MATEMATUKA W MATEMATUHYECKO OBPA3OBAHWE, 2004
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2004
Proceedings of the Thirty Third Spring Conference of

the Union of Bulgarian Mathematicians
Borovets, April 1-4, 2004

CONFORMAL C-NETS AND CONFORMAL B-NETS IN A
THREE-DIMENSIONAL RIEMANNIAN SPACE ~

Ivan At. Badev

In an n-dimensional Weyl space c-nets and b-nets are defined, making use of Cheby-
shevian and geodesic curvatures of the lines of an arbitrary net in [4]. Conformal
¢ and b nets in a Weyl space are studied by Zlatanov [5]. The conformal geometry
of the compositions determined by the normalized net in a three-dimensional Weyl
space is studied in [1].

In this paper ¢ and b nets are defined in a three-dimensional Riemannian space. There
are obtained the necessary and sufficient conditions for a net to be conforming-c or
conforming-b, and there are found some characteristics of the Riemannian spaces,
containing these nets.

1. Preliminaries. The conformal transformation:
(11) gis = 62)\.92'5
transforms the net (11), v, g) € V3(gis) into (1:), 1;), ’E:)) eV (515) The fields of directions of

the net (11),12),13)) are transformed [3, p.125] so:

(1.2) b= e, v = eMy.
« «
N (3
The vector of the conformal transformation is Ay = OpA = Juk (2, p. 162].
U

*

. . *
Let ', and I'"s; be the coefficients of connections in the spaces V3 and V3. Let V

*

and V be the covariant derivatives of the connections I'} | and I'j, respectively, i.e.
Vvt = oot + F};SUS, Vvt = 90t + Dev®.
« (03 (03 « (03 (03
o
If the coefficients of the derivative equations in V3 are denoted by T}, then we have:
«@
. . ag .
(1.3) Opv* + I 0° =Ty, o0,s=1,2,3.
[eY « a o

From here we obtain:

A i i s\ 5
(1.4) Ty = (8;50 + I, )vi.
a «a «a
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It is known that [2, p. 161]:
(1.5) s =Tl + 00k + 0k As — 97 g
* o
Let us denote the coefficients of the derivative equations in the space V3 by Py. Then
«@

Viv' = Pyo'. From (1.2), (1.4) and (1.5), we obtain:
a a o
(1.6) Pk = Tk + s (Ukv —519 vk) a # B.

2. Conformal c-nets in V3. The net ( , ,13)) € V3(gis) will be called a c-net if
[4]:

(2.1) S o =0, 72=Tw" «o0c=1,23.
«

a=laoc a o

The quantity 7 is called a geodesic curvature of the line (v).
« «

Proposition. The net (11) Y, v) € V3 is a c-net when

(2.2) aglv[jgsr’;]k =0.

Proof. Let us consider a c-net- (U, v, ’U) € V3. From the equation E vt = = 0, taking

12 3 a=laoc

into account (2.1) and (1.4), we obtain E (8;61)%’“ + st” v ¥) = 0.From here, by a
contraction with %i, we find:

3
(2.3) gl(akvk +TF0%) = 0.

Applying the integrability condition of (2.3) and taking into account that F’;k = grad,
we immediately obtain the proposition. [

Definition 2.1. A net (’U Y, v) € V3(gis), admitting a conformal transformation into

a c-net, is called a conformal c-net.

Let the net (v Y, U) € V3(gis) be transformed into a c-net (v v v) € Vg(g%) by the

conformal transformation (1.1). According to (2.1), the following relatlons are valid:

xlo* 3 _ax . .
(2.4) E v = Xe (w + As (vivs — g”)) =0, o=1,2,3.
a=lo o a=1 a o
Consequently, the vector of the conformal transformation A will satisfy:
3 , , 3
(2.5) 3 As (g“ — v’vs) = 2%, o=1,23.
a=1 a o a=lo o

) € Vi is a conformal c-net if and only
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Theorem 2.1. A non-orthogonal net (

=3
[Nl
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if:

k

a) ¥ (8;91)11/“ + I‘}cj’uk’u] + As (vsvz - g”)) =0, b)ﬁ = \; = grad,
a=1 a o a o a « D
where:
D = 54 cos w cos w cos w, D, =9cos w <aacos w +agcos w + a, cos w) ,
12 23 31 By B Yo af

