MATEMATИKA И MATEMATИЧЕСКО ОБРАЗОВАНИЕ, 2004 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2004 Proceedings of the Thirty Third Spring Conference of the Union of Bulgarian Mathematicians Borovets, April 1–4, 2004

PERTURBATION BOUNDS FOR GENERAL COUPLED MATRIX RICCATI EQUATIONS^{*}

Vera A. Angelova, Da Wei Gu, Mihail M. Konstantinov, Petko H. Petkov

In this paper we derive perturbation bounds for general real algebraic continuous-time coupled matrix Riccati equations related to modern control theory.

Introduction. In this paper we present a complete perturbation analysis of real algebraic continuous-time coupled matrix Riccati equations (CAMRE). Equations of this type arise in modern control theory. The results obtained below are based on the technique proposed in [2].

Throughout the paper we use the following notations: $\mathbb{R}^{m \times n}$ – the space of $m \times n$ real matrices and $\mathcal{R} = \mathbb{R}^{n \times n}$; $\mathbb{R}^m = \mathbb{R}^{m \times 1}$; $\mathbb{R}_+ = [0, \infty)$; A^\top – the transpose of the matrix A; \preceq – the component-wise (partial) order relation on $\mathbb{R}^{m \times n}$; $\operatorname{vec}(A) \in \mathbb{R}^{mn}$ – the columnwise vector representation of the matrix $A \in \mathbb{R}^{m \times n}$; $\operatorname{Mat}(\mathbf{L}) \in \mathbb{R}^{pq \times mn}$ – the matrix representation of the linear matrix operator $\mathbf{L}:\mathbb{R}^{m \times n} \to \mathbb{R}^{p \times q}$ $\operatorname{vec}(\mathbf{L})(X)$) = Mat(\mathbf{L}) $\operatorname{vec}(X)$ for all $X \in \mathbb{R}^{m \times n}$; I_n – the unit $n \times n$ matrix; $A \otimes B = [a_{pq}B]$ – the Kronecker product of the matrices $A = [a_{pq}]$ and B; $\|\cdot\|_2$ – the Euclidean norm in \mathbb{R}^m or the spectral (or 2-) norm in $\mathbb{R}^{m \times n}$; $\|\cdot\|_{\mathrm{F}}$ – the Frobenius (or F-) norm in $\mathbb{R}^{m \times n}$; $\|\cdot\|$ – a replacement of either $\|\cdot\|_2$ or $\|\cdot\|_{\mathrm{F}}$; rad(A) – the spectral radius of the square matrix A; $\det(A)$ – the determinant of the square matrix A.

The space of linear operators $\mathcal{L}_1 \to \mathcal{L}_2$, where $\mathcal{L}_1, \mathcal{L}_2$ are linear spaces, is denoted by $\operatorname{Lin}(\mathcal{L}_1, \mathcal{L}_2)$. We also use the abbreviation $\operatorname{Lin}=\operatorname{Lin}(\mathcal{R}, \mathcal{R})$.

Problem statement. Consider the system of real continuous-time CAMRE

(1)
$$G_{1}(X_{1}, X_{2}, P_{1}) := A_{11}X_{1} + X_{1}B_{11} + C_{1} + X_{1}D_{11}X_{1} + A_{12}X_{2} + X_{2}B_{12} + X_{2}D_{12}X_{2} + X_{1}E_{1}X_{2} + X_{2}F_{1}X_{1} = 0, G_{2}(X_{1}, X_{2}, P_{2}) := A_{21}X_{1} + X_{1}B_{21} + C_{2} + X_{1}D_{21}X_{1} + A_{22}X_{2} + X_{2}B_{22} + X_{2}D_{22}X_{2} + X_{2}E_{2}X_{1} + X_{1}F_{2}X_{2} = 0,$$

where $X_i \in \mathcal{R}$ are the unknown matrices A_{ij} , B_{ij} , C_i , D_{ij} , E_i , $F_i \in \mathcal{R}$, i, j = 1, 2 are given matrix coefficients and $P_i := (A_{ir}, B_{ir}, C_i, D_{ir}, E_i, F_i) \in \mathcal{R}^9$, r = 1, 2.

We set $P := (P_1, P_2) = (A_{11}, A_{12}, B_{11}, B_{12}, C_1, D_{11}, D_{12}, E_1, A_{21}, A_{22}, B_{21}, B_{22}, C_2, D_{21}, D_{22}, E_2, F_2)$. Denote the individual matrix members of P as $\mathcal{E}_1, \ldots, \mathcal{E}_{18}$.

⁶2000 Mathematics Subject Classification: 15A24, 93B36, 93C73.

Key words: perturbation analysis, coupled algebraic matrix Riccati equations, H_2/H_{∞} optimal control, differential games.

 $P :: (\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3, \mathcal{E}_4, \mathcal{E}_5, \mathcal{E}_6, \mathcal{E}_7, \mathcal{E}_8, \mathcal{E}_9, \mathcal{E}_{10}, \mathcal{E}_{11}, \mathcal{E}_{12}, \mathcal{E}_{13}, \mathcal{E}_{14}, \mathcal{E}_{15}, \mathcal{E}_{16}, \mathcal{E}_{17}, \mathcal{E}_{18}) \in \mathcal{R}^{18}.$ The generalized norm of the matrix 18-tuple P is the vector $|||P||| := [||\mathcal{E}_1||_F, \dots, ||\mathcal{E}_{18}||_F \in \mathbb{R}^{18}_+.$

Denote $G := (G_1, G_2)$. Then the system (1) may be written as G(X, P) = 0, where G is considered as a mapping $\mathcal{R}^{20} \to \mathcal{R}^2$, or $\mathbb{R}^{n \times 2n} \times \mathcal{R}^{18} \to \mathbb{R}^{n \times 2n}$.

