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In this paper we derive perturbation bounds for general real algebraic continuous-time
coupled matrix Riccati equations related to modern control theory.

Introduction. In this paper we present a complete perturbation analysis of real
algebraic continuous-time coupled matrix Riccati equations (CAMRE). Equations of this
type arise in modern control theory. The results obtained below are based on the tech-
nique proposed in [2].

Throughout the paper we use the following notations: R
m×n – the space of m×n real

matrices and R = R
n×n; R

m = R
m×1; R+ = [0,∞); A⊤ – the transpose of the matrix A;

� – the component-wise (partial) order relation on R
m×n; vec(A) ∈ R

mn – the column-
wise vector representation of the matrix A ∈ R

m×n; Mat(L)∈ R
pq×mn – the matrix rep-

resentation of the linear matrix operator L:Rm×n → R
p×q vec(L)(X)) =Mat(L)vec(X)

for all X ∈ R
m×n; In – the unit n× n matrix; A⊗B = [apqB] – the Kronecker product

of the matrices A = [apq] and B; ‖ · ‖2 – the Euclidean norm in R
m or the spectral (or

2-) norm in R
m×n; ‖ · ‖F – the Frobenius (or F-) norm in R

m×n; ‖ · ‖ – a replacement of
either ‖ · ‖2 or ‖ · ‖F; rad(A) – the spectral radius of the square matrix A; det(A) – the
determinant of the square matrix A.

The space of linear operators L1 → L2, where L1, L2 are linear spaces, is denoted by
Lin(L1,L2). We also use the abbreviation Lin=Lin(R,R).

Problem statement. Consider the system of real continuous-time CAMRE

(1)

G1(X1, X2, P1) := A11X1 +X1B11 + C1 +X1D11X1 +A12X2

+ X2B12 +X2D12X2 +X1E1X2 +X2F1X1 = 0,

G2(X1, X2, P2) := A21X1 +X1B21 + C2 +X1D21X1 +A22X2

+ X2B22 +X2D22X2 +X2E2X1 +X1F2X2 = 0,

where Xi ∈ R are the unknown matrices Aij , Bij , Ci, Dij , Ei, Fi ∈ R, i, j = 1, 2 are
given matrix coefficients and Pi := (Air , Bir, Ci, Dir, Ei, Fi) ∈ R9, r = 1, 2.

We set P := (P1, P2) = (A11, A12, B11, B12, C1, D11, D12, E1, A21, A22, B21, B22, C2,
D21, D22, E2, F2). Denote the individual matrix members of P as E1, . . . , E18.

*2000 Mathematics Subject Classification: 15A24, 93B36, 93C73.
Key words: perturbation analysis, coupled algebraic matrix Riccati equations, H2/H∞ optimal

control, differential games.
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P =: (E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18) ∈ R18. The
generalized norm of the matrix 18-tuple P is the vector |||P ||| := [||E1||F, . . . , ||E18||F∈R

18
+ .

Denote G := (G1, G2). Then the system (1) may be written as G(X,P ) = 0, where
G is considered as a mapping R20 → R2, or R

n×2n ×R18 → R
n×2n.

Denote by GX(X,P )(·) ∈ Lin(R2,R2) the partial Fréchet derivative of G in X ,
computed at the point (X,P ).

We assume that the system (1) has a solution X = (X1, X2) ∈ R2 such that the
partial Fréchet derivative GX(X,P )(·) of G in X at the point (X,P ) is invertible. Then
the solution X is isolated.

Let the matrices from Pi be perturbed as Aij 7→ Aij + δAij , etc. Denote by Pi + δPi

the perturbed collection Pi, in which each matrix Z ∈ Pi is replaced by Z + δZ and let
δP = (δP1, δP2). Then the perturbed version of the equation is G(X + δX, P + δP ) = 0.
Since the operatorGX is invertible, the perturbed equation has a unique isolated solution
Y = X+ δX ∈ R

2 in the neighbourhood of X if the perturbation δP is sufficiently small.

Denote by δ := [δ⊤1 , δ
⊤
2 ]⊤ ∈ R

18
+ , where δi := [δAir

, δBir
, δCi

, δDir
, δEi

, δFi
]
⊤ ∈ R

9
+, r =

1, 2, the vector of absolute Frobenius norm perturbations δZ := ‖δZ‖F in the data
matrices Z ∈ P .