(a)/@7’y) = (1)27 3)7 (2)37 1)) (371)2)'
and wﬁ denote the angles between the fields of directions v* and 16)1 of the net.
(0% (03

Proof. 1. The conformal transformation (1.1) transforms the net (1{,12},1;) eV

kook sk * *
into the c-net (g,g,g) € Vs(g;s). From (2.4), taking into account the representation

of the geodesic curvature and (1.4), we find a). By contracting (2.5) with 1111,12)1 and %Z
respectively, we obtain:

(2.6) s %1 (g“”{}i faglgé’) .

o=

=am, m=1,2,3.
3
We introduce the denotations 21T = am,m = 1,2, 3. Let the vector of the conformal
a=1lo

. 2 3 .
transformation As; be expressed as A\s = :mljs + yvs + zvs. The coefficients z,y and z
satisfay the sistem:

(2.7) 3ycosw + 3zcosw = ay1,3xcosw + 3z cosw = ag, 3T cosw + 3y cosw = as.
12 13 12 23 13 23
If we use D to denote the determinant of the coefficients of the unknown variables in

this system, and D, («a = 1,2, 3) for the determinants obtained after substituting the a
column by the column of the free members in D, we obtain:

D = 54 cosw cos w cos w, Dy =9cos w(—aqcos w +agcos w + a,cos w),
12 23 31 By By Yo af

(Oé, ﬁa’y) = (17 2) 3)7 (25 37 1)) (35 17 2)
Since the net (11), v, 13)) € V3(gis) is not orthogonal, then D # 0. Therefore, (2.7) has a

1 1 2
unique solution for the vector of the conformal transformation \s = B(DIUS + Dovg +

Dsis).
The vector of the conformal transformation A, is gradient [2, p. 162], i.e.

1
E(Dlés + Doy + Dsby) = grad.
2. Conversely, let a) and b) hold for the net (’tl),g,g) € V3(gis). From a), taking

* ok

into account (1.3) and (1.6), we get (2.4). It means that (11),12),12) € ‘*/3(5%) is a c-net.
From b) following the inverse way of argument, we obtain that the coefficients Ag satisfy
system (2.7). It has a unique solution, i.e. the net (g,g,g) € V5(gis) is a conformal
cnet. O
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3. Conformal b-nets in V3. Following [4], we shall call a (11), v, ’g) € V3 (gis) net

a b-net if the following condition holds:

3 «
(3.1) 5 b =0,
a=
where
a (o)
(3.2) b= 00i, B=Tho" af=1,23
B g8 B ()

The quantity ?) is called a Chebyshevian curvature of second kind. (The bracket
B
indices are not to be summed).

Definition 3.1. A net (1{,121,1;) € V3, admitting a conformal transformation into a

b-net will be called a conformal b-net.

Theorem 3.1. The net (g,g,g) € Vi is a conformal b- net if and only if:
a) Ov*0; +TE 42X =0, b) A =32%, = grad,
«

where z5 = —3v° + gk (%k +16chos w +1’Ekcos w) , ZoZp =0} and by :%+§+
« af oy « [

Q=

Proof. 1. Let the conformal transformation (1.1) transorm the net (’tl),g,g) €V

into a b-net (111, v, g) € V3(g;,)- From (3.1) follows that Elbi = 0. Taking into account
3

=0.
(1.4), (1.5) and (1.6), we obtain a). From the conditions (3.2), (1.2) and (1.6) for the
vector of the conformal transformation Ay we have:

3 o)
(3.3) b)) (% + As(v® — (%)kgks cos(w )) v; = 0.

a=1 a)o
After contracting (3.3) by 11)1-, 1211 and v; respectively, we arrive at

(3.4) As[=30° + gF* (0r + 16% cos w + Vpcos w)] = p+ 5 + )
o apB ay a a

(0%
where (a, 8,7v) = (1,2,3), (2,3,1), (3,1,2).
We introduce the denotations:

