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The paper develops a strategic model of trade between two regions in which, depend-
ing on the relation among output, financial resources and transportation costs, the
adjustment of prices towards an equilibrium is studied. We derive conditions on the
relations among output and financial resources which produce different types of Nash
equilibria, as well as the price paths obtained in the process of converging toward an
equilibrium.

1. Introduction. The present work develops a model of trade between two regions
in which, depending on the relation among output, financial resources and transportation
costs, the adjustment of prices towards an equilibrium is studied. We assume that local
producers can change prices to balance supply and demand. More specifically, whenever
there are unsold quantities left, the price is decreased proportionally and when there
are local financial resources unspent, the price is increased proportionally. On the other
hand, representative consumers in the two regions seek to maximize their per-period
utility in a strategic situation arising from the need to compete for scarce resources.

Under the above setup we derive conditions on the relations among quantities pro-
duced and financial resources which produce different types of Nash equilibria, as well as
the price paths obtained in the process of converging toward an equilibrium. In certain
cases the laws governing price dynamics in discrete time lead to a zero price in one of
the regions, which can be interpreted as a breakdown of economic activity in the region.

2. Basic setup and notation. We consider the consumption decisions of two
economic agents occupying distinct spatial locations, called region I and I, respectively.
The consumer in region I (or, shortly, consumer I) exogenously receives money income
Y1 > 0 in each period. Similarly, the consumer in region I (consumer II) receives
money income Y5 > 0. For each period t, in region ¢ a fixed quantity ¢; > 0 of a certain
good is supplied at a price p; . The consumers place orders for the desired quantities in
each region, observing their budget constraints and incurring symmetric transportation
costs p > 0 per unit of shipment from the “foreign” region. Each consumer attempts to
maximize their total consumption for the current period. Consumers can be considered
myopic in that they do not optimize their consumption over a specified time horizon but
their decisions are confined only to the current period.
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In cases when total orders for the respective region exceed the quantity available, the
following distribution rule is applied: first, the order of the local consumer is executed to
the extent possible and then the remaining quantity, if any, is allocated to the consumer
from the other region. It is clear then that the choice of orders to be placed has a strategic
element to it, since the actual quantity received by the consumer depends on the choices
made by the counterpart in the other region. The agents are assumed to have complete
knowledge of all the relevant aspects of the situation under discussion.

More formally, for each period ¢t we model the above situation as a static noncooper-
ative game of complete information. Denote by a and 3 the orders placed by consumer
I in region I and II, respectively. In an analogous manner, vy and § stand for the orders
of consumer I7 in regions I and I, all orders obviously being nonnegative quantities. In
period t consumer I’s strategy space S; is determined by the budget constraint and the
nonnegativity restrictions on the orders: S1 = {ap1s + B(p2s +p) <Y1, «, 8> 0}
Consumer I1I’s strategy space in period ¢ is So = {v(p1+ + p) + 0p2s < Y2, 7, § > 0}.
Below we adopt the shorthand p’l,t = pi1 + p and p’Q,t = pa, + p. We also omit the
subscript ¢ whenever it is evident from the context or irrelevant.

The payoff function for consumer [ is given by

(1) Pi(a, B, v, 6) = min(a, ¢1) + min(8, g2 — min(d, ¢2))
and that for consumer 77 by
(2) Py(a, B, 7, §) = min(y, ¢ —min(a, ¢1)) + min(9, ga).

Any unspent fraction of the current-period income is assumed to perish and conse-
quently the accumulation of stocks of savings is not allowed in the model. At the end
of each period, prices are adjusted downwards if the quantity available in the respective
region has not been entirely consumed. By the same token, a price is adjusted upwards
if a part of the orders placed in the region has not been satisfied. In particular, prices

evolve according to the equation
cons

qi — q; Dit — Pit+1 ~ons
(3) ) 7 _ 7, 7,t+ or pi,tJrIQi _ pi’tq;ons
qi Dit
in the former case and follow
@ Y[ — pirq; _ Pit+1 — Pig

Pitqi Pit
in the latter case. Here ¢f°"® denotes the total amount consumed in region ¢ and Y;"**
stands for the part of the region i’s income left unspent. As usual, we consider prices in
equilibrium if the price changes in equations (3) and (4) are zero.

For the above model we are interested in two main questions. First, it would be desir-
able to establish the existence of an equilibrium for the one-period game and specify it in
closed form. Second, one would like to be able to trace out the price dynamics entailed by
a sequence of one-period games for a given set of initial conditions p1g, P20, q1, g2, Y1, Y2
and p, and characterize their properties.

3. Existence and form of equilibrium. In this section we study the existence
and properties of the most popular equilibrium concept — that of Nash equilibrium —
for the model specified above, fixing the time period ¢. Our basic tool for establishing
existence is a theorem [1, p. 72] asserting that at least one Nash equilibrium exists for a
game of complete information for which (a) the strategy spaces of all players are compact
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and convex subsets of R™; (b) all payoff functions are defined, continuous and bounded
over the strategy space of the game and (c) any payoff function is quasiconcave in the
player’s own feasible strategies for a fixed strategy profile of the opponents.

