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PERTURBATIONS IN THE CANONICAL EQUATIONS OF
SECOND-DEGREE SURFACES"

Todor R. Gichev, Dora T. Gicheva

This article studies perturbations in the canonical equations of n-dimensional second-
degree surfaces. It introduces a Hausdorff type distance between those parts of the
solutions of the given and the perturbed equations that are found in a bounded and
closed set. Using the introduced distance, we estimate the deviation of the sets of
the real and the complex solutions of the perturbed equation from the corresponding
sets of solutions of the given equation. All possible cases for a second-degree surface
are covered. If A denotes an upper bound for the absolute value of the perturbations
in the equation, then two groups of cases, in which the perturbations in the set of
solutions are estimated respectively with A and VA, are considered.

1. Introduction. The existing geometric interpretation when n = 2 and n = 3
is useful for the investigation of the impact of perturbations in second-degree equations
with n unknowns, n > 2. The second-degree curves and surfaces clarify the problems
comming from perturbations in the equations and help in solving those problems. The
first problem when studying the impact of perturbations in the equation on the set of
its solutions is the selection of suitable characteristics of the proximity between the sets
of solutions of the initial equation and the perturbed one. Next comes the problem of
finding conditions for which proximity of the determined kind exists.

Let us denote by R"™ the n-dimensional real space. Further, for n > 2 the following
equation is considered:

n

(1) Z \e@h + pr, = F
k=1

with real coefficients Ay (k =1,2,...,n), p, and F, which satisfy the relations Y A? # 0,
k=1

Anp = 0, pF' = 0. For small perturbations A, (k=1,...,n), Ap, and Ap, for which it
is true that |Ag| < A, |[Ak] < A, |Ag| < A, the perturbed equation
n
(2) D Ok +AR)ai 4+ (p+ Ap)en = F+ Ap
k=1
is considered.
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If Q is a bounded and closed set of R™ and M (x4, ...
out the paper the following notations are used:

(3) Iy = mkin{|)\k| : A # 0}

2
(4) b = max (; Joi]” + | + 1)

, Tn,) belongs to @, then through-

n
(5) oa =Y AwE + Ay, — Ap.
k=1

The minimum in (3) is taken from the coordinates with index k, for which Ay # 0.
Analogous notations are used further in the paper.

Let us denote by G and Ga the set of points (21, ..., 2,) with real coordinates, which
satisfy respectively equations (1) and (2). If M(Z4,...,Z,) and M (z1,...,2,) are two
points with real coordinates, then let us introduce the notations:

d(M,G) = min max |, — x|, d(M,Ga) = min max |& — x| .
MeG 1<k<n MeGa 1<k<n
Let @ be a bounded and closed set in R™. Then the number
(6) p(QﬁG,QﬁGA)max{~max d(M,G),~max d(M,GA)}
MeQnGa MeQnG

determines the distance of Hausdorff type between the situated in the set () parts of the
sets G and Ga.

Let C™ be the n—dimensional complex space. Then by (6) we analogously define
the number p (Q NG, Q NGa) where G and Ga are the sets of complex solutions of the
equations (1) and (2), and @ is a bounded and closed set in C™. In this case everywhere
we denote by |a| the absolute value of the complex number a.

A distance of the considered type between sets in the plane is applied in [3]. As
a distance between functions a distance of the considered type is used in [2]. In [1] a
distance of similar type is defined between sets of points in the complex plane.

Further, using the distance (6), we estimate the impact of small perturbations in the
equation (1) on the set of real and complex solutions of the equation. The possible cases
for the type of the equation (1) are distributed in two major groups: surfaces with a
(finite) center and surfaces without a (finite) center.