2z = —3v° +gks(%k +gkcosw +’7)kcos w), by :?)Jr;ﬁ)JrZ).
@ af ay « a a
Then (3.4) takes the form Az = b,. The matrix (z2) is nonsingular and there exists
~Q
an inverse one of it (z). From (3.4) for the vector of the conformal transformation we
~Q

obtain A\s = z4b,.The vector of the conformal transformation is gradient.
2. Conversely, let a) and b) hold for the net (1{,3,13}) € V3. From a), taking into

account (1.3), (1.5) and (1.6), we find (3.1) and (3.2), which mean that the net (g,g,g)

€ V3 is a b-net. From b), follwing the inverse way of argument, we obtain that the net

(11), v, 13)) € V3 admits a conformal transformation into a b-net (113, 1;3, é) € Vsi(g). O
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The curvature coordinates of the points in the space V5 will be denoted with u! = wu,

u? = v, u? = w. If we choose an arbitrary net (11), v, 13)) as a coordinate one of V3, then

the fundamental form of the space will be:
ds® = A%du® + B2dv® + C%dw?® + 2AB cos %dudv + 2AC cos cfédudw + 2BC cos %Jgdvdw,

where A, B and C are functions of u,v and w.
The unit fields of directions of the net and their mutual ones have the coordinates:

1 1 1 1 2 3
(35) ?(Z?an)a 12)<0a§70>7 ?(07();6)) ”U(A,0,0), U(O,B,O), U(0,0,C).

Theorem 3.2. The fundamental form of the space Vs (gis) in the parameters of a
conformal b-coordinate net has the form:
(3.6)
d 2_A2 du2 + f (’U, w) l/} (ua w) d’l)2 + f (ua ’U) n (ua w) dw2 + 2f (’U, w) l/} (ua w) dudv+
5= 2¢ (u, v) N (v, w) dudw + 2f (v, w) & (u,v) 7 (u, w) dvdw ’

where f (v,w), ¥ (u,w), &(u,v), n(u,w), 7(u,w) are arbitrary functions.
Proof. Let the net (11), v, 13)) €V3 be a conformal b-net. From akvk%i + F’lgi +2)\; =0,
(e}
and taking into account that in = grad, \; = grad follows that Ok, = grad. If

we choose the net (11),12),%)) € V3 as a coordinate one, then from the last equation we

find: 8111)111)1 + 8212)212)2 + 83%)3%3 = grad. From here, taking into account (3.5), we ob-

tain: ((InA),,(InB),,(InC),) = grad. It means that B = f(v,w)v (u,w)A and
C = &(u,v)n(u,w)B. Then the fundamental form of the space V3 takes the form
(3.6). O

Obviously, when f (v,w) = ¢ (u,w) = & (u,v) = n(u,w) = 1 the space V3 is confor-
mally Euclidean.
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KOH®OPMHO C MPE>XKU1 1 KOH®OPMHO B MPE2KI B
TPUMEPHO PUMAHOBO ITPOCTPAHCTBO

NBaun At. Banes

NznonzBaiiku YebuireBa u reofe3nvHO KPUBUHA Ha JIMHUS Ha ITPOU3BOJIHA MPEXKa, C
1 b MpeXuTe B Nn-MEpHO NPOCTPAHCTBO Ha Baitn ca nedunnpanu n nsciaensanu B [4].
3slaTaHOB M3y4yaBa KOH(MOPMHO ¢ 1 b Mpexku B mpocTpaHcTBo Ha Baiin B [5]. Kondop-
MHAaTa MeOMETPUs HA KOMIIO3UIMS ITIOPOJEHHU OT MPEKHU B TPUMEPHO IIPOCTPAHCTBO HA
Baiin e pasrienana B [1].

B rTasu pabora ca msydaBaHu ¢ U b MpeXU B TPUMEPHO PHUMAHOBO MPOCTPAHCTBO.
TTonyuenu ca HEOOXOAMMU U JIOCTATHLIYHU YCJIOBUS JIaJIeHa MPeXKa J1a € KOH(MOPMHO ¢
MpexKa mim KoHGOpMHO b Mperka. Hamepenu ca xapakTepuCcTUKU Ha PUMAHOBH MTPOC-
TPAHCTBA, ChIbPKAIIU TE3U MPEKU.
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