MATEMATUKA И MATEMATUYECKO ОБРАЗОВАНИЕ, 2004 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2004

Proceedings of the Thirty Third Spring Conference of the Union of Bulgarian Mathematicians Borovets, April 1–4, 2004

CONFORMAL C-NETS AND CONFORMAL B-NETS IN A THREE-DIMENSIONAL RIEMANNIAN SPACE *

Ivan At. Badev

In an n-dimensional Weyl space c-nets and b-nets are defined, making use of Chebyshevian and geodesic curvatures of the lines of an arbitrary net in [4]. Conformal c and b nets in a Weyl space are studied by Zlatanov [5]. The conformal geometry of the compositions determined by the normalized net in a three-dimensional Weyl space is studied in [1].

In this paper c and b nets are defined in a three-dimensional Riemannian space. There are obtained the necessary and sufficient conditions for a net to be conforming-c or conforming-b, and there are found some characteristics of the Riemannian spaces, containing these nets.

1. Preliminaries. The conformal transformation:

transforms the net $\begin{pmatrix} v, v, v \\ 1 & 2 \end{pmatrix} \in V_3(g_{is})$ into $\begin{pmatrix} *, *, * \\ v, v, * \\ 1 & 2 \end{pmatrix} \in \overset{*}{V}_3(\overset{*}{g}_{is})$. The fields of directions of the net $\begin{pmatrix} v, v, v \\ 1 & 2 \end{pmatrix}$ are transformed [3, p.125] so:

(1.2)
$$\overset{*^i}{\overset{\circ}{v}} = e^{-\lambda} \overset{\circ}{v_i}, \quad \overset{\circ}{\overset{\circ}{v_i}} = e^{\lambda} \overset{\circ}{v_i}.$$

The vector of the conformal transformation is $\lambda_k = \partial_k \lambda = \frac{\partial \lambda}{\partial u^k}$ [2, p. 162].

Let Γ^i_{ks} and Γ^i_{sk} be the coefficients of connections in the spaces V_3 and V_3 . Let ∇ and ∇ be the covariant derivatives of the connections Γ^i_{ks} and Γ^i_{ks} respectively, i.e.

$$\nabla_k v^i = \partial_k v^i + \Gamma^i_{ks} v^s, \ \nabla^*_k v^i = \partial_k v^i + \Gamma^i_{ks} v^s.$$

If the coefficients of the derivative equations in V_3 are denoted by T_{α}^{σ} , then we have:

(1.3)
$$\partial_k v^i_{\alpha} + \Gamma^i_{ks} v^s_{\alpha} = T^{\sigma}_{k} v^i, \quad \sigma, s = 1, 2, 3.$$

From here we obtain:

(1.4)
$$T_k^{\beta} = \left(\partial_k v^i + \Gamma_{ks}^i v^s\right) v_i^{\beta}.$$

^{*2000} Mathematics Subject Classification: 53A15, 53A60.

It is known that [2, p. 161]:

(1.5)
$$\Gamma^{i}_{ks} = \Gamma^{i}_{ks} + \delta^{i}_{s}\lambda_{k} + \delta^{i}_{k}\lambda_{s} - g^{ij}g_{sk}\lambda_{j}.$$

Let us denote the coefficients of the derivative equations in the space $\overset{*}{V}_3$ by $\overset{\sigma}{P}_k$. Then $\overset{*}{\nabla}_k v^i = \overset{\sigma}{P}_k v^i$. From (1.2), (1.4) and (1.5), we obtain:

(1.6)
$$P_{k}^{\beta} = T_{k}^{\beta} + \lambda_{s} \left(v_{k}^{\beta} v_{\alpha}^{s} - v_{i}^{\beta} g^{is} v_{k} \right), \quad \alpha \neq \beta.$$

2. Conformal *c*-nets in V_3 . The net $\left(v, v, v \atop 1, 2, v \atop 3\right) \in V_3(g_{is})$ will be called a **c**-net if [4]:

(2.1)
$$\sum_{\alpha=1}^{3} {\stackrel{\sigma}{i}} v^i = 0, \quad {\stackrel{\sigma}{i}} = {\stackrel{\sigma}{T}}_k v^k, \quad \alpha, \sigma = 1, 2, 3.$$

The quantity \int_{α}^{σ} is called a *geodesic curvature* of the line $\binom{v}{\alpha}$.