Denote by $G_X(X, P)(\cdot) \in \operatorname{Lin}(\mathcal{R}^2, \mathcal{R}^2)$ the partial Fréchet derivative of G in X, computed at the point (X, P).

We assume that the system (1) has a solution $X = (X_1, X_2) \in \mathbb{R}^2$ such that the partial Fréchet derivative $G_X(X, P)(\cdot)$ of G in X at the point (X, P) is invertible. Then the solution X is isolated.

Let the matrices from P_i be perturbed as $A_{ij} \mapsto A_{ij} + \delta A_{ij}$, etc. Denote by $P_i + \delta P_i$ the perturbed collection P_i , in which each matrix $Z \in P_i$ is replaced by $Z + \delta Z$ and let $\delta P = (\delta P_1, \delta P_2)$. Then the perturbed version of the equation is $G(X + \delta X, P + \delta P) = 0$. Since the operator G_X is invertible, the perturbed equation has a unique isolated solution $Y = X + \delta X \in \mathbb{R}^2$ in the neighbourhood of X if the perturbation δP is sufficiently small.

Denote by $\delta := [\delta_1^\top, \delta_2^\top]^\top \in \mathbb{R}^{18}_+$, where $\delta_i := [\delta_{A_{ir}}, \delta_{B_{ir}}, \delta_{C_i}, \delta_{D_{ir}}, \delta_{E_i}, \delta_{F_i}]^\top \in \mathbb{R}^9_+$, r = 1, 2, the vector of absolute Frobenius norm perturbations $\delta_Z := \|\delta Z\|_F$ in the data matrices $Z \in P$.

The perturbation problem for CAMRE (1) is to find bounds $\delta_{X_i} \leq f_i(\delta), \delta \in \Omega \subset \mathbb{R}^{18}_+$, for the perturbations $\delta_{X_i} := \|\delta X_i\|_{\mathrm{F}}$. Here Ω is a certain set and f_i are continuous functions, non-decreasing in each of their arguments and satisfying $f_i(0) = 0$. The inclusion $\delta \in \Omega$ guarantees that the perturbed CAMRE has a unique solution $Y = X + \delta X$ in a neighbourhood of the unperturbed solution X such that the elements of $\delta X_1, \delta X_2$ are analytic functions of the elements of the matrices $\delta Z, Z \in P$, provided δ is in the interior of Ω .

Local perturbation analysis. Since $G_i(X, P_i) = 0$, i = 1, 2, then the perturbed equations may be written as $G_i(X + \delta X, P_i + \delta P_i) = G_{i,X}(X, P_i)(\delta X) + \sum_{Z \in P_i} G_{i,Z}(\delta Z) + H_i(\delta X, \delta P_i) = 0$, where $G_{i,X}(X, P_i)(Y) = G_{i,X_1}(X, P_i)(Y_1) + G_{i,X_2}(X, P_i)(Y_2)$ are the partial Fréchet derivative of $G_i(X, P_i)$ in X at (X, P) and $G_{i,Z}(\cdot) := G_{i,Z}(X, P_i)(.) \in \mathbf{Lin}$, $Z \in P_i$, are the Fréchet derivatives of $G_i(X, P_i)$ in the matrix argument Z, evaluated at the point (X, P_i) . The matrix expressions $H_i(\delta X, \delta P_i) = O\left(\|[\delta X, \delta P_i]\|^2\right), \delta X \to 0, \delta P_i \to 0$, contain second and higher order terms in $\delta X, \delta P_i$. In fact, for $Y = (Y_1, Y_2) \in \mathbb{R}^2$, we have

 $+ Y_2(F_1 + \delta F_1)Y_1 + Y_2(D_{12} + \delta D_{12})Y_2$

$$H_{1}(Y, \delta P_{1}) = X_{1}(\delta D_{11}Y_{1} + \delta E_{1}Y_{2}) + (Y_{1}\delta D_{11} + Y_{2}\delta F_{1})X_{1} + X_{2}(\delta F_{1}Y_{1} + \delta D_{12}Y_{2}) + (Y_{1}\delta E_{1} + Y_{2}\delta D_{12})X_{2} + \delta A_{11}Y_{1} + Y_{1}\delta B_{11} + \delta A_{12}Y_{2} + Y_{2}\delta B_{12} + Y_{1}(D_{11} + \delta D_{11})Y_{1} + Y_{1}(E_{1} + \delta E_{1})Y_{2}$$

and

(2

96

The linear operator $G_X(X, P)(\cdot) = G_{i,X}(X, P_1)(.), G_{2,X}(X, P_2)(.))$ is calculated via the operators $G_{i,X_i}(X,P_i)(\cdot) = \mathbf{L}_i(\cdot), \ G_{i,X_i}(X,P_i)(\cdot) = \mathbf{L}_{ij}(\cdot), \ i,j = 1,2.$ A direct calculation gives

$$G_{i,X_i}(X,P_i)(Z) = S_{ij}Z + ZT_{ij},$$

where $S_{ii} = A_{ii} + X_i D_{ii} + X_j F_i$, $S_{ij} = A_{ij} + X_j D_{ij} + X_i E_i$, $T_{ii} = B_{ii} + D_{ii} X_i + E_i X_j$, $T_{ij} = B_{ij} + D_{ij}X_j + F_iX_i.$