The perturbation problem for CAMRE (1) is to find bounds δXi
≤ fi(δ), δ ∈ Ω ⊂ R

18
+ ,

for the perturbations δXi
:= ‖δXi‖F. Here Ω is a certain set and fi are continuous

functions, non-decreasing in each of their arguments and satisfying fi(0) = 0. The
inclusion δ ∈ Ω guarantees that the perturbed CAMRE has a unique solution Y = X+δX
in a neighbourhood of the unperturbed solution X such that the elements of δX1, δX2

are analytic functions of the elements of the matrices δZ, Z ∈ P , provided δ is in the
interior of Ω.

Local perturbation analysis. Since Gi(X,Pi) = 0, i = 1, 2, then the perturbed
equations may be written asGi(X+δX, Pi+δPi) = Gi,X(X,Pi)(δX)+

∑
Z∈Pi

Gi,Z(δZ)+
Hi(δX, δPi) = 0, where Gi,X(X,Pi)(Y ) = Gi,X1

(X,Pi)(Y1) + Gi,X2
(X,Pi)(Y2) are the

partial Fréchet derivative ofGi(X,Pi) inX at (X,P ) andGi,Z(·) :=Gi,Z(X,Pi)(.) ∈ Lin,

Z ∈ Pi, are the Fréchet derivatives of Gi(X,Pi) in the matrix argument Z, evaluated
at the point (X,Pi). The matrix expressions Hi(δX, δPi) = O

(
‖[δX, δPi]‖2

)
, δX → 0,

δPi → 0, contain second and higher order terms in δX , δPi. In fact, for Y = (Y1, Y2) ∈
R

2, we have

(2)

H1(Y, δP1) = X1(δD11Y1 + δE1Y2) + (Y1δD11 + Y2δF1)X1

+ X2(δF1Y1 + δD12Y2) + (Y1δE1 + Y2δD12)X2

+ δA11Y1 + Y1δB11 + δA12Y2 + Y2δB12

+ Y1(D11 + δD11)Y1 + Y1(E1 + δE1)Y2

+ Y2(F1 + δF1)Y1 + Y2(D12 + δD12)Y2

and

(3)

H2(Y, δP2) = X1(δD21Y1 + δF2Y2) + (Y1δD21 + Y2δE2)X1

+ X2(δE2Y1 + δD22Y2) + (Y1δF2 + Y2δD22)X2

+ δA21Y1 + Y1δB21 + δA22Y2 + Y2δB22

+ Y1(D21 + δD21)Y1 + Y1(F2 + δF2)Y2

+ Y2(E2 + δE2)Y1 + Y2(D22 + δD22)Y2.
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The linear operator GX(X,P )(·) = Gi,X(X,P1)(.), G2,X(X,P2)(.)) is calculated via
the operators Gi,Xj

(X,Pi)(·) = Li(·), Gi,Xj
(X,Pi)(·) = Lij(·), i, j = 1, 2. A direct

calculation gives

(4) Gi,Xj
(X,Pi)(Z) = SijZ + ZTij ,

where Sii = Aii +XiDii +XjFi, Sij = Aij +XjDij +XiEi, Tii = Bii +DiiXi + EiXj ,

Tij = Bij +DijXj + FiXi.

Further on we use the following abbreviations for the partial Fréchet derivatives of
G and Gi L(·) := GX(X,P )(·) ∈ Lin(R2,R2), Li(·) := Gi,X(X,Pi)(·) ∈ Lin(R2,R),
Lij(·) := Gi,Xj

(X,Pi)(·) ∈ Lin(R,R). Thus GX(X,P )(Y ) = (L1(Y ),L2(Y )) = (L11(Y1)
+L12(Y2), L21(Y1) + L22(Y2)). Applying the vec operation to the pair GX(X,P )(Y )
we find that the matrix representation of the linear operator L(·) is L :=Mat(L(·))
=

[
L11 L12

L21 L22

]
∈ R

2n2
×2n2

, where Lij := In ⊗ Sij +T⊤
ij ⊗ In. Here Lij ∈ R

n2
×n2

is the

matrix of the operator Lij(·).
We also have Gi,Aij

(Z) = ZXj, Gi,Bij
(Z) = XjZ, Gi,Ci

(Z)=Z, Gi,Dij
(Z)=XjZXj,

Gi,Ei
(Z) = XiZXj, Gi,Fi

(Z) = XjZXi.