Proposition. The net $(v_1, v_2, v_3) \in V_3$ is a **c**-net when

(2.2)
$$\sum_{\alpha=1}^{3} \nabla_{[j} v^{s} \Gamma_{s]k}^{k} = 0.$$

Proof. Let us consider a c-net- $\begin{pmatrix} v, v, v \\ 1 & 2 & 3 \end{pmatrix} \in V_3$. From the equation $\sum_{\alpha=1}^3 {\stackrel{\sigma}{i}} v^i = 0$, taking into account (2.1) and (1.4), we obtain $\sum_{\alpha=1}^3 (\partial_k v^i v^k + \Gamma^i_{ks} v^s v^k) = 0$. From here, by a contraction with $\stackrel{\alpha}{v}_i$, we find:

(2.3)
$$\sum_{\alpha=1}^{3} (\partial_k v^k + \Gamma^k_{sk} v^s) = 0.$$

Applying the integrability condition of (2.3) and taking into account that $\Gamma_{sk}^k = \text{grad}$, we immediately obtain the proposition. \square

Definition 2.1. A net $\begin{pmatrix} v, v, v \\ 1, 2, 3 \end{pmatrix} \in V_3(g_{is})$, admitting a conformal transformation into a c-net, is called a conformal c-net.

Let the net $\begin{pmatrix} v, v, v \\ 1 & 2 \end{pmatrix} \in V_3(g_{is})$ be transformed into a **c**-net $\begin{pmatrix} *, *, * \\ v, v, v \\ 1 & 2 \end{pmatrix} \in \overset{*}{V}_3(\overset{*}{g}_{is})$ by the conformal transformation (1.1). According to (2.1), the following relations are valid:

(2.4)
$$\sum_{\alpha=1}^{3} v^{i} \sigma^{*}_{\alpha} = \sum_{\alpha=1}^{3} e^{-2\lambda} \left(v^{i}_{\alpha\sigma} v^{i} + \lambda_{s} \left(v^{i}_{\alpha\sigma} v^{s} - g^{is} \right) \right) = 0, \quad \sigma = 1, 2, 3.$$

Consequently, the vector of the conformal transformation λ_s will satisfy:

(2.5)
$$\sum_{\alpha=1}^{3} \lambda_s \left(g^{is} - v^i v^s \right) = \sum_{\alpha=1}^{3} v^i i^{\sigma}, \quad \sigma = 1, 2, 3.$$

Theorem 2.1. A non-orthogonal net $\begin{pmatrix} v, v, v \\ 1 & 2 \end{pmatrix} \in V_3$ is a conformal c-net if and only

$$a) \sum_{\alpha=1}^{3} \left(\partial_{k} v^{i} v^{k} + \Gamma^{i}_{kj} v^{k}_{\alpha} v^{j} + \lambda_{s} \left(v^{s} v^{i} - g^{is} \right) \right) = 0, \quad b) \frac{D_{k} v_{s}}{D} = \lambda_{s} = \text{grad},$$

where:

$$D = 54\cos\frac{\omega}{12}\cos\frac{\omega}{23}\cos\frac{\omega}{31}, \qquad D_{\alpha} = 9\cos\frac{\omega}{\beta\gamma}\left(-a_{\alpha}\cos\frac{\omega}{\beta\gamma} + a_{\beta}\cos\frac{\omega}{\gamma\alpha} + a_{\gamma}\cos\frac{\omega}{\alpha\beta}\right),$$
$$(\alpha, \beta, \gamma) = (1, 2, 3), \ (2, 3, 1), \ (3, 1, 2).$$

and $\underset{\alpha\beta}{\omega}$ denote the angles between the fields of directions $\underset{\alpha}{v^i}$ and $\underset{\beta}{v^i}$ of the net.

