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This article studies perturbations in the canonical equations of n-dimensional second-
degree surfaces. It introduces a Hausdorff type distance between those parts of the
solutions of the given and the perturbed equations that are found in a bounded and
closed set. Using the introduced distance, we estimate the deviation of the sets of
the real and the complex solutions of the perturbed equation from the corresponding
sets of solutions of the given equation. All possible cases for a second-degree surface
are covered. If ∆ denotes an upper bound for the absolute value of the perturbations
in the equation, then two groups of cases, in which the perturbations in the set of
solutions are estimated respectively with ∆ and

√

∆, are considered.

1. Introduction. The existing geometric interpretation when n = 2 and n = 3
is useful for the investigation of the impact of perturbations in second-degree equations
with n unknowns, n ≥ 2. The second-degree curves and surfaces clarify the problems
comming from perturbations in the equations and help in solving those problems. The
first problem when studying the impact of perturbations in the equation on the set of
its solutions is the selection of suitable characteristics of the proximity between the sets
of solutions of the initial equation and the perturbed one. Next comes the problem of
finding conditions for which proximity of the determined kind exists.

Let us denote by R
n the n-dimensional real space. Further, for n ≥ 2 the following

equation is considered:

(1)

n
∑

k=1

λkx2
k + pxn = F

with real coefficients λk (k = 1, 2, . . . , n), p, and F , which satisfy the relations
n
∑

k=1

λ2
k 6= 0,

λnp = 0, pF = 0. For small perturbations ∆k (k = 1, . . . , n), ∆p, and ∆F , for which it
is true that |∆k| ≤ ∆, |∆k| ≤ ∆, |∆k| ≤ ∆, the perturbed equation

(2)

n
∑

k=1

(λk + ∆k)x2
k + (p + ∆p)xn = F + ∆F

is considered.
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If Q is a bounded and closed set of R
n and M(x1, . . . , xn) belongs to Q, then through-

out the paper the following notations are used:

(3) l1 = min
k

{|λk| : λk 6= 0}

(4) b1 = max
M∈Q

(

n
∑

k=1

|xk|2 + |xn| + 1

)

(5) σ∆ =

n
∑

k=1

∆kx̃2
k + ∆px̃n − ∆F .

The minimum in (3) is taken from the coordinates with index k, for which λk 6= 0.
Analogous notations are used further in the paper.

Let us denote by G and G∆ the set of points (x1, . . . , xn) with real coordinates, which
satisfy respectively equations (1) and (2). If M̃(x̃1, . . . , x̃n) and M(x1, . . . , xn) are two
points with real coordinates, then let us introduce the notations:

d(M̃, G) = min
M∈G

max
1≤k≤n

|x̃k − xk| , d(M̃, G∆) = min
M∈G∆

max
1≤k≤n

|x̃k − xk| .

Let Q be a bounded and closed set in R
n. Then the number

(6) ρ (Q ∩ G, Q ∩ G∆) = max

{

max
M̃∈Q∩G∆

d
(

M̃, G
)

, max
M̃∈Q∩G

d
(

M̃, G∆

)

}

determines the distance of Hausdorff type between the situated in the set Q parts of the
sets G and G∆.

Let C
n be the n−dimensional complex space. Then by (6) we analogously define

the number ρ (Q ∩ G, Q ∩ G∆) where G and G∆ are the sets of complex solutions of the
equations (1) and (2), and Q is a bounded and closed set in Cn. In this case everywhere
we denote by |a| the absolute value of the complex number a.

A distance of the considered type between sets in the plane is applied in [3]. As
a distance between functions a distance of the considered type is used in [2]. In [1] a
distance of similar type is defined between sets of points in the complex plane.

Further, using the distance (6), we estimate the impact of small perturbations in the
equation (1) on the set of real and complex solutions of the equation. The possible cases
for the type of the equation (1) are distributed in two major groups: surfaces with a
(finite) center and surfaces without a (finite) center.

2. Perturbations in the Canonical Equation of Surfaces with a (Finite)
Center. For the surface with a (finite) center in equation (1) we have p = 0. Equations
(1) and (2) take the form

(7)
n
∑

k=1

λkx2
k = F

(8)

n
∑

k=1

(λk + ∆k)x2
k + ∆pxn = F + ∆F .