2. Perturbations in the Canonical Equation of Surfaces with a (Finite)
Center. For the surface with a (finite) center in equation (1) we have p = 0. Equations
(1) and (2) take the form

(7) > Awai =
k=1
n
(8) Z)\k-i-Akxk—i-Apxn—F—l—AF
k=1
First, let G and Ga be the sets of points (x1,...,xz,) with real coordinates, which

are the solutions of equations (7) and (8).
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Theorem 1. Let in equation (7) either the coefficient F' be non-zero and the sign of
at least one of the non-zero coefficients A\, (k = 1,...,n) coincide with the sign of F,
and @Q be a bounded and closed set in R™, or the coefficient F be zero, at least two of the
coefficients N\, (k= 1,...,n) be non-zero and have opposite signs, and @ be a bounded
and closed set in R", which does not contain a point (x1,...,T,), for which it is true that
Axxr = 0 when k= 1,...,n. Then, there exists a constant v > 0, such that inequality
p(QNG,QNGA) < VA holds when A — 0.

Proof. According to the assumptions made so far, there exists a constant bs > 0,
such that b3 = MmcignGm]?x{|xk| : A # 0}. For the notation (3) and (4) let the positive
€Qn

number A satisfy the inequalities
Iy 11 b2

< = < —=.
(9) A_Q’ A_2bl

wN

First, let the point M (Z1,...,%,) belong to the set @ N G. The index kg is so chosen
that the equality

(10) | = max (13| Me # 0}

is fulfilled. Let us introduce the number

y oA
11 §=dp |14+ J1—-——2 ],
(1 § ( \/ (ko +Ako)$i0>

where o is defined in (5). Since &y, is a real number and the inequalities (9) hold, then
we have:

aby _ gl

<
- l1 9 llbg -
h-2)n

Therefore, the number under the root in (11) is non-negative, and ¢ is a real number.

We shall prove that the point Ma (Z1, ..., Zky—1, Ty + 0 Tk 41, - - - En) belongs to
the set Ga. After substituting its coordinates in the left side of equation (8), we obtain

n
- g, - - -
(Ako + Aky) (wio - ﬁ) + Y e+ AR E A+ Ay = D> (M + Ay) T
ko ko k#ko k=1

— (Z Apii + ApZy — AF) + AT, = Z)\ki‘i +Ap =F+ Ap.
k=1 k=1

In the last equality we use the fact that the point M is from G. Therefore, really

Ma € Ga.

From (11) we obtain

—1
~ OA OA
S=dp (1- — 72 )14 1o — 0% ) |
k( (ko + A, ) TF, )( \/ (Ako+Ako)$io>

Since, estimating |0|, the root can be omitted, we can see that

2A

(12) 0] < b _a,
I1bs
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20y
llbg

(13) 4 (I, Ga) < Jin, — (@n, +0)| = |8 < vA.

where we assume v = . Then from (12) it follows that

Further, let M (Z1,...,%,) be a point from the set Q@ N Ga. The index ko is chosen
again from the relation (10). Using the assumption (5), let us introduce the number

. OA
14 = -1 [1 4 - )
(14) 0 = T, ( + + )\kgfzio>

As previously, we check that there is a non-negative number under the root in (14) and
the point Ma (Z1,...,%ky—1, Tky + 0, Tkgt1, - - - s Tn) belongs to the set G. The following
estimation is valid:

Abl 174
0 < ——= = —A.
| | — l1b3 2
Therefore it is true that
(15) d (M, G) < |Eny — (Fry +0)] = 18] < vA.

From (13) and (15) it follows that when A satisfies the inequalities (9), then
p(QNG,QNGA) <vA. This completes the proof of the theorem.

Theorem 2. Let the coefficient F in the equation (7) be zero and at least two of the
coefficients A, (k =1,...,n) be non-zero and have opposite signs, and @ be a bounded and
closed set in R™, which contains a point (x1,...,%,), for which it is true that A\gxy =0
when k =1,...,n. Then there exists a positive number v, such that p(Q NG, QN Ga) <
vV A when A — 0.

