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SPACE
*

Dobrinka K. Gribacheva

Special compositions, generated by a net in a space with a symmetric linear connection
are considered in [6]. In [6] it is also introduced the prolonged covariant differentiation
of satellites of the metric tensor of a Weyl space. In this paper, special compositions
generated by a net in a 3-dimensional Weyl space are studied. Conformal geometry
of special compositions in a 3-dimensional Weyl space is considered. It is proven,
that an orthogonal Cartesian composition exists only in a 3-dimensional Riemannian
space, where the form of the curvature tensor is found.

1. Preliminaries. Let W3 (gij , ωk) be a 3-dimensional Weyl space with a metric
tensor gij and a complementary vector ωk. The coefficients of the Weyl connection ∇

are determined by the equation: Γk
ij =

{
k

ij

}
−

(
ωiδ

k
j + ωjδ

k
i − gijg

ksωs

)
, where

{
k

ij

}

are the Cristoffel symbols, determined by gij , det(gij) 6= 0. The following equations
are valid: ∇kgij = 2ωkgij , ∇kgij = −2ωkg

ij [9]. Following [7], the prolonged covariant

differentiation
◦

∇ of the satellite A with weight {p} in the Weyl space is defined by
◦

∇iA = ∇iA − pωiA.
Let (v

1

, v
2

, v
3

) be a net in W3, defined by the independent tangent vector fields v
k

i of the

curves of the net (k = 1, 2, 3). We determine the inverse covectors
k
vi of v

k

i (k = 1, 2, 3),

respectively, by the equations:

(1.1) v
i

k s
vk = δs

i ⇔ v
i

k i
vs = δk

s .

In the paper [7] there are found the derivative equations:

(1.2)
◦

∇iv
k

s =
m

Ti
k

vs

m
,

◦

∇i
k
vs = −

k

Ti
m

m
vs, k = 1, 2, 3.

Later we will consider a net (v
1

, v
2

, v
3

) ∈ W3, for which the independent tangent vector

fields v
k

i are normalized by the terms [9]:

(1.3) gijv
1

iv
1

j = gijv
2

iv
2

j = gijv
3

iv
3

j = 1, cos ω
sk

= gijv
s

iv
k

j ,

*2000 Mathematics Subject Classification: 53Bxx, 53B05.

132



where ω
sk

= ω
ks

are the angles defined by v
s

and v
k
, s, k = 1, 2, 3, s 6= k. In the paper [4] the

following relations are given:

(1.4) gikv
s

k = cos ω
s1

1

vi + cos ω
s2

2

vi + cos ω
s3

3

vi, s = 1, 2, 3.

The net (v
1

, v
2

, v
3

) ∈ W3, for which conditions (1.3) and (1.4) are valid, will be called

normalized . Let us remark that normalized nets (v
1

, v
2

, v
3

) ∈ V3 are studied in the paper

[1]. According to [4, Lemma 1.1] for the coefficients of equations (1.2) the following
equations are valid:

(1.5) cos ω
s1

1

Tk
s

+ cos ω
s2

2

Tk
s

+ cos ω
s3

3

Tk
s

= 0, cos ω
km

m

Ti
s

+ cos ω
sm

m

Ti
k

= ∂i cos ω
ks

, k, s = 1, 2, 3.

Let us take a given composition X2 × X1 in W3, where X2 (dimX2 = 2) and X1

(dimX1 = 1) are the fundamental manifolds of the composition. Then through each
point p ∈ W3 there exists exactly one position P (X2) and P (X1), from X2 and X1

respectively. Following [5], W3 is a space of composition W3(X2 × X1), provided there
exists a tensor field a

j
i of type (1, 1) for which are valid the following equations:

(1.6) a
j
ia

k
j = δk

i ,

and the condition for integration of the structure a
j
i . According to [5], the Nijenhuis

tensor Nk
ij for a

j
i .is annulled, i.e. Nk

ij = as
i∇sa

k
j − as

j∇sa
k
i − ak

s

(
∇ia

s
j −∇ja

s
i

)
= 0.

In [6] is defined the affinor ak
i of the composition in the Weyl space Wn. In W3 for

affinor ak
i , determined uniquely by the net (v

1

, v
2

, v
3

), are realized the following conditions:

(1.7) ak
i = v

1

k 1

vi + v
2

k 2

vi − v
3

k 3

vi = δk
i −

3

viv
3

k, as
kv

1

k = v
1

s, as
kv

2

k = v
2

s, as
kv

3

k = −v
3

s.

