MATEMATUKA И MATEMATUYECKO ОБРАЗОВАНИЕ, 2004 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2004

Proceedings of the Thirty Third Spring Conference of the Union of Bulgarian Mathematicians Borovets, April 1–4, 2004

CLIQUES WITH MAXIMAL DEGREE IN GRAPHS*

N. Khadzhiivanov

The class of the p-ordered graphs is introduced (cf. Definition). It is proved that in any p-ordered graph there exists a p-clique such that the arithmetic mean of its vertex degrees is at least equal to the arithmetic mean of all vertex degrees in the graph.

Let G be a graph, $d\left(v\right)$ – the degree of the vertex v in G. Given the vertex set M, we denote $d\left(\mathbf{M}\right) = \frac{1}{|M|} \sum_{v \in M} d(v)$ and call it the degree of M.

In [2] we proved the following

Theorem 1. Let G be a nonregular graph and V be the set of all vertices of G. If the natural number p satisfies the inequality p < |V|, then there exists a p-vertex subset M of V with d(M) > d(V).

For $p \geq 3$ it is impossible to strenghten this proposition by the additional statement that M is a clique (i.e. any two vertices are adjacent). R. Faudree proved in [1] that if G is a graph with n vertices and at least $\frac{p-1}{2p}n^2$ edges, then there exists a p-clique K such that $d(K) \geq d(V)$. In this article, we determine another condition that is sufficient for the existence of a p-clique K with $d(K) \geq d(V)$.

Definition. We call p-degree of a vertex v and denote it by $d_p(v)$ the number of all p-cliques containing v. The graph G is said to be p-ordered, if it contains a p-clique and the inequality

$$(d(u) - d(v))(d_p(u) - d_p(v)) \ge 0$$

holds for each pair of vertices u, v.

Every graph is 2-ordered. Any regular or any p-regular graph is p-ordered. It is not difficult to prove that any complete s-partite graph is p-ordered for all p.

When G is a p-ordered graph that is neither regular nor p-regular, Theorem 1 may be precised as:

Theorem 2. Let G with a vertex set V be p-ordered graph that is neither regular nor p-regular. Then the inequality d(K) > d(V) holds for some p-clique K.

Theorem 2 may be completed in the following way:

^{*2000} Mathematics Subject Classification: Primary 05C35. Key words: vertex set degree, p-ordered graph.

Theorem 3. Let G be a p-ordered graph and V be its vertex set. Then the inequality $d(K) \ge d(V)$ holds for some p-clique K.

Proof of Theorems 2 and 3. Let G be a graph. We denote by $C_p(G)$ the set of all p-cliques in G. In our proof we use the equality

(1)
$$\sum_{v \in V} d_p(v) = p|C_p(G)|$$

This is true, since each p-clique K in G contributes 1 only to those terms d(v), for which $v \in K$, i.e. p times.

We need also the equality

(2)
$$\sum_{K \in C_p(G)} d(K) = \frac{1}{p} \sum_{v \in V} d(v) . d_p(v).$$

It holds as in the lefthand sum each degree d(v) occurs as many times, as is the number of the p-cliques that contain v, i.e. $d_p(v)$ times.

Let us recall the famous inequality of P. Tchebishev (see [3], p. 43):

If the real numbers $x_1, \ldots, x_n, y_1, \ldots, y_n$ satysfy the inequalities

(3)
$$(x_i - x_j)(y_i - y_j) \ge 0, \quad i, j \in \{1, 2, \dots, n\},$$

then

(4)
$$\frac{x_1 + \dots + x_n}{n} \cdot \frac{y_1 + \dots + y_n}{n} \ge \frac{x_1 y_1 + \dots + x_n y_n}{n}.$$

Furthermore, the equality in (4) holds if and only if $x_1 = \cdots = x_n$ or $y_1 = \cdots = y_n$.

Assume now that G is a p-ordered graph with vertex set $V = \{v_1, \ldots, v_n\}$. Let $x_i = d(v_i), y_i = d_p(v_i)$. Then the inequalities (3) hold and, therefore, according to (4), we obtain

(5)
$$\sum_{i=1}^{n} d(v_i) \cdot \sum_{i=1}^{n} d_p(v_i) \le n \sum_{i=1}^{n} d(v_i) d_p(v_i).$$

Then (see (1), (2) and (5))

(6)
$$d(V) \le \frac{\sum\limits_{K \in C_p(G)} d(K)}{|C_p(G)|}.$$

The equality holds only when G is regular or p-regular.

With the aid of (6) it is easy to finish the proof.

REFERENCES

- [1] R. J. FAUDREE. Complete Subgraphs with Large Degree Sums. *Journal of Graph Theory*, **16**, No 4 (1992), 327—334.
- [2] Н. Г. ХАДЖИИВАНОВ. Степени в графи. Математика плюс, 12, бр. 1 (2004).
- [3] Г. Харди, Д. Литтльвуд, Г. Полиа. Неравенства. И. Л., Москва, 1948.

Faculty of Mathematics and Informatics "St. Kl. Ohridski University" of Sofia 5, James Bourchier Blvd. 1164 Sofia, Bulgaria

e-mail: hadzhiivanov@hotmail.com

КЛИКИ С МАКСИМАЛНА СТЕПЕН В ГРАФИ

Николай Г. Хаджииванов

Нека G е граф и V е множеството от върховете му. За произволно множество M от върхове на графа под $cmenen\ na\ M$ (означение d(M)) разбираме средното аритметично на степените на върховете на M.

В произволен нерегулярен n-върхов граф при p < n съществува p-върхово подмножество M на V, за което d(M) > d(V) (Теорема 1). Но при $p \geq 3$ не е сигурно, че може да се намери p-клика M, която удовлетворява това неравенство. Това обаче може да се направи за един клас графи. Под p-степен на върха v (означение $d_p(v)$) разбираме броя на p-кликите на графа, които съдържат v. Наричаме p-нареден граф този, който съдържа поне една p-клика и неравенството $(d(u)-d(v)).(d_p(u)-d_p(v))\geq 0$ е в сила за всяка двойка върхове u,v. В произволен p-нареден граф може да се намери p-клика M, за която $d(M)\geq d(V)$. (Теорема 3). При това неравенството е дори строго, ако графът не е нито регулярен, нито p-регулярен (Теорема 2).