Further on we use the following abbreviations for the partial Fréchet derivatives of $G \text{ and } G_i \mathbf{L}(\cdot) := G_X(X, P)(\cdot) \in \mathbf{Lin}(\mathbb{R}^2, \mathbb{R}^2), \ \mathbf{L}_i(\cdot) := G_{i,X}(X, P_i)(\cdot) \in \mathbf{Lin}(\mathbb{R}^2, \mathbb{R}),$ $\mathbf{L}_{ij}(\cdot) := G_{i,X_i}(X, P_i)(\cdot) \in \mathbf{Lin}(\mathbb{R}, \mathbb{R}).$ Thus $G_X(X, P)(Y) = (\mathbf{L}_1(Y), \mathbf{L}_2(Y)) = (\mathbf{L}_{11}(Y_1))$ $+\mathbf{L}_{12}(Y_2), \mathbf{L}_{21}(Y_1) + \mathbf{L}_{22}(Y_2)).$ Applying the vec operation to the pair $G_X(X, P)(Y)$ we find that the matrix representation of the linear operator $\mathbf{L}(\cdot)$ is $L := \operatorname{Mat}(\mathbf{L}(\cdot))$ $= \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix} \in \mathbb{R}^{2n^2 \times 2n^2}, \text{ where } L_{ij} := I_n \otimes S_{ij} + T_{ij}^\top \otimes I_n. \text{ Here } L_{ij} \in \mathbb{R}^{n^2 \times n^2} \text{ is the}$ matrix of the operator $\mathbf{L}_{ii}(\cdot)$.

We also have $G_{i,A_{ij}}(Z) = ZX_j, \ G_{i,B_{ij}}(Z) = X_jZ, \ G_{i,C_i}(Z) = Z, \ G_{i,D_{ij}}(Z) = X_jZX_j,$ $G_{i,E_i}(Z) = X_i Z X_j, G_{i,F_i}(Z) = X_j Z X_i.$

The inverse $\mathbf{M}(\cdot) := \mathbf{L}^{-1}(\cdot) \in \mathbf{Lin}(\mathbb{R}^2 \times \mathbb{R}^2)$ of the operator $\mathbf{L} = G_X(X, P)(\cdot)$ may be represented as $\mathbf{L}^{-1}(\cdot) = (\mathbf{M}_1(\cdot), \mathbf{M}_2(\cdot))$, where, for $Z := (Z_1, Z_2) \in \mathbb{R}^2$, $\mathbf{M}_i(Z)$ $= \mathbf{M}_{i1}(Z_1) + \mathbf{M}_{i2}(Z_2), \ M_{ij}(\cdot) \in \mathbf{Lin}.$ Hence

(5)
$$\delta X = -\mathbf{M}(W_1(\delta X, \delta P_1), W_2(\delta X, \delta P_2)),$$

where $W_i(Y, \delta P_i) := \sum_{Z \in P_i} G_{i,Z}(\delta Z) + H_i(Y, \delta P_i)$. In this way $\delta X_i = -\sum_{j=1}^2 \mathbf{M}_{ij}(W_j(\delta X, \delta P_j))$,

which gives

(4)

(6)
$$\delta X_i = -\sum_{j=1}^2 \sum_{Z \in P_j} \mathbf{M}_{ij} \circ G_{j,Z}(\delta Z) - \sum_{j=1}^2 \mathbf{M}_{ij}(H_j(\delta X, \delta P_j)), \ i = 1, 2.$$

Therefore $\delta_{X_i} \leq \sum_{j=1}^2 \sum_{Z \in P_j} K_{ij,Z} \delta_Z + O(\|\delta\|^2), \ \delta \to 0$, where $K_{ij,Z} := \|\mathbf{M}_{ij} \circ G_{j,Z}\|_{\mathbf{Lin}}, \ i, j = 1, 2$, is the absolute condition number of the solution component X_i with respect to the matrix $Z \in P_j$. Here $\|.\|_{\text{Lin}}$ is the induced norm in the space Lin of linear operators $\mathbb{R} \to \mathbb{R}$.

If $X_i \neq 0$, estimates in terms of relative perturbations are $\varepsilon_{X_i} \leq \sum_{j=1}^2 \sum_{Z \in P_i} k_{ij,Z} \varepsilon_Z$ $+O(\|\delta\|^2), \ \delta \to 0$, where the quantity $k_{ij,Z} := K_{ij,Z} \|Z\|_{\mathrm{F}}$ $|X_i||_{\rm F}$, i, j = 1, 2, is the relative condition number of the solution component X_i with

respect to the matrix coefficient $0 \neq Z \in P_i$.

The calculation of the condition numbers $K_{ij,Z}$ is straightforward when the Frobenius norm is used in \mathbb{R} . Indeed, let $U \in \text{Lin}$. Then $||U||_{\text{Lin}} := \max |||U(Z)||_{\text{F}} : ||Z||_{\text{F}} = 1$ } $= \max\{\|\operatorname{vec}(U(Z))\|_{2} : \|\operatorname{vec}(Z)\|_{2} = 1\} = \max\{\|\operatorname{Mat}(U)\operatorname{vec}(Z)\|_{2} : \|\operatorname{vec}(Z)\|_{2} = 1\}$ $= \|\operatorname{Mat}(U)\|_{2} = \sigma_{\max}(\operatorname{Mat}(U)),$ where $\sigma_{\max}(A)$ is the maximum singular value of the matrix A.