Let τ be a conformal transformation of Wn (gij , ωk) into Wn

(
gij , ωk

)
. Then following

[9], in the corresponding points of these spaces we have: gij = gij , ωi = ωi − pi, where
the covector pi is called the vector of the conformal transformation τ .

Let Γ
k

ij and Γk
ij be the coefficients of the Weyl connections of W 3 and W3, respectively.

Then we have [9]: Γ
k

ij = Γk
ij + δk

i pj + δk
j pi − gijg

ksps.

Let W3 and W 3 be conformally equivalent Weyl spaces. Then with respect of the
connection ∇ of W3 the derivative equations give the expression of (1.2), while with
respect of the connection ∇ of W 3 they have the following form:

(1.8)
◦

∇iv
k

s =
m

Pi
k

vs

m
,

◦

∇i
k
vs = −

k

Pi
m

m
vs, k = 1, 2, 3.

The relation between the coefficients in (1.2) and (1.8) in the case of conformal trans-
formation τ is found in [8], i.e.

(1.9)
l

Pk
s

=
l

Tk
s

+ pmv
s

m l
vk − p

l
vgkmv

s

m,

where p
l
v = gnkpn

l
vk, s = 1, 2, 3, l = 1, 2, 3.

The vector of the conformal transformation pk has the form:

(1.10) pj =
(
pmv

1

m
)

1

vj +
(
pmv

2

m
)

2

vj +
(
pmv

3

m
)

3

vj .

We can assert that when we have a conformal transformation τ of compositions X2×
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X1 ∈ W3 and X2 × X1 ∈ W 3, associated with the normalized net (v
1

, v
2

, v
3

), conditions

(1.5) are valid about
l

Tk
s

and their analogous equations about
l

Pk
s

.

2. Conformal transformation of a composition in W3. Following [10], the
composition X2 × X1 ∈ W3 is called geodesic-Chebyshevian, if the tangent section of
P (X2) and the tangent vector of the curve P (X1) can be translated parallelly in the
direction of every curve of P (X2).

The composition X2×X1 ∈ W3 is called Chebyshevian-geodesic, if the tangent section
of P (X2) is translated parallelly in the curve P (X1), and the tangent vector of P (X1)
is translated parallelly in the curve P (X1), i.e. the curve P (X1) is geodesic.

Definition 2.1. A composition X2 × X1 ∈ W3 is called conformally geodesic-Cheby-
shevian (respectively conformally Chebyshevian-geodesic) when it can be transformed into
a geodesic-Chebyshevian (respectively Chebyshevian-geodesic) composition X2×X1 ∈ W 3

by the transformation τ .

In [3, Theorem 1, Theorem 3, Theorem 4] are found geometrical characteristics and
conditions for geodesic-Chebyshevian and Chebyshevian-geodesic compositions, i.e.

1) If X2 × X1 ∈ W 3 is a geodesic-Chebyshevian composition, then according to [3,
Theorem 1], we obtain:

(2.1)
1

Pk
3

v
1

k =
1

Pk
3

v
2

k =
2

Pk
3

v
1

k =
2

Pk
3

v
2

k =
3

Pk
1

v
1

k =
3

Pk
1

v
2

k =
3

Pk
2

v
1

k =
3

Pk
2

v
2

k = 0.

2) If X2 × X1 ∈ W 3 is a Chebyshevian-geodesic composition, then according to [3,
Theorem 3, Theorem 4], we obtain:

(2.2)
1

Pk
3

v
3

k=
2

Pk
3

v
3

k=
3

Pk
1

v
3

k=
3

Pk
2

v
3

k=0,
2

Pk
1

v
3

k=
1

Pk
2

v
3

k=

(
s

Pk
s
−ωk

)
v
3

k=0, s=1, 2, 3.

Theorem 2.1. A composition X2 × X1 ∈ W3, determined by the normalized net
(v
1

, v
2

, v
3

), is a conformally geodesic-Chebyshevian if and only if the following conditions

are valid:

(2.3)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

Tk
3

v
2

k = cos ω
23

p
1

v,
2

Tk
3

v
1

k = cos ω
13

p
2

v,

3

Tk
1

v
1

k =
3

Tk
2

v
2

k = p
3

v,
3

Tk
3

v
1

k = cos ω
13

p
3

v,

3

Tk
3

v
2

k = cos ω
23

p
3

v,
1

Tk
3

v
1

k = cos ω
13

p
1

v − pmv
3

m,

2

Tk
3

v
2

k = cos ω
23

p
2

v − pmv
3

m,
3

Tk
1

v
2

k =
3

Tk
2

v
1

k = cos ω
12

p
3

v.