The inverse M(·) := L−1(·) ∈ Lin(R2 × R
2) of the operator L = GX(X,P )(·) may

be represented as L−1(·) = (M1(·),M2(·)), where, for Z := (Z1, Z2) ∈ R
2, Mi(Z)

= Mi1(Z1) + Mi2(Z2), Mij(·) ∈ Lin. Hence

(5) δX = −M(W1(δX, δP1),W2(δX, δP2)),

whereWi(Y, δPi):=
∑

Z∈Pi

Gi,Z(δZ)+Hi(Y, δPi). In this way δXi=−
2∑

j=1

Mij(Wj(δX, δPj)),

which gives

(6) δXi = −
2∑

j=1

∑

Z∈Pj

Mij ◦Gj,Z(δZ) −
2∑

j=1

Mij(Hj(δX, δPj)), i = 1, 2.

Therefore δXi
≤

∑2
j=1

∑
Z∈Pj

Kij,ZδZ + O(‖δ‖2), δ → 0, where Kij,Z := ‖Mij ◦
Gj,Z‖Lin, i, j = 1, 2, is the absolute condition number of the solution component Xi

with respect to the matrix Z ∈ Pj . Here ‖.‖Lin is the induced norm in the space Lin of
linear operators R → R.

If Xi 6= 0, estimates in terms of relative perturbations are εXi
≤

∑2
j=1

∑
Z∈Pi

kij,ZεZ

+O(‖δ‖2), δ → 0, where the quantity kij,Z := Kij,Z‖Z‖F

|Xi‖F, i, j = 1, 2, is the relative condition number of the solution component Xi with
respect to the matrix coefficient 0 6= Z ∈ Pj .

The calculation of the condition numbers Kij,Z is straightforward when the Frobenius
norm is used in R. Indeed, let U ∈ Lin. Then ‖U‖Lin := max ‖‖U(Z)‖F : ‖Z‖F = 1}
= max{‖vec (U(Z))‖2 : ‖vec (Z)‖2 = 1} = max{‖Mat (U)vec (Z)‖2 : ‖vec (Z)‖2 = 1}
= ‖Mat (U)‖2 = σmax(Mat (U)), where σmax(A) is the maximum singular value of the
matrix A.

Let Li,Z ∈ R
n2

×n2

be the matrix of the operatorGi,Z ∈ Lin. Then a direct calculation
yields Li,Aij

= X⊤
j ⊗ In, Li,Bij

= In ⊗ Xj , Li,Ci
= In2 , Li,Dij

= X⊤
j ⊗ Xj , Li,Ei

= X⊤
j ⊗Xi, Li,Fi

= X⊤
i ⊗Xj .

Let the matrix representation of the operator M(·) = G−1
X (X,P )(·) ∈ Lin(R2,R2) be
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denoted as M := Mat (M) = L−1 :=

[
M11 M12

M21 M22

]
, Mij ∈ R

n2
×n2

. Having in mind the

expressions for the matrix representations Li,Z of the linear matrix operators Li,Z , the
absolute condition numbers are calculated from Kij,Z = ‖MijLj,Z‖2, Z ∈ Pj , i, j = 1, 2.

The operator equations (6) for the perturbation δXi may be written in a vector form
as

(7) vec (δXi) =
2∑

j=1

∑

Z∈Pj

Ni,Zvec (δZ) −
2∑

j=1

Mijvec (Hj(δX, δPj)), i = 1, 2.

Note that the bounds est
(1)
i (·) are linear functions in the perturbation vector δ ∈ R

18.

Relations (7) give a perturbation bound δXi
≤ est

(2)
i (δ) + O(‖δ‖2), δ → 0, where

est
(2)
i (δ) := ‖Ni‖2‖δ‖2 and Ni := [Ni,1, Ni,2] ∈ R

n2
×18n2

, Ni,j := [Ni,Arj
, Ni,Brj

, Ni,Cj
,

Ni,Drj
, Ni,Ei

, Ni,Fi
] ∈ R

n2
×9n2

, i, r = 1, 2. We also have δ2Xi
= vec⊤(δXi)vec (δXi)

