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*
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A real analytic Bernoulli fixed points free flow on the 3-sphere is constructed (Corol-
lary 1). This answers affirmatively a question of Harrison and Pugh [9]. In fact, such
a flow is found on a larger class of 3-manifolds (Theorem 2). The construction relies
on a famous example of Burns and Gerber [5] of Riemannian surfaces with Bernoulli
geodesic flow.

Introduction. In their paper [9] Harrison and Pugh asked whether there exists a
real analytic ergodic fixed points free flow on the 3-sphere S

3. In the present note we
answer affirmatively this question. Moreover, the constructed flow is Bernoulli, which
is a metrical property, much stronger than ergodicity. In fact, we find fixed points free
analytic Bernoulli flows on a larger class of 3-manifolds. This class may be described as
follows:

Definition 1. Let S be a closed Riemannian 2-surface and T 1S denotes the fiber

bundle of length 1 tangent vectors to S, which is a 3-manifold. Consider the class F(S)
of all connected covering spaces with base T 1S with a finite holonomy group. Then we

define the class F = ∪F(S), where S runs over all such 2-surfaces.

We shall show that any manifold of class F carries such a flow. We prove in this note
the following two facts:

Let M be a 3-manifold from class F. Then there exists a real analytic Bernoulli fixed

points free flow on M .

There is a real analytic Bernoulli (with respect to Lebesgue measure) fixed points free

flow on the 3-sphere S3.

Let us make some remarks: Each manifold of class F is compact, as the holonomy
group is supposed to be finite. The class F includes all manifolds of the form T 1S,
since they can be regarded as a trivial covering with base T 1S. The following classical
3-manifolds belong to class F:

the 3-dimensional sphere S
3 – indeed, the space T 1

S
2 is known to be homeomorphic

to the real projective space RP
3, and there is a natural double covering of S

3 onto RP
3,

the 3-dimensional torus T
3, as it is obviously homeomorphic to T 1

T
2.
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The construction relies on a famous example of Burns and Gerber [5] of a Riemannian
metric on any closed surface, whose geodesic flow is Bernoulli with respect to its Liouville
measure.

Overview of the problem. The problem concerning the existence of flows with
different metrical or topological properties on 3-manifolds is a classical one. One of the
first results in that area was Oxtoby and Ulam’s example [14] of topologically transitive

and ergodic continuous authomorphism of strongly connected polyhedra. Let us note also
Besicovitch’s explicit example [2] of transitive authomorphisms of the plane with a single
fixed point. Later Sidorov [15] made this example class C∞. Another famous article
is [1], where Anosov and Katok construct C∞ ergodic flows on 3-manifolds admitting
a smooth effective S

1-action. These flows are not fixed points free. The authors in
fact construct here not only ergodic flows, but a large series of examples with different
metrical properties (such as mixing properties, prescribed spectrum, etc.). Later Katok
[10] modified their method to find a minimal diffeomorphism in S

3 (in fact in any principal
S

1-bundle). Blokhin [3] constructed smooth ergodic flows on any closed 2-surface, except
for the 2-sphere, the projective plane and Klein’s bottle, where they are impossible.

In [11] Katok constructed a C∞ Bernoulli authomorphism of any compact 2-surface.
Gerber [7] has shown that analytic examples like Katok’s do exist. Starting from Ka-
tok’s example, Harrison and Pugh constructed in [9] a smooth ergodic (with respect to
Lebesgue measure) fixed points free flow on S

3 (as well as on any lens space). Here they
asked some questions. One of them is whether there exists a real analytic ergodic fixed
points free flow on S

3. We answer affirmatively this question in the present note. Let
us notice that analyticity is not just a technical detail, as it often imposes nontrivial
topological obstructions on flows and foliations (see for example [16]).

There are some other interesting topics which are situated very closely to the discussed
one. They are focused mainly on Seifert’s and Arnold’s conjectures where the existence of
periodic or stationary orbits is stated. For an overview of these problems see Ginzburg’s
paper [8]. One of the famous open problems here is Gottshalk’s conjecture about the
existence of a minimal flow in S

3.

Some basic definitions. By surface we mean here a connected closed 2-manifold.
A manifold is closed, if it is compact and has no boundary.

A measure-preserving authomorphism ϕ of a space with measure (X,µ) is called
ergodic, if any ϕ-invariant measurable set in X has measure 0 or 1. There is a subclass
of authomorphisms, called Bernoulli, with best (in some sense) mixing properties. For
the definition and the properties of Bernoulli authomorphisms see [6]. Each Bernoulli
authomorphism is ergodic and has the mixing property. A flow is called ergodic (resp.
Bernoulli), if the time 1 map of the flow is ergodic (resp. Bernoulli).