Let $L_{i,Z} \in \mathbb{R}^{n^2 \times n^2}$ be the matrix of the operator $G_{i,Z} \in \mathbf{Lin}$. Then a direct calculation yields $L_{i,A_{ij}} = X_j^{\top} \otimes I_n$, $L_{i,B_{ij}} = I_n \otimes X_j$, $L_{i,C_i} = I_{n^2}$, $L_{i,D_{ij}} = X_j^{\top} \otimes X_j$, $L_{i,E_i} = X_j^{\top} \otimes X_i$, $L_{i,F_i} = X_i^{\top} \otimes X_j$.

Let the matrix representation of the operator $\mathbf{M}(\cdot) = G_X^{-1}(X, P)(\cdot) \in \mathbf{Lin}(\mathcal{R}^2, \mathcal{R}^2)$ be 97

denoted as $M := \text{Mat}(\mathbf{M}) = L^{-1} := \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}$, $M_{ij} \in \mathbb{R}^{n^2 \times n^2}$. Having in mind the expressions for the matrix representations $L_{i,Z}$ of the linear matrix operators $\mathbf{L}_{i,Z}$, the absolute condition numbers are calculated from $K_{ij,Z} = ||M_{ij}L_{j,Z}||_2, Z \in P_j, i, j = 1, 2.$

The operator equations (6) for the perturbation δX_i may be written in a vector form as

(7)
$$\operatorname{vec}(\delta X_i) = \sum_{j=1}^{2} \sum_{Z \in P_j} N_{i,Z} \operatorname{vec}(\delta Z) - \sum_{j=1}^{2} M_{ij} \operatorname{vec}(H_j(\delta X, \delta P_j)), \ i = 1, 2.$$

Note that the bounds $\operatorname{est}_{i}^{(1)}(\cdot)$ are linear functions in the perturbation vector $\delta \in \mathbb{R}^{18}$.

Relations (7) give a perturbation bound $\delta_{X_i} \leq \operatorname{est}_i^{(2)}(\delta) + O(\|\delta\|^2), \ \delta \to 0$, where $\operatorname{est}_i^{(2)}(\delta) := \|N_i\|_2 \|\delta\|_2$ and $N_i := [N_{i,1}, N_{i,2}] \in \mathbb{R}^{n^2 \times 18n^2}, \ N_{i,j} := [N_{i,A_{rj}}, N_{i,B_{rj}}, N_{i,C_j}, N_{i,D_{rj}}, N_{i,E_i}, N_{i,F_i}] \in \mathbb{R}^{n^2 \times 9n^2}, \ i, r = 1, 2.$ We also have $\delta_{X_i}^2 = \operatorname{vec}^{\top}(\delta X_i)\operatorname{vec}(\delta X_i)$ $= \eta^{\top} N_i^{\top} N_i \eta + O(\|\delta\|^2), \ \delta \to 0$, where $\eta := [\operatorname{vec}^{\top}(\delta A_{11}), \operatorname{vec}^{\top}(\delta A_{12}), \operatorname{vec}^{\top}(\delta B_{11}), \ldots,$ $\operatorname{vec}^{\top}(\delta F_2)]^{\top} \in \mathbb{R}^{18n^2}$. We shall represent the matrix $N_i^{\top} N_i \in \mathbb{R}^{18n^2 \times 18n^2}$ as a 18 × 18 block matrix with $n^2 \times n^2$ blocks as follows. Let the $n^2 \times n^2$ blocks of N_i be denoted as $\widehat{N}_{i,k}, \ k = 1, \ldots, 18$, i.e., $N_i = [\widehat{N}_{i,1}, \widehat{N}_{i,2}, \ldots, \widehat{N}_{i,18}], \ \widehat{N}_{i,k} \in \mathbb{R}^{n^2 \times n^2},$ where $\widehat{N}_{i,1}$ $:= N_i \leftarrow \widehat{N} \leftarrow \widehat{N} \leftarrow \sum_{i=1}^{N_i} N_i \leftarrow N_i$ $= N_{i,A_{11}}, \widehat{N}_{i,2} := N_{i,A_{12}}, \widehat{N}_{i,3} := N_{i,B_{11}}, \dots, \widehat{N}_{i,18} := N_{i,F_2}. \text{ Then } \eta^\top N_i^\top N_i \eta \leq \delta^\top \widehat{N}_i \delta,$ where $\widehat{N}_i = [n_{i,pq}] \in \mathbb{R}^{18 \times 18}_+, i = 1, 2$, is a matrix with elements $n_{i,pq} := \left\| \widehat{N}_{i,p}^{\top} \widehat{N}_{i,q} \right\|_{2}, \ p,q = 1, \dots, 18.$ Therefore we find a perturbation bound $\delta_{X_{i}}$ $\leq \operatorname{est}_{i}^{(3)}(\delta) + O(\|\delta\|^{2}), \ \delta \to 0, \text{ where } \operatorname{est}_{i}^{(3)}(\delta) := \sqrt{\delta^{\top} \widehat{N}_{i} \delta}.$ We have the overall estimates

 $\delta_{X_i} = \text{est}_i(\delta) + O(\|\delta\|^2), \ \delta \to 0, \ i = 1, 2,$

where $\operatorname{est}_i(\delta) := \min\left\{\operatorname{est}_i^{(2)}(\delta), \operatorname{est}_i^{(3)}(\delta)\right\}$. The local bounds considered in this section are continuous, first order homogeneous, non-linear functions in δ . Also, for $\delta \neq 0$ these functions are real analytic.