= η⊤N⊤
i Niη + O(‖δ‖2), δ → 0, where η := [vec⊤(δA11), vec⊤(δA12), vec⊤(δB11), . . . ,

vec⊤(δF2)]
⊤ ∈ R

18n2

. We shall represent the matrix N⊤
i Ni ∈ R

18n2
×18n2

+ as a 18 × 18
block matrix with n2 × n2 blocks as follows. Let the n2 × n2 blocks of Ni be denoted

as N̂i,k, k = 1, . . . , 18, i.e., Ni =
[
N̂i,1, N̂i,2, . . . , N̂i,18

]
, N̂i,k ∈ R

n2
×n2

, where N̂i,1

:= Ni,A11
, N̂i,2 := Ni,A12

, N̂i,3 := Ni,B11
, . . . , N̂i,18 := Ni,F2

. Then η⊤N⊤
i Niη ≤ δ⊤N̂iδ,

where N̂i = [ni,pq] ∈ R
18×18
+ , i = 1, 2, is a matrtix with elements

ni,pq :=
∥∥∥N̂⊤

i,pN̂i,q

∥∥∥
2
, p, q = 1, . . . , 18. Therefore we find a perturbation bound δXi

≤ est
(3)
i (δ) +O(‖δ‖2), δ → 0, where est

(3)
i (δ) :=

√
δ⊤N̂iδ.

We have the overall estimates

δXi
= est i(δ) +O(‖δ‖2), δ → 0, i = 1, 2,

where est i(δ) := min
{

est
(2)
i (δ), est

(3)
i (δ)

}
. The local bounds considered in this section

are continuous, first order homogeneous, non-linear functions in δ. Also, for δ 6= 0 these
functions are real analytic.

The bounds est
(k)
i are in fact majorants for the solution of a complicated optimization

problem, defining the conditioning of the problem as follows. Set ξi := vec (δXi), and δ

:= [δ1, . . . , δ18]
⊤ := [δA11

, . . . , δF2
]⊤ ∈ R

18
+ . Then we have ξi =

∑18
k=1 N̂i,kηk + O(‖δ‖2),

δ → 0 and δXi
= ‖ξi‖2 ≤ Ki(δ) +O(‖δ‖2), δ → 0. Here

Ki(δ) := max

{∥∥∥∥∥

18∑

k=1

N̂i,kηk

∥∥∥∥∥
2

: ‖ηk‖ ≤ δk, k = 1, . . . , 18

}

is the exact upper bound for the first order term in the perturbation bound for the
solution component Xi.

The calculation of Ki(δ) is a difficult task. Instead, one can use a bound such as
est i(δ) ≥ Ki(δ).

Let γ ∈ R
18
+ be a given vector. Then we may define the relative conditioning of the

problem as follows.

Let Xi 6= 0. The quantity κi(γ) :=
Ki(γ)

‖Xi‖F
is the relative condition number of Xi with

respect to γ.
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If |||P ||| is the generalized norm of P , then κi(|||P |||) is the relative norm-wise condi-

tion number of Xi.

If all elements γk of γ are zero except one, equal to ‖El‖F in the l-th position, then
κi(γ) is the individual relative condition number of Xi with respect to perturbations in
the matrix El.

Non-local perturbation analysis. The perturbed equation F (X+δX, P+δP ) = 0
may be rewritten as an operator equation for δX

(8) δX = Π(δX, δP ), Π = (Π1,Π2),

where Π(Y, δP ) := −M(GP (X,P )(δP ) + H(Y, δP )). Here H(Y, δP ) := (H1(Y, δP1),
H2(Y, δP2)) contains second and third order terms in Y and δP .

Equation (8) comprizes two equations, namely

(9) δXi = Πi(δX, δPi), i = 1, 2,

where the right-hand side of (9) is defined by relations (6). Setting ξi := vec (δXi) ∈ R
n2

,

i = 1, 2, ξ :=

[
ξ1
ξ2

]
∈ R

2n2

, we obtain the vector operator equation

(10) ξ = π(ξ, η) ∈ R
2n2

,

which is reduced to two coupled vector equations ξi = πi(ξ, η) ∈ R
n2

, i = 1, 2 with

πi(ξ, η) = Niηi+ψi(ξ, η), where ψi(ξ, η):=−vec
( 2∑

j=1

Mijvec
(
Hj

(
vec−1(ξ), vec−1(ηj)

)))
.

Next we apply the method of Lyapunov majorants and the fixed point principles of Ba-
nach and Schauder [1] for the analysis of operator equation (10) in order to find non-local
perturbation bounds for δXi

= ‖ξi‖2.

