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It is a classical result from dimension theory that each n-dimensional compact space
contains an n-dimensional Cantor manifold. An important example, after Urysohn,
is a minimal compact subset containing an essential n-system. In this note it is shown
that each PL pseudomanifold with boundary is minimal (in the sense of Zorn) with
respect to some essential system whose frame coincides with its boundary.

Introduction. The attempts to generalize the concept of n−dimensionl surface
led to the appearance of Cantor manifolds. Cantor manifold (n−dimensional Cantor
manifold; Cantor n−manifold or just C-manifolds) is, by definition, every n−dimensional
compact topological space X , such that for every representation of X as a sum of two
proper closed subsets X1 and X2 the relation dim(X1 ∩ X2) ≥ n − 1 holds.

Urysohn [1] has proved that:
(I) every n-dimensional topological manifold (i.e. locally homeomorphic to Rn) is a

Cantor n-manifold;
(II) every absolute boundary (common boundary of several domains in Rn+1) is a

Cantor n-manifold and
(III) every n−dimensional compact Hausdorff space X contains a Cantor n-manifold

Y ⊂ X .
Clearly, the Cantor maniflods are intuitively close to the n−dimensional surfaces.

Note, however, that in the same time the class of Cantor manifolds contains spaces whose
structure is far from the notion of the classical topological manifolds. For example, there
exists a Cantor n−manifold X and a point x0 ∈ X which cuts X [2].

That was probably one of the reasons to continue the efforts to define a class of spaces
with the propertiess (I) – (III) and which are connected in a stronglier way than Cantor
manifolds. Such classes were constructed consecutively by S. Mazurkiewich (the class
M) [3], P. Alexandroff (the class A) [2], N. Hadjiivanov (the class H) [4]. Thus we have
ordered by inclusion (c.f. [3]) classes of manifolds A ⊂ M ⊂ H ⊂ C [3].

As a matter of fact, we should note, that the same space Y (property (III) of Urysohn)
appears as a Cantor n−manifold in all mentioned sences. Namely, it turns out the space
Y to be a Cantor n-manifold, an n−dimensional manifold in the sence of Alexandroff
(so-called (V n)-continuum), etc.

This observation suggests an idea to define a strongest n−dimensional manifold as a
membrane which is spanned on some n−frame (see definitions below). Then the following
question arises: do the properties (I) and (II) hold true for membranes?
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This note contains an occasional answer to the first question for pseudomanifolds.
More precisely, in this note, we shall prove that each connected (triangulated) manifold
with boundary is a membrane, i.e. it carries a minimal essential system. Moreover, this
is true for a class of polyhedra, which is slightly more general than manifolds, namely –
strongly connected pseudomanifolds with boundary. We prove that any such polyhedron
is a membrane. Let us note that the class of pseudomanifolds includes for example
all cones over manifolds with boundary, which are far from being manifolds themselves.
Furthermore, if we perform an appropriate factorization in the boundary, the factor space
turns out to be a membrane as well. This includes a vast class of spaces, not necessarily
manifolds.

This topic has originated from the classical example of a membrane, namely the
n-dimensional cube. Alexandroff’s Theorem (c.f. [5]) states that the existence of an
essential system of range n in X yields dimX ≥ n. Then by Zorn’s Lemma, one finds in
X a minimal essential system of range n.

Definitions and statement of results. The system S = {F±i}, i = 1, . . . , n of n
pairs of closed subsets in X is called essential system, if F+i ∩ F−i = ∅ and each system
of partitions {Ci} between F+i and F−i has a nonempty intersection: ∩Ci 6= ∅. Further,
we refer to the set F = ∪(F−i ∪ F+i) as the frame of the system {F±i}.

A key concept in this paper is the notion for n-membrane. The space X is said to be
an n-membrane, if there is an essential system S in X , which is minimal in the following
sense: if Y is a proper closed subset of X , then the system SY = {Y ∩ F±i} is no more
essential in Y .

A polyhedron P is called n-pseudomanifold, if it is a finite union of n-simplexes and
each (n − 1)-simplex is adjacent either to two, or to one n-simplexes. The boundary ∂P
is defined as the union of all (n− 1)-simplexes, which are adjacent to one n-simplexs. A
pseudomanifold is strongly connected, if its (n − 2)-dimensional skeleton is not dividing
P .