First, let G and G∆ be the sets of points (x1, . . . , xn) with real coordinates, which
are the solutions of equations (7) and (8).
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Theorem 1. Let in equation (7) either the coefficient F be non-zero and the sign of

at least one of the non-zero coefficients λk (k = 1, . . . , n) coincide with the sign of F ,

and Q be a bounded and closed set in R
n, or the coefficient F be zero, at least two of the

coefficients λk (k = 1, . . . , n) be non-zero and have opposite signs, and Q be a bounded

and closed set in R
n, which does not contain a point (x1, . . . , xn), for which it is true that

λkxk = 0 when k = 1, . . . , n. Then, there exists a constant ν > 0, such that inequality

ρ (Q ∩ G, Q ∩ G∆) ≤ ν∆ holds when ∆ → 0.

Proof. According to the assumptions made so far, there exists a constant b3 > 0,
such that b3 = min

M∈Q∩G
max

k
{|xk| : λk 6= 0}. For the notation (3) and (4) let the positive

number ∆ satisfy the inequalities

(9) ∆ ≤ l1

2
, ∆ ≤ l1b

2
3

2b1

.

First, let the point M̃ (x̃1, . . . , x̃n) belong to the set Q∩G. The index k0 is so chosen
that the equality

(10) |x̃k0
| = max

k
{|x̃k| : λk 6= 0}

is fulfilled. Let us introduce the number

(11) δ = x̃k0

(

−1 +

√

1 − σ∆

(λk0
+ ∆k0

) x̃2
k0

)

,

where σ∆ is defined in (5). Since x̃k0
is a real number and the inequalities (9) hold, then

we have:
∣

∣

∣

∣

∣

σ∆

(λk0
+ ∆k0

) x̃2
k0

∣

∣

∣

∣

∣

≤ ∆b1
(

l1 −
l1

2

)

b2
3

= 2
∆b1

l1b
2
3

≤ 1.

Therefore, the number under the root in (11) is non-negative, and δ is a real number.

We shall prove that the point M̃∆ (x̃1, . . . , x̃k0−1, x̃k0
+ δ, x̃k0+1, . . . , x̃n) belongs to

the set G∆. After substituting its coordinates in the left side of equation (8), we obtain

(λk0
+ ∆k0

)

(

x̃2
k0

− σ∆

λk0
+ ∆k0

)

+
∑

k 6=k0

(λk + ∆k) x̃2
k + ∆px̃n =

n
∑

k=1

(λk + ∆k) x̃2
k−

−
(

n
∑

k=1

∆kx̃2
k + ∆px̃n − ∆F

)

+ ∆px̃n =

n
∑

k=1

λkx̃2
k + ∆F = F + ∆F .

In the last equality we use the fact that the point M̃ is from G. Therefore, really
M̃∆ ∈ G∆.

From (11) we obtain

δ = x̃k0

(

1 − σ∆

(λk0
+ ∆k0

) x̃2
k0

− 1

)(

1 +

√

1 − σ∆

(λk0
+ ∆k0

) x̃2
k0

)−1

.

Since, estimating |δ|, the root can be omitted, we can see that

(12) |δ| ≤ 2∆b1

l1b3

= ν∆,
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where we assume ν =
2b1

l1b3

. Then from (12) it follows that

(13) d
(

M̃, G∆

)

≤ |x̃k0
− (x̃k0

+ δ)| = |δ| ≤ ν∆.

Further, let M̃ (x̃1, . . . , x̃n) be a point from the set Q ∩ G∆. The index k0 is chosen
again from the relation (10). Using the assumption (5), let us introduce the number

(14) δ = x̃k0

(

−1 +

√

1 +
σ∆

λk0
x̃2

k0

)

.

As previously, we check that there is a non-negative number under the root in (14) and
the point M̃∆ (x̃1, . . . , x̃k0−1, x̃k0

+ δ, x̃k0+1, . . . , x̃n) belongs to the set G. The following
estimation is valid:

|δ| ≤ ∆b1

l1b3

=
ν

2
∆.

Therefore it is true that

(15) d
(

M̃, G
)

≤ |x̃k0
− (x̃k0

+ δ)| = |δ| ≤ ν∆.