A manifold is real analytic (or analytic for simplicity), if all the coordinate functions
are real analytic. The metric g of a Riemannian manifold (M, g) is analytic, if there is
an analytic atlas on M , such that all the components gij of the metric tensor are real
analytic in the corresponding coordinate chart.

A flow on an n-manifold M is analytic, if there is an analytic atlas on M of ”flow-
boxes”, i.e. such that the coordinate functions send the flow into the flow generated by
the constant vector field (1, 0, ..., 0) in R

n.

If M is a smooth Riemannian manifold we denote by TM the tangent vector bundle
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on M and by T 1M the fiber bundle of length 1 tangent vectors. If M is n-dimensional,
then TM is 2n-dimensional, and T 1M is (2n − 1)-dimensional. Now, if v is an element
of TM , the correspondence v → (v, 0) ∈ TTM defines a vector field on TM . This field
defines a flow in TM . It is easy to see that the manifold T 1M is invariant with respect
to this flow. The restriction of the flow to T 1M is called the geodesic flow in M . Clearly,
this flow is fixed points free.

If M is a 3-manifold, the 1-form ω is a contact form, if the 3-form ω∧dω is everywhere
nondegenerate. A flow in M is called contact, if it preserves some contact form.

Statement and proof of the results. As it has been pointed out above, we
shall make use of some deep results of Burns and Gerber [4] as well of their example of
Bernoulli geodesic flows in [5].

Theorem 1. (Burns, Gerber [4]) Let M be a class C3 compact 3-manifold and ϕt

be a C2 flow leaving invariant the measure defined by some C2 Riemannian metric g on

M . Suppose that there is a ϕt-invariant distribution P transverse to the flow. Let K
be a continuous family of 2-dimensional cones such that K(x) ⊆ P (x) for all x ∈ M .

Suppose that there is a connected open subset U of M such that

(i) ∪t∈Rϕ
tU has full measure in M ;

(ii) dϕt(K(x)) is strictly contained in K(ϕtx) whenever x ∈ U , t > 0 and ϕtx ∈ U .

Then the flow ϕt is ergodic. If in addition ϕt is a contact flow and P is the kernel of

the contact form, then ϕt is Bernoulli with respect to its Liouville measure.

The key condition here is (ii) – roughly speaking, the flow ϕt is compressing all the
time the cones family K(x) into itself. The authors apply this theorem to their example
of compact C∞ Riemannian surfaces (S, g) with the following property:

The set on which the curvature is nonnegative is an union of disjoint disks C1, . . . , Cn

called “caps”. The boundary of each cap is a geodesic circle, each cap is radially sym-
metric and its curvature is a nondecreasing function of distance from the boundary. This
function has positive derivative at the boundary and vanishes there.

It turns out that the geodesic flow on S satisfies the assumptions in Theorem 1 for
some natural definition of P (x), K(x) and U . Therefore, the geodesic flow on S is
Bernoulli.

Furthermore, Burns and Gerber prove in [5] that if g̃ is a C3 Riemanniam metric
close enough to g in the C2 topology, then the corresponding geodesic flow ϕteg on T 1,egS
is ergodic and Bernoulli with respect to its Liouville measure. Finally they show that
there exists on S a real analytic metric g̃ close enough to g. Therefore T 1,egS becomes
a real analytic 3-manifold with a fixed points free Bernoulli flow, namely – the geodesic
flow.

As we explained in the introduction, we shall extend this result to connected coverings
with base T 1,egS and a finite holonomy group. This includes the important case of the
3-sphere S

3.

Let M be such a covering and p : M → T 1,egS be the projection. Let us note that
M is compact, since every fiber is finite. Now, roughly speaking, we shall follow the
construction in [5] and taking pull back of forms, measures and sets in M , we verify that
the conditions of Theorem 1 are fulfilled in M for the pull back of the geodesic flow in
T 1,egS.
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The set U is defined as follows: For each cap Ci a closed disk Di is taken so that
D1, . . . , Dn are pairwise disjoint, Ci ⊂ IntDi and (Di, g) is radially symmetric about the
centre of (Ci, g). Then U is defined as the set of vectors in T 1,egS, whose footpoints lie
outside ∪Di. Furthermore, it is shown that the set U satisfies condition (i) from Theorem
1 for M = T 1,egS and ϕt being the geodesic flow. Moreover, a ϕt-invariant distribution
P transverse to the flow, as well as a cones family K(x) ⊆ P (x) is constructed and it
is shown that condition (ii) from Theorem 1 is fulfilled. Finally, it is shown that ϕt is
preserving some contact 1-form ω.