Proof. 1. The conformal transformation (1.1) transforms the net $\begin{pmatrix} v, v, v \\ 1, 2, 3 \end{pmatrix} \in V_3$ into the **c**-net $\begin{pmatrix} *, *, * \\ 1, 2, 3 \end{pmatrix} \in V_3(\mathring{g}_{is})$. From (2.4), taking into account the representation of the geodesic curvature and (1.4), we find a). By contracting (2.5) with v_i, v_i and v_i respectively, we obtain:

(2.6)
$$\lambda_{s} \sum_{\alpha=1}^{3} \left(g^{is} {\overset{m}{v}}_{i} - \delta_{\alpha}^{m} v^{s} \right) = \sum_{\alpha=1}^{3} {\overset{m}{i}}_{\alpha} = a_{m}, \ m = 1, 2, 3.$$

We introduce the denotations $\sum_{\alpha=1}^{3} \sum_{\alpha=1}^{m} a_m$, m=1,2,3. Let the vector of the conformal transformation λ_s be expressed as $\lambda_s = x^1v_s + y^2v_s + z^3v_s$. The coefficients x, y and z satisfay the sistem:

$$(2.7) 3y\cos\frac{\omega}{12} + 3z\cos\frac{\omega}{13} = a_1, 3x\cos\frac{\omega}{12} + 3z\cos\frac{\omega}{23} = a_2, 3x\cos\frac{\omega}{13} + 3y\cos\frac{\omega}{23} = a_3.$$

If we use D to denote the determinant of the coefficients of the unknown variables in this system, and $D_{\alpha}(\alpha = 1, 2, 3)$ for the determinants obtained after substituting the a column by the column of the free members in D, we obtain:

$$D = 54\cos\frac{\omega}{12}\cos\frac{\omega}{23}\cos\frac{\omega}{31}, \qquad D_{\alpha} = 9\cos\frac{\omega}{\beta\gamma}(-a_{\alpha}\cos\frac{\omega}{\beta\gamma} + a_{\beta}\cos\frac{\omega}{\gamma\alpha} + a_{\gamma}\cos\frac{\omega}{\alpha\beta}),$$
$$(\alpha, \beta, \gamma) = (1, 2, 3), \ (2, 3, 1), \ (3, 1, 2).$$

Since the net $\left(v, v, v \atop 1, 2, 3\right) \in V_3(g_{is})$ is not orthogonal, then $D \neq 0$. Therefore, (2.7) has a unique solution for the vector of the conformal transformation $\lambda_s = \frac{1}{D}(D_1 v_s + D_2 v_s + D_3 v_s)$.

The vector of the conformal transformation λ_s is gradient [2, p. 162], i.e.

$$\frac{1}{D}(D_1 v_s^1 + D_2 v_s^2 + D_3 v_s^3) = \text{grad}.$$

2. Conversely, let a) and b) hold for the net $\begin{pmatrix} v,v,v \\ 1,2,3 \end{pmatrix} \in V_3(g_{is})$. From **a**), taking into account (1.3) and (1.6), we get (2.4). It means that $\begin{pmatrix} *,*,*,* \\ v_1,v_2,* \end{pmatrix} \in \overset{*}{V_3}(\overset{*}{g}_{is})$ is a c-net. From **b**) following the inverse way of argument, we obtain that the coefficients λ_s satisfy system (2.7). It has a unique solution, i.e. the net $\begin{pmatrix} v,v,v \\ 1,2,3 \end{pmatrix} \in V_3(g_{is})$ is a conformal c-net. \square

3. Conformal b-nets in V₃. Following [4], we shall call a $\left(v, v, v \atop 1, 2, 3\right) \in V_3\left(g_{is}\right)$ net a b-net if the following condition holds:

$$(3.1) \qquad \qquad \sum_{\alpha=1}^{3} \stackrel{\alpha}{b_i} = 0,$$

where

The quantity ρ^{α}_{β} is called a Chebyshevian curvature of second kind. (The bracket indices are not to be summed).

Definition 3.1. A net $\begin{pmatrix} v, v, v \\ 1 & 2 & 3 \end{pmatrix} \in V_3$, admitting a conformal transformation into a **b**-net will be called a conformal **b**-net.