The bounds est ${k \choose i}$ are in fact majorants for the solution of a complicated optimization problem, defining the conditioning of the problem as follows. Set $\xi_i := \text{vec}(\delta X_i)$, and $\delta := [\delta_1, \ldots, \delta_{18}]^\top := [\delta_{A_{11}}, \ldots, \delta_{F_2}]^\top \in \mathbb{R}^{18}_+$. Then we have $\xi_i = \sum_{k=1}^{18} \hat{N}_{i,k} \eta_k + O(\|\delta\|^2)$, $\delta \to 0$ and $\delta_{X_i} = \|\xi_i\|_2 \leq K_i(\delta) + O(\|\delta\|^2)$, $\delta \to 0$. Here

$$K_{i}(\delta) := \max\left\{ \left\| \sum_{k=1}^{18} \widehat{N}_{i,k} \eta_{k} \right\|_{2} : \|\eta_{k}\| \leq \delta_{k}, \ k = 1, \dots, 18 \right\}$$

is the exact upper bound for the first order term in the perturbation bound for the solution component X_i .

The calculation of $K_i(\delta)$ is a difficult task. Instead, one can use a bound such as $\operatorname{est}_{i}(\delta) \geq K_{i}(\delta).$

Let $\gamma \in \mathbb{R}^{18}_+$ be a given vector. Then we may define the relative conditioning of the problem as follows.

Let $X_i \neq 0$. The quantity $\kappa_i(\gamma) := \frac{K_i(\gamma)}{\|X_i\|_{\mathrm{F}}}$ is the relative condition number of X_i with respect to γ .

98

If |||P||| is the generalized norm of P, then $\kappa_i(|||P|||)$ is the relative norm-wise condition number of X_i .

If all elements γ_k of γ are zero except one, equal to $\|\mathcal{E}_l\|_{\mathrm{F}}$ in the *l*-th position, then $\kappa_i(\gamma)$ is the individual relative condition number of X_i with respect to perturbations in the matrix \mathcal{E}_l .

Non-local perturbation analysis. The perturbed equation $F(X+\delta X, P+\delta P) = 0$ may be rewritten as an operator equation for δX

(8) $\delta X = \Pi(\delta X, \delta P), \ \Pi = (\Pi_1, \Pi_2),$

where $\Pi(Y, \delta P) := -\mathbf{M}(G_P(X, P)(\delta P) + H(Y, \delta P))$. Here $H(Y, \delta P) := (H_1(Y, \delta P_1), H_2(Y, \delta P_2))$ contains second and third order terms in Y and δP .

Equation (8) comprises two equations, namely

(9)
$$\delta X_i = \Pi_i(\delta X, \delta P_i), \ i = 1, 2,$$

where the right-hand side of (9) is defined by relations (6). Setting $\xi_i := \operatorname{vec}(\delta X_i) \in \mathbb{R}^{n^2}$, $i = 1, 2, \xi := \begin{bmatrix} \xi_1 \\ \xi_2 \end{bmatrix} \in \mathbb{R}^{2n^2}$, we obtain the vector operator equation

(10)
$$\xi = \pi(\xi, \eta) \in \mathbb{R}^{2n^2}$$

which is reduced to two coupled vector equations $\xi_i = \pi_i(\xi, \eta) \in \mathbb{R}^{n^2}$, i = 1, 2 with $\pi_i(\xi, \eta) = N_i \eta_i + \psi_i(\xi, \eta)$, where $\psi_i(\xi, \eta) := -\operatorname{vec}\left(\sum_{j=1}^2 M_{ij}\operatorname{vec}\left(H_j\left(\operatorname{vec}^{-1}(\xi), \operatorname{vec}^{-1}(\eta_j)\right)\right)\right)$. Next we apply the method of Lyapunov majorants and the fixed point principles of Ba-

Next we apply the method of Lyapunov majorants and the fixed point principles of Banach and Schauder [1] for the analysis of operator equation (10) in order to find non-local perturbation bounds for $\delta_{X_i} = \|\xi_i\|_2$.

The vectorizations of the matrices $H_i(Y, \delta P_i)$ are

$$\text{vec} (H_1(Y, \delta P_1)) = (I_n \otimes X_1) \text{vec} (\delta D_{11}Y_1 + \delta E_1Y_2) + (X_1^\top \otimes I_n) \text{vec} (Y_1 \delta D_{11} + Y_2 \delta F_1) + (I_n \otimes X_2) \text{vec} (\delta F_1Y_1 + \delta D_{12}Y_2) + (X_2^\top \otimes I_n) \text{vec} (Y_1 \delta E_1 + Y_2 \delta D_{12}) + \text{vec} (\delta A_{11}Y_1 + \delta A_{12}Y_2) + \text{vec} (Y_1 \delta B_{11} + Y_2 \delta B_{12}) + \text{vec} (Y_2(F_1 + \delta F_1)Y_1 + Y_1(E_1 + \delta E_1)Y_2) + \text{vec} (Y_1(D_{11} + \delta D_{11})Y_1) + \text{vec} (Y_2(D_{12} + \delta D_{12})Y_2)$$