We shall show that the same is the situation in M . First of all, we shall consider
in M the pull-back of the measure in T 1,egS with the natural normalization: µ∗(A)
= 1/mµ(p(A)), where A is not containing two points from one and the same fiber and
m is the cardinality of the fiber. The projection p : M → T 1,egS induces a natural map
between the tangent bundles dp : TM → TT 1,egS. Note that since p is a covering, the
differential dp is an isomorphism on each fiber. Then we may define correctly P ′(x)
= (dp)−1(P (p(x))), K ′(x) = (dp)−1(K(p(x))), U ′ = p−1(U) and ψt as the pull-back
under p of the flow ϕt. Then condition (ii) is trivially fulfilled, since for any x ∈ p−1(U)
we have dψtK ′(x) = dψt(dp)−1(K(p(x))) = d(dp)−1ϕtK(p(x)) = (dp)−1dϕtK(p(x))
⊂(dp)−1K(ϕtp(x)). On the other hand, K ′ψt(x)=(dp)−1(K(p(ψt(x))=(dp)−1(Kϕtp(x)).
Thus, for each x ∈ U ′ = p−1(U) we have dψtK ′(x) ⊂ K ′ψt(x), so condition (ii) is fulfilled
in M .

Condition (i) is also trivially fulfilled: ∪t∈Rψ
tU ′ = ∪t∈Rψ

tp−1(U) = ∪t∈Rp
−1(ϕt(U))

= p−1(∪t∈Rϕ
t(U)), but the set ∪t∈Rϕ

t(U) has full measure in T 1,egS, hence ∪t∈Rψ
tU ′

has full measure in M as well.

Now, we have to show that the set U ′ = p−1(U) is connected, which is almost obvious.
Let r : T 1,egS → S be the natural projection r(x, v) = x. Then rp : M → S is a fiber
bundle with each fiber being a disjoint union of m circles. Clearly U ′ = M\ ∪ p−1(Di),
where Di are the disjoint closed disks in S from the definition of U . Now, shrinking
these disks by a homotopy into different points qi ∈ S, it follows that U ′ is homotopically
equivalent to M\ ∪ p−1(qi). But M is a 3-manifold, which is connected by assumption
and ∪p−1(qi) is an union of topological circles, hence M\ ∪ p−1(qi) is a connected set.
Therefore U ′ = M\ ∪ p−1(Di) is connected as well.

It is easy to check now that the flow ψt is contact and P ′ is the kernel of the contact
form p∗(ω), where ω is the contact form on T 1,egS with kernel P . Indeed, p∗(ω)∧ dp∗(ω)
= p∗(ω∧dω) is a nondegenerate everywhere 3-form, so p∗(ω) is a contact form preserved
by the flow ψt, as it is the pull-back of ϕt which is preserving ω. The fact that P ′ is the
kernel of p∗(ω) follows immediately from its definition.

In this way, we checked that all assumptions of Theorem 1 are fulfilled for (M,ψt).
Therefore, the flow ψt is Bernoulli. Recall now that the metric g̃ is real analytic.

So, we have proved the following

Theorem 2. Let M be a 3-manifold from class F (see Definition 1). Then there exists

a real analytic Bernoulli fixed points free flow on M .

Remark. The flow ψt in Theorem 1 in fact is preserving some measure on M with
a smooth everywhere positive density.

Indeed, from the construction in [5] it follows that the 3-form ω ∧ dω is everywhere
nondegenerate and defines the same measure on TS as the Riemannian metric on S does.
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The measure in T 1,egS is the restriction of the measure in TS, so it also has a smooth
everywhere positive density. But there is a theorem of Moser [13], claiming that each
such measure is equivalent to a constant multiple of the Lebesgue measure on M . In this
way we may assume that the flow is respecting Lebesgue measure in M .

Corollary 1. There is a real analytic Bernoulli (with respect to Lebesgue measure)
fixed points free flow on the 3-sphere S

3.

Proof. Indeed, the space T 1
S

2 is known to be homeomorphic to the real projective
space RP

3 (c.f. [12]), and there is a double covering of S
3 with base RP

3, hence S
3 belongs

to class F. It remains to apply Theorem 2.
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АНАЛИТИЧЕН БЕРНУЛИЕВ ПОТОК ВЪРХУ 3-МЕРНАТА СФЕРА

БЕЗ НЕПОДВИЖНИ ТОЧКИ

Велика Ил. Драгиева, Симеон Т. Стефанов

В настоящата работа е построен реално аналитичен Бернулиев поток върху 3-
мерната сфера без неподвижни точки (Следствие 1). Това дава положителен
отговор на въпрос, поставен от Пю и Харисън в [9]. Всъщност такъв поток е
построен върху по-широк клас от тримерни многообразия (Теорема 2). Конст-
рукцията се основава но известния пример на Бърнс и Гербер [5] на риманови
повърхнини с Бернулиев геодезичен поток.
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