a)
$$\partial_k v_a^{k\alpha} v_i^{\alpha} + \Gamma_{ki}^k + 2\lambda_i = 0$$
, b) $\lambda_s = \tilde{z}_s^{\alpha} b_{\alpha} = \text{grad}$,

where
$$z_{\alpha}^{s} = -3v_{\alpha}^{s} + g^{ks} \left(v_{k}^{\alpha} + v_{k}^{\beta} \cos \frac{\omega}{\alpha \beta} + v_{k}^{\gamma} \cos \frac{\omega}{\alpha \gamma} \right), \ z_{\alpha}^{s} \widetilde{z}_{k}^{\alpha} = \delta_{k}^{s} \ and \ b_{\alpha} = \sum_{\alpha}^{\alpha} + \sum_{\alpha}^{\beta} + \sum_{\alpha}^{\gamma} \sum_{k=1}^{\alpha} \left(v_{k}^{\alpha} + v_{k}^{\beta} \cos \frac{\omega}{\alpha \beta} + v_{k}^{\gamma} \cos \frac{\omega}{\alpha \gamma} \right).$$

Proof. 1. Let the conformal transformation (1.1) transorm the net $\begin{pmatrix} v, v, v \\ 1, 2, 3 \end{pmatrix} \in V_3$

into a *b*-net $\begin{pmatrix} *, *, * \\ 1, 2, 3 \end{pmatrix} \in \overset{*}{V}_{3}(\overset{*}{g}_{is})$. From (3.1) follows that $\sum_{\alpha=1}^{3} \overset{*}{b}_{i} = 0$. Taking into account (1.4), (1.5) and (1.6), we obtain **a**). From the conditions (3.2), (1.2) and (1.6) for the vector of the conformal transformation λ_{s} we have:

(3.3)
$$\sum_{\alpha=1}^{3} \begin{pmatrix} \alpha \\ \rho + \lambda_s (v_{\sigma}^s - v_{k}^{(\alpha)} g^{ks} \cos \omega) \\ \sigma \end{pmatrix} v_i = 0.$$

After contracting (3.3) by v_i^1, v_i^2 and v_i^3 respectively, we arrive at

(3.4)
$$\lambda_s[-3v_a^s + g^{ks}(v_k^\alpha + v_k^\beta \cos \omega + v_k^\gamma \cos \omega)] = \rho_\alpha^\alpha + \rho_\alpha^\beta + \rho_\alpha^\gamma,$$

where $(\alpha, \beta, \gamma) = (1, 2, 3), (2, 3, 1), (3, 1, 2).$

We introduce the denotations:

$$z_{\alpha}^{s} = -3v_{\alpha}^{s} + g^{ks}(v_{k}^{\alpha} + v_{k}^{\beta}\cos\omega_{\alpha\beta} + v_{k}^{\gamma}\cos\omega_{\alpha\gamma}), b_{\alpha} = v_{\alpha}^{\alpha} + v_{k}^{\beta} + v_{k}^{\gamma}\cos\omega_{\alpha\gamma}$$

Then (3.4) takes the form $\lambda_s z_\alpha^s = b_\alpha$. The matrix (z_α^s) is nonsingular and there exists an inverse one of it (z_k) . From (3.4) for the vector of the conformal transformation we obtain $\lambda_s = z_s^\alpha b_\alpha$. The vector of the conformal transformation is gradient.

2. Conversely, let **a**) and **b**) hold for the net $\begin{pmatrix} v, v, v \\ 1, 2, 3 \end{pmatrix} \in V_3$. From a), taking into account (1.3), (1.5) and (1.6), we find (3.1) and (3.2), which mean that the net $\begin{pmatrix} v, v, v \\ 1, 2, 3 \end{pmatrix} \in V_3$ is a *b*-net. From **b**), follwing the inverse way of argument, we obtain that the net $\begin{pmatrix} v, v, v \\ 1, 2, 3 \end{pmatrix} \in V_3$ admits a conformal transformation into a *b*-net $\begin{pmatrix} v, v, v \\ 1, 2, 3 \end{pmatrix} \in V_3$ admits a conformal transformation into a *b*-net $\begin{pmatrix} v, v, v \\ 1, 2, 3 \end{pmatrix} \in V_3$

The curvature coordinates of the points in the space V_3 will be denoted with $u^1 = u$, $u^2 = v$, $u^3 = w$. If we choose an arbitrary net $\begin{pmatrix} v, v, v \\ 1 & 2 \end{pmatrix}$ as a coordinate one of V_3 , then the fundamental form of the space will be:

 $ds^2 = A^2 du^2 + B^2 dv^2 + C^2 dw^2 + 2AB\cos\omega_{12} dudv + 2AC\cos\omega_{13} dudw + 2BC\cos\omega_{23} dvdw,$ where A, B and C are functions of u, v and w.