Properties (a) and (b) are immediately verified for our model. To establish property
(c) note that the payoff function for each consumer is separable in the consumer’s orders
and each component of the sum in the payoff is a concave function in the respective order.
These observations entail the concavity and hence the quasiconcavity of the payoffs.

Since all the hypotheses of the existence theorem are satisfied for our model, it has
at least one Nash equilibrium. We proceed to compute the equilibrium profiles for all
possible configurations of Y1, Y2, ¢1, g2, p1, p2 and p. To this end, we derive the best-
reply correspondences (see [1, pp. 69-75] for a definition and discussion) for the two
consumers, which is straightforward and therefore only the end-results are presented.
Table 1 presents the best-reply correspondence for consumer I and Table 2 shows the
best-reply correspondence for consumer II. We note in advance that in the course of the
price adjustment process one of the prices can become zero, in which case the best reply
correspondences take a slightly different form but the same principles apply.

Y Y
A}/:Pi11>q1 - Biﬁﬁ‘h
I.gz2—-46<0 Chﬁaﬁﬁyoﬁﬁﬁ—lpgla a=L =0
Y3 -—p3(az—9) Y1 -—p3(az—9) Y
A1:0<an < t 312 Az : . 312 Syq,1<13_11 Y
(1):a=q1,5=% (1:ia=1+5=0
Y Y1 —ph (a2 —95) Y1 —ph(a2—95) Y1—p58
H'q?“se(o’p—i) <otz | (g e D ca<q, | (2):a= 220
_ Yi-pra _Yi-pia ph (a2 —3)
©-8<f< oy p=- 0<B< 20—
Y1 —ph(a2—9) Y1 —ph(a2—9)
(3):0{=%7 3):a= 1220279 3)12 ,
B=qg2—9 B=q2—9
Dia=a, g=-p0 (Dia=3t =0
L gz -6 > 72 @:0<a<q, g="Ype @:0<a<
2 2
@) :a=0, =1} p=ope
P2 Py

B):a=0, =211
Py

Shorthand notation used: (1) for p1 < pj, (2) for p1 = p5 and (3) for p1 > p}

Table 1. Best-reply correspondence for consumer I.

With the aid of the best-reply correspondences we can compute the Nash equilibria
for the game as solutions to a system of simultaneous equations. However, uniqueness
is not guaranteed in this model and we therefore have to resort to additional rules for
equilibrium selection in order to choose a single equilibrium. To this end we define the
following supplementary selection rules (SR), which we deem logical from a practical
viewpoint:

SR1 For a set of Nash equilibria yielding the same utility we select the one minimizing
the expenditures made.

SR2 If more than one Nash equilibrium with the same utility can be obtained with the
same (minimal) expenditure, then we select the one in which consumers receive
the maximum amount possible in their own region in preference over the “foreign”
consumer.
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SR3 In the degenerate case when a price is equal to zero, we assume that the actual
amount bought is equal to the quantity available in the respective region.

A: 32 >aq B: 32 <a
Lai-a<0 0<y< B2t gy <5< Y y=0,6=32
Yo —p), — Yo—p —
A;1:0<qz2< 2 p;;ql ) Ay =2 P11)(2q1 ) SQ2<:—§
Yo — Y-
M7= "PE s=q |Mi1=0=2
II-ql—ae(O,:—f) ql—aévéyz;—’{z” (2):’/2;—’{2‘12§7§q1—a7 2):0<v<q1—q,
Yo—plv _ Yo-piv _ Yo-piy
q2 <6< == == 6= 2
B iv=q —a, B :iv=q —«
5= Yo —piv 5= Yo—piv
P2 P2
o Y
D)y =222, 6= ()i =0 6=12
_ Yo . Ya—poas Yy _ Yo—piy . Yo
IIT. q1 aszl (2) p’l S’ngllv 0= i) (2)'0§7S/p/17
Y- Yo —
(3):7:i,5:0 6:72;)21)1"Y
Y
(3):7=ﬁ76=0

Shorthand notation used: (1) for pj > p2, (2) for pj = p2 and (3) for p} < p2
Table 2. Best-reply correspondence for consumer 7.

4. Price dynamics. In order to see how prices evolve towards an equilibrium we
represent graphically the set of financial resources (Y1, Y2) and partition the quadrant in
an appropriate manner according to the type of Nash equilibrium obtained from Tables
1 and 2. A typical partition is presented in Figure 1.
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Fig. 1. Income space partition generated by the Nash equilibria for a fixed parameter set.

The lines Y; = p;q; divide the quadrant into four zones, denoted by roman numerals
in the figure. For simplicity we posit p1q1 > p2qe for the initial setup, the other case
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being fully symmetric. The restrictions coming from the columns of Tables and define
the following lines:

b prgp = Y1+ (p1/p))Ye,
Uy : paga = (p2/P5)Y1 + Vs
l3: piqy = Y1 — ph(q2 — Ya/p2) and

ly: page =Ya —pi(q1 — Yi/p1).
It is obvious that ¢; and ¢4 are parallel, as are {5 and ¢3. The segment of ¢4 crossing
into zone IV does not affect the subsequent calculations, therefore we divide zone IV into
two sub-zones (IV-1 and IV-2) determined by ¢3. Similarly, for zone II the corresponding
segment of the line /3 is irrelevant for the analysis and the zone is divided into three sub-
zones determined by the segments of lines /1 and ¢4 passing through it. The partitioning
of zone I is based on the same principle.