From (13) and (15) it follows that when ∆ satisfies the inequalities (9), then
ρ (Q ∩ G, Q ∩ G∆) ≤ ν∆. This completes the proof of the theorem.

Theorem 2. Let the coefficient F in the equation (7) be zero and at least two of the

coefficients λk (k = 1, . . . , n) be non-zero and have opposite signs, and Q be a bounded and

closed set in R
n, which contains a point (x1, . . . , xn), for which it is true that λkxk = 0

when k = 1, . . . , n. Then there exists a positive number ν, such that ρ (Q ∩ G, Q ∩ G∆) ≤
ν
√

∆ when ∆ → 0.

Theorems 1 and 2 exhaust all possible cases of real surfaces with a center determined
by equation (7). When F 6= 0 if the signs of all non-zero coefficients λk (k = 1, . . . , n)
are different from the sign of F , then for small perturbations of the coefficients of the
equation it is possible the perturbed equation not to have real solutions. When F = 0
and if the signs of all non-zero coefficients λk (k = 1, . . . , n) are the same, then it is also
possible that the perturbed equation not have to real solutions. These cases are covered
in the following theorems, in which we evaluate the impact of perturbations on the set
of complex solutions of equation (7). These theorems are presented without proofs.

Theorem 3. Let G and G∆ be the sets of the complex solutions of the equations (7)
and (8). Then for each bounded and closed set Q from the n-dimensional complex space

Cn there exists a positive constant ν, such that ρ (Q ∩ G, Q ∩ G∆) ≤ ν
√

∆ for ∆ → 0.

The next theorem specifies this result.

Theorem 4. Let G and G∆ be the sets of the complex solutions of the equations (7)
and (8). In addition, let Qbe a bounded and closed set from the n-dimensional complex

space Cn, such that the set Q ∩ G does not contain a point (x1, . . . , xn) for which it is

true that λkxk = 0 for k = 1, . . . , n. Then there exists a constant ν > 0, such that the

following inequality holds

ρ (Q ∩ G, Q ∩ G∆) ≤ ν∆.

when ∆ → 0.
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3. Perturbations in the Canonical Equations of a Surface without a (Finite)
Center. For a surface without a (finite) center in equation (1) it is true that p 6= 0 and
λn = 0, F = 0. Then the equation has the form

(16)
n−1
∑

k=1

λkx2
k + pxn = 0.

In this case equation (2) is

(17)

n−1
∑

k=1

(λk + ∆k)x2
k + ∆nx2

n + (p + ∆p)xn = ∆F .

Again, let first G and G∆ be sets of points with real coordinates which are solutions
respectively of equations (16) and (17). Then the following theorems holds:

Theorem 5. For every bounded and closed set Q from the n-dimensional real space

R
n there exists a constant ν > 0, such that the following inequality is true:

ρ (Q ∩ G, Q ∩ G∆) ≤ ν∆

when ∆ → 0.

Theorem 6. If G and G∆ are the sets of points (x1, . . . , xn) with complex coordinates,

which satisfy respectively equations (16) and (17), then for each bounded and closed set

Q of the n-dimensional space Cn there exists a constant ν > 0, such that the following

inequality holds:

ρ (Q ∩ G, Q ∩ G∆) ≤ ν∆

when ∆ → 0.
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СМУЩЕНИЯ В КАНОНИЧНИТЕ УРАВНЕНИЯ НА ПОВЪРХНИНИ

ОТ ВТОРА СТЕПЕН

Тодор Р. Гичев, Дора Т. Гичева

В работата се изучават смущенията в каноничните уравнения на n-мерните по-

върхнини от втора степен. Въвежда се разстояние от хаусдорфов тип между

частите от решенията на даденото и смутеното уравнение, които се намират

в ограничено и затворено множество. С помощта на въведеното разстояние се

оценява отклонението на множеството от реалните и комплексните решения на

смутеното уравнение от съответното множество на даденото уравнение. Разгле-

дани са всички възможни случаи на повърхнина от втора степен. Ако ∆ е горна

граница за абсолютната стойност на смущенията в уравненията, то са опреде-

лени два случая, в които смущенията в множеството от решенията се оценява

съответно с ∆ и
√

∆.
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