The vectorizations of the matrices Hi(Y, δPi) are

(11)

vec (H1(Y, δP1)) = (In ⊗X1)vec (δD11Y1 + δE1Y2)

+ (X⊤
1 ⊗ In)vec (Y1δD11 + Y2δF1)

+ (In ⊗X2)vec (δF1Y1 + δD12Y2)

+ (X⊤
2 ⊗ In)vec (Y1δE1 + Y2δD12)

+ vec (δA11Y1 + δA12Y2) + vec (Y1δB11 + Y2δB12)

+ vec (Y2(F1 + δF1)Y1 + Y1(E1 + δE1)Y2)

+ vec (Y1(D11 + δD11)Y1) + vec (Y2(D12 + δD12)Y2)

and

(12)

vec (H2(Y, δP2)) = (In ⊗X1)vec (δD21Y1 + δF2Y2)

+ (X⊤
1 ⊗ In)vec (Y1δD21 + Y2δE2)

+ (In ⊗X2)vec (δD22Y2 + δE2Y1)

+ (X⊤
2 ⊗ In)vec (Y2δD22 + Y1δF2)

+ vec (δA21Y1 + δA22Y2) + vec (Y1δB21 + Y2δB22)

+ vec (Y2(E2 + δE2)Y1 + Y1(F2 + δF2)Y2)

+ vec (Y1(D21 + δD21)Y1) + vec (Y2(D22 + δD22)Y2) .

Let ‖Yi‖F ≤ ρi, i = 1, 2, where ρi are non-negative constants. Then it follows from
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(11), (12) that ‖πi(ξ, η)‖2 ≤ est i(δ) +
∑2

j=1 ‖Mijvec (Hj(Y, δPj))‖2 ≤ hi(ρ, δ), where

ρ = [ρ1, ρ2]
⊤ ∈ R

2
+ and hi(ρ1, ρ2, δ) := est i(δ)+ai1(δ)ρ1+ai2(δ)ρ2+2bi(δ)ρ1ρ2+ci1(δ)ρ

2
1

+ci2(δ)ρ
2
2, i = 1, 2. Here

ai1(δ) := ‖Mi1‖2(δA11
+ δB11

) + ‖Mi2‖2(δA21
+ δB21

)

+ (νi11 + νi13)δD11
+ νi12δF1

+ νi14δE1

+ (νi21 + νi23)δD21
+ νi22δE2

+ νi24δF2
,

ai2(δ) := ‖Mi1‖2(δA12
+ δB12

) + ‖Mi2‖2(δA22
+ δB22

)

+ (νi12 + νi14)δD12
+ νi11δE1

+ νi13δF1

+ (νi22 + νi24)δD22
+ νi21δF2

+ νi23δE2
,

bi(δ) := ‖Mi1‖2(‖F1‖2 + δF1
+ ‖E1‖2 + δE1

)

+ ‖Mi2‖2(‖F2‖2 + δF2
+ ‖E2‖2 + δE2

),

ci1(δ) := ‖Mi1‖2(‖D11‖2 + δD11
) + ‖Mi2‖2(‖D21‖2 + δD21

),

ci2(δ) := ‖Mi1‖2(‖D12‖2 + δD12
) + ‖Mi2‖2(‖D22‖2 + δD22

), i = 1, 2,

and νi11 := ‖Mi1(In ⊗X1)‖2, νi12 := ‖Mi1(In ⊗X2)‖2, νi13 :=
∥∥Mi1(X

⊤
1 ⊗ In)

∥∥
2
,

νi14 :=
∥∥Mi1(X

⊤
2 ⊗ In)

∥∥
2
, νi21 := ‖Mi2(In ⊗X1)‖2, νi22 := ‖Mi2(In ⊗X2)‖2,

νi23 :=
∥∥Mi2(X

⊤
1 ⊗ In)

∥∥
2
, νi24 :=

∥∥Mi2(X
⊤
2 ⊗ In)

∥∥
2
.

The function h : R
2
+ × R

18
+ → R

2
+ is a vector Lyapunov majorant for the operator

equation (10).