Theorem 1. Let P be a strongly connected n-pseudomanifold with nonempty boundary

∂P . Then P is an n-membrane.

Corollary 1. Each connected triangulated n-manifold with nonempty boundary is an

n-membrane.

Proof of the results.

Proof (of Theorem 1) We have to show that the space P carries a minimal essential
system. Let D ⊂ ∂P be some (n − 1)-dimensional topological disk.

Further, we let In to be the n-cube In, where I is the interwal [−1, 1]. Let also
In−1

±i
, i = 1, . . . , n, where I±i = {x| xi = ±1} be the system of all (n − 1)-dimensional

faces of the n-cube In. According to [6], the system {(In
−1, I

n
+1} is essential. Note

that the set ∂In \ In−1

+1 = In−1 is homeomorphic to D. Let ϕ : ∂In \ In−1

+1 → D be a
homeomorphism. Then we define the system F±i, i = 1, . . . , n in P as follows:

F±i = ϕ(In−1

±i
) for all indexes different from + 1 and F+1 = ∂P \ D.

Next we are going to prove that this is a minimal essential system in P . We start by
proving that F±i is an essential system.

Suppose the contrary. Then in P there exists a system of partitions Ci between F+i

and F−i with an empty intersection: ∩Ci = ∅. Clearly (since P is a normal space) one
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can find a system of open sets Ui ⊃ Ci with empty intersection: ∩Ui = ∅. Moreover, we
may suppose that for every k Uk ∩ (F−k ∪ F+k) = ∅.

Let P \ Ui = A+i ∪ A−i, where A±i are closed sets such that A+i ∩ A−i = ∅ and
for the interior Â±i of the set A±i we have Â±i ⊃ F±i. Clearly, ∪A±i = P . Let us
note, that P is metrizable. We shall suppose below, that ̺ is some compatible metric
in P . Keeping in mind that the sets A±i are compact and A−i ∩ A+i = ∅, we see, that
ε = mini{̺(A−i, A+i)} > 0

Next, let us take a sufficiently small triangulation τ of ∂In \ In−1

+1 . Then ϕ(τ) is a
triangulation of D. One can extend ϕ(τ) to some small triangulation λ of P . We require
that for the diameter diam(σ) of every simplex σ of λ the inequality diam(σ) < ε holds.
Hence no simplex of λ intersects the sets A+i and A−i simultaneously.

After that, let M be the vertex set of In. The points of N = ϕ(M) will be called
”base vertices” of the triangulation λ. Clearly, N ⊂ D. Now we shall define n + 1 closed
sets as follows:

Φi = A+i, i = 1, . . . , n and Φn+1 = ∪n

i=1A−i.

Clearly, {Φi} is a covering of P . Now we define a ”colouring” of the vertices of the
triangulation λ with n + 1 ”colours” setting:

ν(a) = min{k|a ∈ Φk}.

It is easy to see that this colouring has the following property: if a is a vertex of λ
belonging to the face F±i, then there is a base vertex b of F±i, such that ν(a) = ν(b).
Moreover, this colouring induces a standard ”canonical” colouring of the base vertices
which may be described as follows. To do this we shall ”colour” first the vertices of the
n-cube with n + 1 colours. Let s = (k1, . . . , kn) be a vertex of In, where ki = 0, 1. Then
we set

ν(s) = max{i| k1 = · · · = ki = 1, ki+1 = 0} + 1.

Clearly, ν(s) takes n + 1 values: 1, . . . , n + 1. Then obviously for a base vertex ϕ(s)
of λ we have ν(ϕ(s)) = ν(s). We shall refer to this special colouring of the base vertices
as ”canonical colouring”.

Now, to obtain the desired contradiction, it suffices to show that there is a full-coloured
simplex of λ, i.e. a simplex, whose vertices are coloured with different ”colours”. This
may be done by the argument of Sperner’s Lemma. In fact we shall prove that the number
of full-coloured simplexes is odd by induction on n. Let us note that the colouring of
the base vertices of the face F−1 is canonical as well, with colours 2, . . . , n + 1 and each
vertex in F−1 is coloured with one of these colours. So, let us suppose that the number
of full-coloured (n− 1)-simplexes in F−1 is odd. For any n-simplex σ let k(σ) denote the
number of its (n − 1)-faces full-coloured with the colours 1, . . . , n. Consider the number
S =

∑
k(σ), where the sum runs over the n-simplexes of the triangulation. It is easy

to see that S is congruent modulo 2 with the number of full-coloured n-simplexes. On
the other hand, each interior full-coloured (n− 1)-simplex is counted in S exactly twice,
though each boundary full-coloured (n−1)-simplex is counted in S once. So, the number
S is congruent modulo 2 with the number of all full-coloured (n − 1)-simplexes in F−1.
But the last number is odd by the induction hypothesis, therefore S is odd as well. So,
we proved that there is a full-coloured simplex of λ and now the particular colouring
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yields that two different vertices of this simplex belong to opposite sets A+i and A−i,
which is a contradiction. Therefore the system F±i is essential in P .