The vector pk of the conformal transformation τ satisfies the following condition:

(2.4)
2pmv

1

m = p
1

v + cos ω
12

p
2

v +
3

Tk
3

v
1

k, pmv
2

m = cos ω
12

p
1

v + p
2

v +
3

Tk
3

v
2

k,

pmv
3

m = −

(
3

Tk
1

v
1

k +
1

Tk
3

v
1

k +
2

Tk
3

v
2

k

)
.

Proof. Let X2 × X1 ∈ W3 be a conformally geodesic-Chebyshevian composition.
Then for X2 × X1 ∈ W 3 equations (2.1) are valid. After contracting equation (1.9) to
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the vectors v
1

k and v
2

k, and having in mind (1.5) and (2.1), we obtain (2.3).

Conversely, if equations (2.3) are valid, then from (1.9) it follows (2.1). In order to
determine the vector of the conformal transformation pk from (1.10), we use the functions

p
1

v, p
2

v and p
3

v from (2.3). Equations (2.4) are obtained through a suitable transformation
of (2.3). �

Analogously, using (1.5), (1.9) and (2.2), it follows that:

Theorem 2.2A composition X2 × X1 ∈ W3, determined by the normalized net
(v
1

, v
2

, v
3

), is conformally Chebyshevian-geodesic if and only if the following conditions are

valid:

(2.5)

∣∣∣∣∣∣∣∣∣∣∣

1

Tk
3

v
3

k = p
1

v,
2

Tk
3

v
3

k = p
2

v,
1

Tk
1

v
3

k = cos ω
13

p
1

v,
2

Tk
2

v
3

k = cos ω
23

p
2

v,

pmv
1

m =

(
cos ω

13

ωk +
3

Tk
3

−
3

Tk
1

)
v
3

k, pmv
2

m =

(
cos ω

23

ωk +
3

Tk
3

−
3

Tk
2

)
v
3

k,

pmv
3

m = ωkv
3

k = p
3

v −
3

Tk
3

v
3

k,
2

Tk
1

v
3

k = cos ω
13

p
2

v,
1

Tk
2

v
3

k = cos ω
23

p
1

v.

The vector pk of the conformal transformation τ has the form (1.10), where the coeffi-
cients pmv

s

m, s = 1, 2, 3, are defined in (2.5).

3. Orthogonal compositions in W3.

Definition 3.1 [11]. A composition X2 × X1 ∈ W3 is orthogonal, when the vectors
v
1

k, v
3

k and v
2

k, v
3

k are orthogonal, i.e.

(3.1) gijv
1

iv
3

j = gijv
2

iv
3

j = 0 ⇐⇒ cos ω
13

= cos ω
23

= 0.

In the paper [11] it is introduced a tensor of type (0, 2):

(3.2) aij = ak
i gkj .

which is called the tensor on the composition in Wn. It is proved, that a composition
in Wn is orthogonal if and only if aij = aji. In this case, the tensor aij is called
associated with the metric tensor gij . From (3.2) it follows, that aij is nondegenerate,
i.e. det (aij) 6= 0.

Let the composition X2 × X1 ∈ W3, determined by the normalized net (v
1

, v
2

, v
3

) be

orthogonal. Using (1.6), (3.2) and aij = aji, for the metric tensor gij we have the form:

(3.3) as
ia

k
j gsk = gij .

According to [5], the condition (3.3) for the metric tensor means, that we can con-
sider W3 as a Riemannian space with the structure of an almost product a

j
i about the

connection ∇̃, determined by gij . Having in mind (1.1), (1.3), (1.7), (3.1), (3.2) and (3.3)
we get:

Lemma 3.1. The Weyl space W3 is a space of orthogonal composition X2 × X1,
determined by the normalized net (v

1

, v
2

, v
3

) if and only if the metric tensor gij and the

tensor aij associated with it, have the form:

(3.4) gij =
1

vi
1

vj +
2

vi
2

vj +
3

vi
3

vj + cos ω
12

(
1

vi
2

vj +
2

vi
1

vj

)
, aij = gij − 2

3

vi
3

vj .
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Taking into account (1.3), (3.1), (3.3) and (3.4), the tensor gij in W3 determines a
positive definite metric (Riemannian), and the tensor aij – an associated metric, which
is indefinite with signature (2, 1).