The approach we adopt in the calculations is as follows. For each of the sub-zones
we obtain the form of the Nash equilibrium, using Tables 1 and 2, solving the system
and applying the supplementary rules, if necessary. We then use the outcome to check
whether there are unutilized quantities or incomes, implying that a price adjustment
is needed. If no adjustment is necessary, we conclude that prices are in equilibrium
and stop, otherwise we change the prices according to either (3) or (4) and repeat the
procedure. It is important to note that a pair (Y7,Y3) is fixed from the start and in the
course of the iterations it can fall into a different zone only because price changes shift
the lines in the income space. In other words, the partition changes from one iteration
to the next and thus different sub-zones may cover the fixed point (Y7, Y2).

The typical results we obtain are illustrated below for three of the zones. For ex-
ample, in zone III the Nash equilibrium is of the form (g1,0,0,¢2). If it turns out that
Y; = piqi, © = 1,2, this means that both the quantities and the financial resources have
been depleted and the point A is an equilibrium. If Y; > p;q; for some i = 1,2, then (4)
gives p; ++1 = Y;/q; and we arrive at the new point A, where no further corrections are
needed.

For sub-zone II-3 we obtain the Nash equilibrium (Y1/p1,0,¢1 — Y1/p1,¢2). Thus
q1, Y1 and ¢o are used up and therefore p; is left unchanged. Here Y5 > pogo and
Y7 = Yo — pi(qn — Y1/p1) > poge. If YJ® = pago the price ps is also left unchanged
and points on the corresponding segment of ¢4 are equilibria. If Y5“° > pago the price po
increases to Y3¢°/ga and we end up on the new ¢4 segment, reaching an equilibrium.

Turning to sub-zone II-2; we first look at the case where pj > ps. In this case the
Nash equilibrium is (Y1 /p1, 0, (Ya —p2g—2)/p}, q2). If p} < p2, the Nash equilibrium is of
the form (Y1/p1,0,q1 —Y1/p1, (Yo —p) (g1 —Y1/p1))/p2). For the latter case and assuming
g5°™ > 0, we have p; unchanged and py decreasing to (Y2 — p}(q1 — Y1/p1))/q2, which
means that the system jumps to the new ¢4 line. If ¢5°"° = 0, p2 decreases to zero and the
degenerate case obtains. Here the Nash equilibrium is (Y7 /p1, 0, Y2/p},0). When p| > pa,
po is left unchanged while p; decreases. In this case, if Y3 = page the equilibrium will
take the form (Y7 /p1,0,0, ¢2) and after one correction of p; we get to the new point A. If
Y2 > pago, it turns out that the new ¢4 line rotates to a position above the point (Y7, Y3),
i.e. gets steeper. Then if p] = py, we adjust to p| < p2, which was described above. If

P} > pa, the point (Y7,Y5) is above the line £ : y + (p1/p})z = (p2 — p)q1 + (p1/P))P2q2-
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Thus the points in II-2 above ¢; and below ? after the adjustment in p; will be in the
case P ;1 < P2,¢+1 (provided they remain in II-2 at all), and after pg ;11 is adjusted an
equilibrium will be reached. It can also be shown that (Y7, Y2) can fall below the new /4
line (i.e. fall into sub-zone II-1) under certain conditions. Finally, for (Y7, Y2) between
¢ and ¢4, there will be an infinite price convergence process under which the line £, will
rotate to a limit line containing the point (Y7, Ya).
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JANMHAMUWKA HA HEHUTE B MOJIEJI HA CTPATETTYECKO
B3AVMMOAENCTBUE ME2K/TY /IBA PETTIOHA

ﬁop;;an B. ﬁopﬂaHOB, Crosin B. CrosinoB, Anapeit An Bacuien

Crarusita pe3paboTBa CTPATErMYECKU MOJEJ Ha ThbPrOBUSTA MEXK/y JIBA DErHOHA, B
KOUTO B 3aBHCUMOCT OT OTHOIIEHHETO MEXK/Iy IIPOU3BOJCTBO, TPAHCIIOPTHU PA3X0IA U
dbuHAHCOBI pecypCH ce U3CJIe/IBa IPOIEChT Ha N3MEHEHNE Ha, [IEHUTE IIPHA CXOAUMOCTTA
UM KbM paBHOBecre. VI3BereHU ca yCJIOBUSA 33 BPB3KUTE MEXKIY ITPOU3BOACTBOTO U
GbUHAHCOBUTE PECypCH, IPU KOWTO C€ MOJIyYaBaT PA3JIMYHU BUJIOBE PABHOBECHS IIO
Ham. Cbimo Taka ca n3BeJleHHM TPAGKTOPHUHUTE 3a I[EHHUTE, IOJYyYEeHM B IIPOIEca Ha
JOCTUTAHE HA paBHOBECHE.
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