and

$$\operatorname{vec} (H_{2}(Y, \delta P_{2})) = (I_{n} \otimes X_{1})\operatorname{vec} (\delta D_{21}Y_{1} + \delta F_{2}Y_{2}) + (X_{1}^{\top} \otimes I_{n})\operatorname{vec} (Y_{1}\delta D_{21} + Y_{2}\delta E_{2}) + (I_{n} \otimes X_{2})\operatorname{vec} (\delta D_{22}Y_{2} + \delta E_{2}Y_{1}) + (X_{2}^{\top} \otimes I_{n})\operatorname{vec} (Y_{2}\delta D_{22} + Y_{1}\delta F_{2}) + \operatorname{vec} (\delta A_{21}Y_{1} + \delta A_{22}Y_{2}) + \operatorname{vec} (Y_{1}\delta B_{21} + Y_{2}\delta B_{22}) + \operatorname{vec} (Y_{2}(E_{2} + \delta E_{2})Y_{1} + Y_{1}(F_{2} + \delta F_{2})Y_{2}) + \operatorname{vec} (Y_{1}(D_{21} + \delta D_{21})Y_{1}) + \operatorname{vec} (Y_{2}(D_{22} + \delta D_{22})Y_{2}).$$

Let $||Y_i||_{\rm F} \leq \rho_i$, i = 1, 2, where ρ_i are non-negative constants. Then it follows from 99

(11), (12) that $\|\pi_i(\xi,\eta)\|_2 \leq \operatorname{est}_i(\delta) + \sum_{j=1}^2 \|M_{ij}\operatorname{vec}(H_j(Y,\delta P_j))\|_2 \leq h_i(\rho,\delta)$, where $\rho = [\rho_1,\rho_2]^\top \in \mathbb{R}^2_+$ and $h_i(\rho_1,\rho_2,\delta) := \operatorname{est}_i(\delta) + a_{i1}(\delta)\rho_1 + a_{i2}(\delta)\rho_2 + 2b_i(\delta)\rho_1\rho_2 + c_{i1}(\delta)\rho_1^2 + c_{i2}(\delta)\rho_2^2$, i = 1, 2. Here

$$a_{i1}(\delta) := \|M_{i1}\|_{2}(\delta_{A_{11}} + \delta_{B_{11}}) + \|M_{i2}\|_{2}(\delta_{A_{21}} + \delta_{B_{21}}) \\ + (\nu_{i11} + \nu_{i13})\delta_{D_{11}} + \nu_{i12}\delta_{F_{1}} + \nu_{i14}\delta_{E_{1}} \\ + (\nu_{i21} + \nu_{i23})\delta_{D_{21}} + \nu_{i22}\delta_{E_{2}} + \nu_{i24}\delta_{F_{2}}, \\ a_{i2}(\delta) := \|M_{i1}\|_{2}(\delta_{A_{12}} + \delta_{B_{12}}) + \|M_{i2}\|_{2}(\delta_{A_{22}} + \delta_{B_{22}}) \\ + (\nu_{i12} + \nu_{i14})\delta_{D_{12}} + \nu_{i11}\delta_{E_{1}} + \nu_{i13}\delta_{F_{1}} \\ + (\nu_{i22} + \nu_{i24})\delta_{D_{22}} + \nu_{i21}\delta_{F_{2}} + \nu_{i23}\delta_{E_{2}}, \\ b_{i}(\delta) := \|M_{i1}\|_{2}(\|F_{1}\|_{2} + \delta_{F_{1}} + \|E_{1}\|_{2} + \delta_{E_{1}}) \\ + \|M_{i2}\|_{2}(\|F_{2}\|_{2} + \delta_{F_{2}} + \|E_{2}\|_{2} + \delta_{E_{2}}), \\ c_{i}(\delta) := \|M_{i}\|_{2}(\|P_{i}\|_{2} + \delta_{F_{1}} + \|E_{i}\|_{2} + \delta_{E_{2}}), \\ c_{i}(\delta) := \|M_{i}\|_{2}(\|P_{i}\|_{2} + \delta_{F_{2}} + \|E_{i}\|_{2} + \delta_{E_{2}}), \\ c_{i}(\delta) := \|M_{i}\|_{2}(\|P_{i}\|_{2} + \delta_{F_{2}} + \|E_{i}\|_{2} + \delta_{E_{2}}), \\ c_{i}(\delta) := \|M_{i}\|_{2}(\|P_{i}\|_{2} + \delta_{F_{2}} + \|E_{i}\|_{2} + \delta_{E_{2}}), \\ c_{i}(\delta) := \|M_{i}\|_{2}(\|P_{i}\|_{2} + \delta_{F_{2}} + \|E_{i}\|_{2} + \delta_{E_{2}}), \\ c_{i}(\delta) := \|M_{i}\|_{2}(\|P_{i}\|_{2} + \delta_{F_{2}} + \|E_{i}\|_{2} + \delta_{E_{2}}), \\ c_{i}(\delta) := \|M_{i}\|_{2}(\|P_{i}\|_{2} + \delta_{F_{2}} + \|E_{i}\|_{2} + \delta_{E_{2}}), \\ c_{i}(\delta) := \|M_{i}\|_{2}(\|P_{i}\|_{2} + \delta_{F_{2}} + \|E_{i}\|_{2} + \delta_{E_{2}}), \\ c_{i}(\delta) := \|M_{i}\|_{2}(\|P_{i}\|_{2} + \delta_{F_{2}} + \|E_{i}\|_{2} + \delta_{E_{2}}), \\ c_{i}(\delta) := \|M_{i}\|_{2}(\|P_{i}\|_{2} + \delta_{F_{2}} + \|E_{i}\|_{2} + \delta_{E_{2}}), \\ c_{i}(\delta) := \|M_{i}\|_{2}(\|P_{i}\|_{2} + \delta_{E_{2}} + \|E_{i}\|_{2} + \delta_{E_{2}}), \\ c_{i}(\delta) := \|M_{i}\|_{2}(\|P_{i}\|_{2} + \delta_{E_{2}} + \|E_{i}\|_{2} + \delta_{E_{2}}), \\ c_{i}(\delta) := \|M_{i}\|_{2}(\|P_{i}\|_{2} + \delta_{E_{2}} + \|P_{i}\|_{2} + \delta_{E_{2}}), \\ c_{i}(\delta) := \|M_{i}\|_{2}(\|P_{i}\|_{2} + \delta_{E_{2}} + \|P_{i}\|_{2} + \delta_{E_{2}}), \\ c_{i}(\delta) := \|P_{i}\|_{2}(\|P_{i}\|_{2} + \delta_{E_{2}} + \|P_{i}\|_{2} + \delta_{E_{2}}), \\ c_{i}(\delta) := \|P_{i}\|_{2}(\|P_{i}\|_{2} + \delta_{E_{2}} + \|P_{i}\|_{2} + \delta_{E_{2}}), \\ c_{i}(\delta) := \|P_{i}\|_{2}(\|P_{i}\|_{2} + \delta_{E_{2}} + \|P_{i}\|_{2} + \|P_{i}\|_{2}$$