Theorem 3.1. Let the conformally geodesic-Chebyshevian composition X2×X1 ∈ W3

be orthogonal. Then the following relations are valid:

(3.5)
3

Tk
3

= 0,
1

Tk
3

v
2

k =
2

Tk
3

v
1

k = 0,
3

Tk
1

v
1

k =
3

Tk
2

v
2

k = pmv
3

m .

The metric tensor on W3 has the form (3.4).

Proof. The equations (3.5) follow from (3.1), (3.4) and Theorem 2.1. �

Having in mind Theorem 2.2, (3.1) and (3.4), we get the following:

Theorem 3.2. Let the conformally Chebyshevian-geodesic composition X2×X1 ∈ W3

be orthogonal. Then the following conditions are valid:

(3.6)
3

Tk
3

= 0,
1

Tk
1

v
3

k =
1

Tk
2

v
3

k =
2

Tk
2

v
3

k =
2

Tk
1

v
3

k = 0.

The metric tensor of W3 has the form (3.4), and the vector of the conformal transforma-
tion τ has the form:

(3.7) pk = −
3

Ts
1

v
3

s1

vk −
3

Ts
2

v
3

s2

vk + ωsv
3

s3

vk.

Let the composition X2 × X1 ∈ W3 be orthogonal and Cartesian. Then, according
to [2], for the affinor as

k with respect to the Weyl connection ∇, we have: ∇ja
s
k = 0.

According to [9], the integrability condition for the last equation has the form:

(3.8) R l
ijk.a

s
l = R s

ijl. al
k.

where R s
ijk is the curvature tensor for connection ∇. In [2, Theorem 5] it is proven, that

the curvature tensor of an arbitrary Weyl space W3 has the following form:

(3.9) R s
ijk. =

1

3

{
(gjkSim − gikSjm) gms + Sjkδs

i − Sikδs
j + (Sji − Sij) δs

k

}
,

where Sjk = 2Rjk + Rkj − 3R
4

gjk, Rjk is the Ricci tensor, and R = gjkRjk - the scalar
curvature. Using (1.1) and (1.7), we can prove that the equation (3.8) is equivalent to:

(3.10) R l
ijk.

3

vlv
3

s = R s
ijl. v

3

l3vk.

Substituting (3.9) in (3.10) and using a series of transformations, in view of (1.7), (3.3)
and (3.4), we obtain:

Skj = Sjk =
3R

4

(
gjk − 2

3

vj
3

vk

)
=

3R

4
ajk, Rjk =

R

2

(
gjk −

3

vj
3

vk

)
=

R

4
(gjk + ajk) .

According to (3.9) and the last equation, because of the symmetry of Ricci tensor, it
follows that:

Theorem 3.3. Every W3, containing an orthogonal Cartesian composition X2 ×X1,
is a Riemannian space V3. The curvature tensor of V3 of type (0, 4) has the form:

Rijkl =
1

3

(
gjkgil − gikgjl −

3

vj
3

vkgil +
3

vi
3

vkgjl −
3

vi
3

vlgjk +
3

vj
3

vlgik

)
,

where Rijkl = glsR
s

ijk. is determined by the Riemannian connection ∇̃ with components
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the Cristoffel symbols
{

k

ij

}
.

Using (1.3), we immediately obtain the following:

Corollary 3.1. Let V3 be a Riemannian space, containing the orthogonal Cartesian
composition X2 × X1. Then, for the Ricci curvatures in the direction of the net vectors
(v
1

, v
2

, v
3

), the following equalities hold:

Rjkv
1

jv
1

k = Rjkv
2

jv
2

k =
R

2
, Rjkv

3

jv
3

k = 0.
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КОНФОРМНА ТРАНСФОРМАЦИЯ НА СПЕЦИАЛНИ
КОМПОЗИЦИИ В ТРИМЕРНО ВАЙЛОВО ПРОСТРАНСТВО

Добринка К. Грибачева

Специални композиции, породени от мрежа в пространство със симетрична ли-
нейна свързаност са изучавани в [6]. В [6] е въведено продължено ковариантно
диференциране на сателитите на метричния тензор във Вайлово пространство.
В тази статия изучаваме специални композиции, породени от мрежа в тримерно
Вайлово пространство. Разгледана е конформна геометрия на специални компо-
зиции в тримерно Вайлово пространство. Доказано е, че ортогонално декартова
композиция съществува само в тримерно Риманово пространство, където е на-
мерен вида на тензора на кривина.

138