Now we shall prove the minimality of the system F±i. Let P ′ be a proper closed
subset of P . Then P \ P ′ contains an open n-ball U lying in P \ ∂P . Clearly, we may
assume the disk D to be situated in some coordinate chart W of P . Then one finds a
closed (n− 1)-disk C lying in W and such that C ∩ ∂P is a partition in ∂P between F+1

and F−1. But, clearly, C may be moved by means of an isotopy so that its final position
intersects U . Hence, we may suppose that C intersects U . This means that C′ = C ∩P ′

is a proper subset of C. Then, since the system F±i ∩ C, i = 2, . . . , n is a minimal
essential system in C, there exist in C′ partitions Zi, i = 2, . . . , n between F+i ∩C and
F−i ∩ C with an empty intersection: ∩Zi = ∅. Now, one extends Zi to partitions Li in
P ′ between F+i ∩ P ′ and F−i ∩ P ′ (c.f. [1]). Therefore the sets

C′ = C ∩ P ′, Li ∩ P ′, i = 2, . . . , n

are partitions in P ′ between F±i ∩ P ′ with empty intersection. The theorem is proved.

Now we shall extend the class of membranes, performing some factorization in the
boundary of P .

We shall consider factorizations in the boundary ∂P of the following type: Let ≈ be
a closed equivalence relation such that:

i) The equivalence class of each point x ∈ P \ ∂P is the point x itself.

ii) There is an (n − 1)-dimensional disk D ⊂ ∂P such that the class of each point
x ∈ D is the point x itself.

iii) The image of ∂P \ D under the equivalence relation has an empty interior in the
factor space P/ ≈.

Theorem 2. Let P be a strongly connected n-pseudomanifold with a nonempty bound-

ary ∂P and ≈ be an equivalence relation of the above type. Then the factor space

K = P/ ≈ is an n-membrane.

The proof will be omitted, as it is essentially the same as the proof of the previous
theorem.

So, under the above considerations, the boundary of a pseudomanifold P is a frame
of an essential system S, and P is a membrane of S. This observation suggests us to try
to define a bundary of a polyhedron as a frame of an essential system.

As an argument in this direction, let us consider the following example:

Example 1. Consider the right circular cone surface Q with a height 1 and an unit

circle S1 as a base:

Q = {(x, y, z)|x2 + y2 = (1 − z)2; 0 ≤ z ≤ 1}

and let L be the generator wich connects the points V (0, 0, 1) and X(0, 0, 1). Then,

consider the map j : L → S1, defined by

j(t, 0, 1 − t) = (cos 2πt, sin 2π(1 − t), 0).

Next we let K = Q/j be the factorspace, obtained by the factorization p ≈ q if and
only if j(p) = q and x ≈ x otherwise. Usually K is known as the so-called “the hat of
the jester”.

It is easy to see that K is an AR (Absolute Retract) space, which is homeomorphic
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to a two-dimensional polyhedron. In the same time K has not a boundary in the sence
of any homology theory.

To end this paper, let us note that following the abowe considerations, it is easy to
verify that K is a membrane with j(S1) as a frame. Clearly, one may construct similar
high-dimensional examples.
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ЕВКЛИДОВИ МЕМБРАНИ

Атанас Л. Хамамджиев, Симеон Т. Стефанов, Владимир Т. Тодоров

Класически резултат в теорията на размерностите е, че всеки n-мерен компакт
съдържа канторово n-многообразие. Пример за такова от времето на Урисон на-
сам представлява минимален подкомпакт, който съдържа съществена n-система.
В тази бележка показваме, че всяко по части линейно псевдомноггобразие с гра-
ница е минимален (в смисъл на Цорн) компакт относно някоя съществена систе-
ма, чиято рамка съвпада с границата му.
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