$$c_{i1}(\delta) := \|M_{i1}\|_2(\|D_{11}\|_2 + \delta_{D_{11}}) + \|M_{i2}\|_2(\|D_{21}\|_2 + \delta_{D_{21}}),$$

$$c_{i2}(\delta) := \|M_{i1}\|_2(\|D_{12}\|_2 + \delta_{D_{12}}) + \|M_{i2}\|_2(\|D_{22}\|_2 + \delta_{D_{22}}), \ i = 1, 2,$$

and $\nu_{i11} := \|M_{i1}(I_n \otimes X_1)\|_2$, $\nu_{i12} := \|M_{i1}(I_n \otimes X_2)\|_2$, $\nu_{i13} := \|M_{i1}(X_1^\top \otimes I_n)\|_2$, $\nu_{i14} := \|M_{i1}(X_2^\top \otimes I_n)\|_2$, $\nu_{i21} := \|M_{i2}(I_n \otimes X_1)\|_2$, $\nu_{i22} := \|M_{i2}(I_n \otimes X_2)\|_2$, $\nu_{i23} := \|M_{i2}(X_1^\top \otimes I_n)\|_2$, $\nu_{i24} := \|M_{i2}(X_2^\top \otimes I_n)\|_2$.

 $\nu_{i23} := \|M_{i2}(X_1^{\top} \otimes I_n)\|_2, \quad \nu_{i24} := \|M_{i2}(X_2^{\top} \otimes I_n)\|_2.$ The function $h : \mathbb{R}^2_+ \times \mathbb{R}^{18}_+ \to \mathbb{R}^2_+$ is a vector Lyapunov majorant for the operator equation (10).

Consider the majorant system of two scalar quadratic equations

(13)
$$\rho_i = h_i(\rho_1, \rho_2, \delta), \quad i = 1, 2,$$

which may also be written in vector form as $\rho = h(\rho, \delta)$, where $h := [h_1, h_2]^{\top}$. We have $h(0,0) = 0, h_{\rho}(0,0) = 0$. Therefore, according to the theory of Lyapunov majorants, for δ sufficiently small, the system (13) has a solution $\rho = f(\delta) = [f_1(\delta), f_2(\delta)]^{\top}$, which is continuous, real analytic in $\delta \neq 0$ and satisfies $\rho(0) = 0$. The function $f(\cdot)$ is defined in a domain $\Omega \subset \mathbb{R}^{18}_+$ whose boundary $\partial \Omega$ may be obtained by excluding ρ from the system of equations $\rho = h(\rho, \delta)$, $\det(I_2 - h_\rho(\rho, \delta)) = 0$. The second equation is equivalent to $\omega(\rho, \delta) := 1 - \varepsilon(\delta) + \alpha_1(\delta)\rho_1 + \alpha_2(\delta)\rho_2 + 2\beta(\delta)\rho_1\rho_2 + \gamma_1(\delta)\rho_1^2 + \gamma_2(\delta)\rho_2^2 = 0,$ where $\varepsilon(\delta) := a_{11}(\delta) + a_{22}(\delta) - a_{11}(\delta)a_{22}(\delta) + a_{12}(\delta)a_{21}(\delta), \ \alpha_1(\delta) := -2 c_{11}(\delta)(1 - \delta)(1 - \delta)(1$ $a_{22}(\delta)) - b_2(\delta)(1 - a_{11}(\delta)) - 2 a_{12}(\delta)c_{21}(\delta) - b_1(\delta)a_{21}(\delta), \alpha_2(\delta) := -2 c_{22}(\delta)(1 - a_{11}(\delta)) - (b_1(\delta)a_{21}(\delta)) - (b_2(\delta)a_{21}(\delta)) - (b_2(\delta)$ $b_1(\delta)(1 - a_{22}(\delta)) - 2 \ a_{21}(\delta)c_{12}(\delta) - b_2(\delta)a_{12}(\delta), \ \beta(\delta) := 2(c_{11}(\delta)c_{22}(\delta) - c_{12}(\delta)c_{21}(\delta)),$ $\gamma_1(\delta) := 2(b_2(\delta)c_{11}(\delta) - b_1(\delta)c_{21}(\delta)), \ \gamma_2(\delta) := 2(b_1(\delta)c_{22}(\delta) - b_2(\delta)c_{12}(\delta)).$ Thus for the determination of the boundary $\partial\Omega$ of the set Ω we have a system of 3 scalar full 2-nd degree equations in ρ_1, ρ_2 , whose coefficients are 2-nd degree polynomials in δ . For $\delta \in \Omega$ denote by $\rho = f(\delta)$ the smallest non-negative solution of the majorant system (13). If the system (13) has not a smallest solution in \mathbb{R}^2_+ , we can take any solution $\rho = f(\delta) \in \mathbb{R}^2_+$ such that $\omega(f(\delta), \delta) \ge 0$.