Consider the majorant system of two scalar quadratic equations

(13) ρi = hi(ρ1, ρ2, δ), i = 1, 2,

which may also be written in vector form as ρ = h(ρ, δ), where h := [h1, h2]
⊤. We have

h(0, 0) = 0, hρ(0, 0) = 0. Therefore, according to the theory of Lyapunov majorants, for
δ sufficiently small, the system (13) has a solution ρ = f(δ) = [f1(δ), f2(δ)]

⊤, which is
continuous, real analytic in δ 6= 0 and satisfies ρ(0) = 0. The function f(·) is defined
in a domain Ω ⊂ R

18
+ whose boundary ∂Ω may be obtained by excluding ρ from the

system of equations ρ = h(ρ, δ), det(I2 − hρ(ρ, δ)) = 0. The second equation is equiv-
alent to ω(ρ, δ) := 1 − ε(δ) + α1(δ)ρ1 + α2(δ)ρ2 + 2β(δ)ρ1ρ2 + γ1(δ)ρ

2
1 + γ2(δ)ρ

2
2 = 0,

where ε(δ) := a11(δ) + a22(δ) − a11(δ)a22(δ) + a12(δ)a21(δ), α1(δ) := −2 c11(δ)(1 −
a22(δ))−b2(δ)(1−a11(δ)) − 2 a12(δ)c21(δ)−b1(δ)a21(δ), α2(δ) := −2 c22(δ)(1−a11(δ))−
b1(δ)(1 − a22(δ)) − 2 a21(δ)c12(δ) − b2(δ)a12(δ), β(δ) := 2(c11(δ)c22(δ) − c12(δ)c21(δ)),
γ1(δ) := 2(b2(δ)c11(δ) − b1(δ)c21(δ)), γ2(δ) := 2(b1(δ)c22(δ) − b2(δ)c12(δ)). Thus for the
determination of the boundary ∂Ω of the set Ω we have a system of 3 scalar full 2-nd
degree equations in ρ1, ρ2, whose coefficients are 2-nd degree polynomials in δ. For δ ∈ Ω
denote by ρ = f(δ) the smallest non-negative solution of the majorant system (13). If the
system (13) has not a smallest solution in R

2
+, we can take any solution ρ = f(δ) ∈ R

2
+

such that ω(f(δ), δ) ≥ 0.

Thus the operator π(·, η) maps the closed convex set Bρ = {ξ : ‖ξi‖ ≤ ρi, i = 1, 2}
into itself. Hence according to the Schauder fixed point principle there is a solution
ξ ∈ Bρ of the operator equation ξ = π(ξ, η). As a result we have the non-local non-linear
perturbation bounds δXi

≤ fi(δ), δ ∈ Ω.

In practice it is not necessary to determine explicitly the domain Ω and the functions
fi. It suffices, for a given δ, to solve numerically the majorant system (13) and then
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to check the condition ω(ρ̃, δ) ≥ 0, where ρ̃ is the computed solution. This ‘numerical’
approach to the non-local perturbation analysis may be avoided, obtaining explicit per-
turbation bounds. The idea is to find a new Lyapunov majorant k = [k1, k2]

⊤, such that
h(ρ, δ) � k(ρ, δ) and for which the equation ρ = k(ρ, δ) has an explicit solution.

Let ki(δ, ρ) := ei + a1ρ1 + a2ρ2 + 2bρ1ρ2 + c1ρ
2
1 + c2ρ

2
2. It is easy to see that k is a

Lyapunov majorant. The solution of the majorant system ρ = k(ρ, δ) will majorize the
solution of the system ρ = h(ρ, δ). We have ρ1 = ρ2 + e1 − e2. Using the equations
ρi = ki(ρ, δ) we obtain

(14) δXi
≤ ρi =

2
(
ajej + (1 − aj)ei + cj(e1 − e2)

2
)

1 − a1 − a2 + 2(b+ cj)(ei − ej) +
√
dk

, i = 1, 2,

where
dk = dk(δ) := (1 − a1 − a2)

2 − 4(a1(b+ c2) + (1 − a2)(b+ c1))e1

− 4(a2(b+ c1) + (1 − a1)(b + c2))e2 + 4(b2 − c1c2)(e1 − e2)
2

and j 6= i. These bounds hold provided δ ∈ Θk :=
{
δ ∈ R

18
+ : dk(δ) ≥ 0

}
.
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СМУЩЕНИЯ В ОБЩИ КУПЛИРАНИ МАТРИЧНИ

УРАВНЕНИЯ НА РИКАТИ

Вера А. Ангелова, Да Вей Гу, Михаил М. Константинов,

Петко Хр. Петков

Изведени са пертурбационни граници за общите алгебрични непрекъснати куп-

лирани матрични уравнения на Рикати, възникващи в съвременната теория на

управлението.
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