The unit fields of directions of the net and their mutual ones have the coordinates:

$$(3.5) \qquad v\left(\frac{1}{A},0,0\right),\ v\left(0,\frac{1}{B},0\right),\ v\left(0,0,\frac{1}{C}\right),\ v\left(A,0,0\right),\ v\left(0,B,0\right),\ v\left(0,0,C\right).$$

Theorem 3.2. The fundamental form of the space $V_3(g_{is})$ in the parameters of a conformal **b**-coordinate net has the form:
(3.6)

$$ds^{2} = A^{2} \begin{bmatrix} du^{2} + f(v, w) \psi(u, w) dv^{2} + \xi(u, v) \eta(u, w) dw^{2} + 2f(v, w) \psi(u, w) du dv + \\ 2\xi(u, v) \eta(u, w) du dw + 2f(v, w) \xi(u, v) \tau(u, w) dv dw \end{bmatrix},$$
where $f(v, w)$, $\psi(u, w)$, $\xi(u, v)$, $\eta(u, w)$, $\tau(u, w)$ are arbitrary functions.

Proof. Let the net $\begin{pmatrix} v, v, v \\ 1, 2, 3 \end{pmatrix} \in V_3$ be a conformal b-net. From $\partial_k v^k_\alpha^\alpha v_i + \Gamma^k_{ki} + 2\lambda_i = 0$, and taking into account that $\Gamma^k_{ki} = \text{grad}$, $\lambda_i = \text{grad}$ follows that $\partial_k v^k_\alpha^\alpha v_i = \text{grad}$. If we choose the net $\begin{pmatrix} v, v, v \\ 1, 2, 3 \end{pmatrix} \in V_3$ as a coordinate one, then from the last equation we find: $\partial_1 v^1_\alpha^1 v_1 + \partial_2 v^2_\alpha^2 v_2 + \partial_3 v^3_\alpha^3 v_3 = \text{grad}$. From here, taking into account (3.5), we obtain: $((\ln A)_u, (\ln B)_v, (\ln C)_w) = \text{grad}$. It means that $B = f(v, w) \psi(u, w) A$ and $C = \xi(u, v) \eta(u, w) B$. Then the fundamental form of the space V_3 takes the form (3.6). \square

Obviously, when $f(v, w) = \psi(u, w) = \xi(u, v) = \eta(u, w) = 1$ the space V_3 is conformally Euclidean.

REFERENCES

- [1] D. Gribacheva. Conformal geometry of compositions in a three-dimensional Weyl space. *Nihonkai Math. J., (to appear).*
- [2] A. NORDIN. Affinely Connected Spaces. GRFML, Moscow, 1976.
- [3] V. Shulikovskii. Classical Differential Geometry. GRFML, Moscow, 1963.
- [4] G. ZLATANOV, B. TSAREVA. On the geometry of the nets in *n*-dimensional Weyl space. *Journal of Geometry*, **38** (1990), 181–197.
- [5] G. ZLATANOV. About conforming geometry of nets in a *n*-dimensional Weyl space. *Izv. Vyssh. Uchebn. Zaved. Mathem.* No 8 (1991), 19–26.

Technical College "John Atanasov" 71A, Br. Buckston str. 4000 Plovdiv, Bulgaria

e-mail: ivanbadev@abv.bg

106

КОНФОРМНО C МРЕЖИ И КОНФОРМНО B МРЕЖИ В ТРИМЕРНО РИМАНОВО ПРОСТРАНСТВО

Иван Ат. Бадев

Използвайки Чебишева и геодезично кривина на линия на произволна мрежа, c и b мрежите в n-мерно пространство на Вайл са дефинирани и изследвани в [4]. Златанов изучава конформно c и b мрежи в пространство на Вайл в [5]. Конформната геометрия на композиция породени от мрежи в тримерно пространство на Вайл е разгледана в [1].

В тази работа са изучавани c и b мрежи в тримерно риманово пространство. Получени са необходими и достатъчни условия дадена мрежа да е конформно c мрежа или конформно b мрежа. Намерени са характеристики на риманови пространства, съдържащи тези мрежи.