Theorems 1 and 2 exhaust all possible cases of real surfaces with a center determined
by equation (7). When F # 0 if the signs of all non-zero coefficients A\, (k = 1,...,n)
are different from the sign of F, then for small perturbations of the coefficients of the
equation it is possible the perturbed equation not to have real solutions. When F' = 0
and if the signs of all non-zero coefficients \;, (kK =1,...,n) are the same, then it is also
possible that the perturbed equation not have to real solutions. These cases are covered
in the following theorems, in which we evaluate the impact of perturbations on the set
of complex solutions of equation (7). These theorems are presented without proofs.

Theorem 3. Let G and G be the sets of the complex solutions of the equations (7)
and (8). Then for each bounded and closed set Q from the n-dimensional complex space
C™ there exists a positive constant v, such that p(Q NG, Q NGaA) < VWA for A — 0.

The next theorem specifies this result.

Theorem 4. Let G and Ga be the sets of the complex solutions of the equations (7)
and (8). In addition, let Qbe a bounded and closed set from the n-dimensional complex
space C™, such that the set Q NG does not contain a point (x1,...,%,) for which it is
true that \pxx, = 0 for k= 1,...,n. Then there exists a constant v > 0, such that the
following inequality holds

p(QNG,QNGA) <VA.
when A — 0.

129



3. Perturbations in the Canonical Equations of a Surface without a (Finite)
Center. For a surface without a (finite) center in equation (1) it is true that p # 0 and
An =0, F = 0. Then the equation has the form

n—1
(16) Z A\eZs + p, = 0.
k=1
In this case equation (2) is
n—1
(17) (M + ARz + Apz: + (p+ Ap)zn = Ap.

k=1
Again, let first G and Ga be sets of points with real coordinates which are solutions
respectively of equations (16) and (17). Then the following theorems holds:

Theorem 5. For every bounded and closed set (Q from the n-dimensional real space
R™ there exists a constant v > 0, such that the following inequality is true:

P(QNG,QNGa) < VA
when A — 0.

Theorem 6. If G and G are the sets of points (1, ..., T,) with complex coordinates,
which satisfy respectively equations (16) and (17), then for each bounded and closed set
Q of the n-dimensional space C™ there exists a constant v > 0, such that the following
inequality holds:

p(QNG,QNGA) <VA
when A — 0.
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CMVYIIEHNA B KAHOHUYHUNUTE YPABHEHU A HA ITIOBBbPXHUVHU
OT BTOPA CTEIIEH

Tomop P. 'mues, Hopa T. 'uueBa

B paborara ce usydaBar cMyIleHUsITa B KAHOHUYHUTE YPABHEHUsI Ha N-MEPHUTE I0-
BBPXHUHHM OT BTOpa CTeleH. BbBexkaa ce pa3CcTosiHMe OT XaycAopdOB THI MeXKIy
YacCTUTe OT pelleHuATa Ha JaJeHOTO M CMYTEeHOTO ypaBHeHHe, KOUTO ce HaMHupaT
B OI'PAHUYEHO W 3aTBOPEHO MHOXKeCTBO. C MOMOINTa HA BbBEIEHOTO PA3CTOSTHUE Ce
OIleHsABa OTKJIOHEHHETO Ha MHOXKECTBOTO OT PeajIHUTEe U KOMIIJIEKCHUTE peIlleHus Ha
CMYTEHOTO ypaBHEHHE OT ChOTBETHOTO MHOXKECTBO HA JQJICHOTO ypaBHeHHe. Pasrie-
JIAHU Ca BCUYKU BBH3MOXKHU CJIydad Ha TMOBbPXHUHA OT BTOpa cremeH. Ako A e ropHa
rpaHuIa 3a abCOJIOTHATA CTOMHOCT HA CMYNIEHWSATA B YPABHEHHSATA, TO CA OIpPee-

JIEHW [IBa CJIydasi, B KOUTO CMYIIEHUSATa B MHOXKECTBOTO OT PEIIEHUSITA CE OLCHABA
cboTBEeTHO ¢ A 1 VA.
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