equiv-
alent to w(p,d) := 1 —£(d) + a1(d)p1 + a2(9)p2 + 2B(0)p1p2 + 11(8)pT + 72(d)p3 = 0,
where 5(5) = a11(5) + @2(5) — an(é)agg(&) + a12(5)a21(5), 051(5) = =2 011(5)(1 —
a22(6)) =b2(8)(1 —a11(0)) — 2 a12(0)c21(6) —b1(8)az1(0), az(d) := =2 c22(6) (1 —an1(d)) —
b1(0)(1 — a22(d)) — 2 a21(0)c12(d) — b2(d)ar2(d), B(0) = 2(c11(8)ca2(d) — c12(0)c21(6)),
’)’1(5) = 2(()2(5)011(5) — b1(5)021(5)), ’)’2(5) = 2(b1(5)022(5) — b2(5)012(5)) Thus for the
determination of the boundary 02 of the set 2 we have a system of 3 scalar full 2-nd
degree equations in p1, p2, whose coefficients are 2-nd degree polynomials in §. For § € (2
denote by p = f(J) the smallest non-negative solution of the majorant system (13). If the
system (13) has not a smallest solution in Ri, we can take any solution p = f(J) € Ri
such that w(f(d),d) > 0.

Thus the operator 7(-,77) maps the closed convex set B, = {¢ : ||&| < ps, @ = 1,2}
into itself. Hence according to the Schauder fixed point principle there is a solution
& € B, of the operator equation { = m(&, 7). As a result we have the non-local non-linear
perturbation bounds dx, < f;(d), 6 € Q.

In practice it is not necessary to determine explicitly the domain 2 and the functions
fi- Tt suffices, for a given §, to solve numerically the majorant system (13) and then
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to check the condition w(p,d) > 0, where p is the computed solution. This ‘numerical’
approach to the non-local perturbation analysis may be avoided, obtaining explicit per-
turbation bounds. The idea is to find a new Lyapunov majorant k = [ky, k], such that
h(p,d) = k(p,d) and for which the equation p = k(p, ) has an explicit solution.

Let ki (3, p) := e; + aip1 + azpa + 2bp1pa + c1p3 + cap3. Tt is easy to see that k is a
Lyapunov majorant. The solution of the majorant system p = k(p,d) will majorize the
solution of the system p = h(p,d). We have p; = pa + e; — e3. Using the equations
pi = ki(p,d) we obtain
(14) b, < o= et Ao getolo—eaf)

1—a1 —as +2(b+Cj)(6i —ej) —l—\/ﬁ

where
dp = dp(6):=(1—a; —a2)? —4(a1(b+c2) + (1 —az)(b+c1))er
— 4(az(b+c1)+ (1 —a1)(b+ c2))ea + 4(b% — c1e2)(e1 — e2)?
and j # i. These bounds hold provided 6 € O := {5 € Rf 2dg(6) > 0}.

REFERENCES

[1]E. A. GREBENIKOV, YU. A. RvaBov. Constructive Methods for Analysis of Nonlinear
Systems, Nauka, Moscow, 1979 (in Russian).

[2] M. KONSTANTINOV, V. ANGELOVA, P. PETKOV, D. GU, V. TSACHOURIDIS. Perturbation
bounds for coupled matrix Riccati equations. Linear Algebra and Appl., 359 2003, No 1-3,
197-218.

Vera Angelova Angelova DaWei Gu

Institute of Information Technologies Department of Engineering
Akad. G. Bonchev Str., bl. 2 Leicester University

1113 Sofia, Bulgaria Leicester LE1 7RH, England
e-mail: vangelova@iit.bas.bg e-mail: dag@le.ac.uk
Mihail Mihaylov Konstantinov Petko Hristov Petkov
University of Architecture and Civil Engineering Department of Automatics
1, Hr. Smirnenski Blvd. Technical University of Sofia
1046 Sofia, Bulgaria 1756 Sofia, Bulgaria

e-mail: mmk_fte@uacg.bg e-mail: php@tu-sofia.bg

CMVYIIIEHNA B OBIIIN KVYIIJINMPAHN MATPUYHN
YPABHEHUS HA PUKATU

Bepa A. Anresnosa, a Beii I'y, Muxaunn M. Koncrautunos,
Ilerko Xp. ITeTkoB

N3zBenenn ca mepTypOAIMOHHNA IPAHUIA 3a OOIUTE AJreOPUYHM HEIPEK'bCHATU KYII-
JIMPAHW MATPUYHU ypaBHeHUs Ha PukaTw, Bb3HUKBAIIM B CbBPEMEHHATA TEOPHs HA
YIIPABJIEHUETO.
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