Thus the operator $\pi(\cdot, \eta)$ maps the closed convex set $\mathcal{B}_{\rho} = \{\xi : ||\xi_i|| \le \rho_i, i = 1, 2\}$ into itself. Hence according to the Schauder fixed point principle there is a solution $\xi \in \mathcal{B}_{\rho}$ of the operator equation $\xi = \pi(\xi, \eta)$. As a result we have the non-local non-linear perturbation bounds $\delta_{X_i} \le f_i(\delta), \delta \in \Omega$.

In practice it is not necessary to determine explicitly the domain Ω and the functions f_i . It suffices, for a given δ , to solve numerically the majorant system (13) and then 100

to check the condition $\omega(\tilde{\rho}, \delta) \geq 0$, where $\tilde{\rho}$ is the computed solution. This 'numerical' approach to the non-local perturbation analysis may be avoided, obtaining explicit perturbation bounds. The idea is to find a new Lyapunov majorant $k = [k_1, k_2]^{\top}$, such that $h(\rho, \delta) \leq k(\rho, \delta)$ and for which the equation $\rho = k(\rho, \delta)$ has an explicit solution.

Let $k_i(\delta, \rho) := e_i + a_1\rho_1 + a_2\rho_2 + 2b\rho_1\rho_2 + c_1\rho_1^2 + c_2\rho_2^2$. It is easy to see that k is a Lyapunov majorant. The solution of the majorant system $\rho = k(\rho, \delta)$ will majorize the solution of the system $\rho = h(\rho, \delta)$. We have $\rho_1 = \rho_2 + e_1 - e_2$. Using the equations $\rho_i = k_i(\rho, \delta)$ we obtain

(14)
$$\delta_{X_i} \le \rho_i = \frac{2\left(a_j e_j + (1 - a_j)e_i + c_j(e_1 - e_2)^2\right)}{1 - a_1 - a_2 + 2(b + c_j)(e_i - e_j) + \sqrt{d_k}}, \ i = 1, 2,$$

where

$$\begin{aligned} d_k &= d_k(\delta) := (1-a_1-a_2)^2 - 4(a_1(b+c_2) + (1-a_2)(b+c_1))e_1 \\ &- 4(a_2(b+c_1) + (1-a_1)(b+c_2))e_2 + 4(b^2-c_1c_2)(e_1-e_2)^2 \end{aligned}$$

and $j \neq i$. These bounds hold provided $\delta \in \Theta_k := \{\delta \in \mathbb{R}^{18}_+ : d_k(\delta) \ge 0\}.$

REFERENCES

[1] E. A. GREBENIKOV, YU. A. RYABOV. Constructive Methods for Analysis of Nonlinear Systems, Nauka, Moscow, 1979 (in Russian).

[2] M. KONSTANTINOV, V. ANGELOVA, P. PETKOV, D. GU, V. TSACHOURIDIS. Perturbation bounds for coupled matrix Riccati equations. *Linear Algebra and Appl.*, **359** 2003, No 1-3, 197–218.

Vera Angelova Angelova Institute of Information Technologies Akad. G. Bonchev Str., bl. 2 1113 Sofia, Bulgaria e-mail: vangelova@iit.bas.bg

Mihail Mihaylov Konstantinov University of Architecture and Civil Engineering 1, Hr. Smirnenski Blvd. 1046 Sofia, Bulgaria e-mail: mmk_fte@uacg.bg DaWei Gu Department of Engineering Leicester University Leicester LE1 7RH, England e-mail: dag@le.ac.uk

Petko Hristov Petkov Department of Automatics Technical University of Sofia 1756 Sofia, Bulgaria e-mail: php@tu-sofia.bg

СМУЩЕНИЯ В ОБЩИ КУПЛИРАНИ МАТРИЧНИ УРАВНЕНИЯ НА РИКАТИ

Вера А. Ангелова, Да Вей Гу, Михаил М. Константинов, Петко Хр. Петков

Изведени са пертурбационни граници за общите алгебрични непрекъснати куплирани матрични уравнения на Рикати, възникващи в съвременната теория на управлението.