MATEMATUKA И MATEMATUYECKO ОБРАЗОВАНИЕ, 2004 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2004

Proceedings of the Thirty Third Spring Conference of the Union of Bulgarian Mathematicians Borovets, April 1–4, 2004

ON THE NUMBER OF DISCRETE FUNCTIONS WITH A GIVEN C-SPECTRUM OR WITH A GIVEN SPECTRUM*

Dimiter S. Kovachev

In this paper, results of [5] are generalized. Let M be the set of variables of a discrete function. Range or the spectrum of M with respect to the function is continuation of the research connected with the essential set of variables for the function (see [1] and [4]) and can be used as a measure of essentiality.

1. Introduction. Let K, K_1 , K_2 , ..., K_n be finite, non-empty sets, and $K = \{0, 1, ..., k-1\}$, $|K| = k \ge 2$, $K_i = \{0, 1, ..., k_i-1\}$, $|K_i| = k_i \ge 1$, i = 1, 2, ..., n, where the cardinality of the set K is denoted by |K|.

Let us set $X = K_1 \times K_2 \times \cdots \times K_n = \{(c_1, c_2, \dots, c_n) | c_i \in K_i, i = 1, \dots, n\}$ and let F_n^k be the set of all functions of n variables defined in the set X and having values in the set K.

In the special case $K_1 = K_2 = \cdots = K_n = K = \{0, 1, \dots, k-1\}$, we obtain the set of all functions of the k-valued logic, which is denoted by P_n^k .

Definition 1.1 [1] The number of all different values of the function f is called the range of f.

We will denote the **range** of the function f by $\mathbf{Rng}(f)$ and by X_f we will denote the set of variables of the function $f(x_1, x_2, \dots, x_n)$, i.e. $X_f = \{x_1, x_2, \dots, x_n\}$.

We will denote [1] by λ the number of all possible sets of constants for the variables of the functions of F_n^k , where

$$\lambda = |X| = k_1 k_2 \dots k_n,$$

and by λ_M the number of all possible sets of constants for the variables of the set $M = \{x_{j_1}, x_{j_2}, \dots, x_{j_m}\}, M \subseteq X_f$, where

$$\lambda_M = k_{j_1} k_{j_2} \dots k_{j_m}.$$

Definition 1.2 [3] The function h is called a subfunction of the function f with respect to R, $R \subseteq X_f$, if h is obtained from f by substitution of the variables of the set R with constants, and this is denoted by $h \stackrel{R}{\longrightarrow} f$.

Let $M, M \subseteq X_f$, be a set of variables of the function $f \in F_n^k$ and G be the set of all subfunctions of f with respect to $X_f \setminus M$, i.e. $G = G(M, f) = \{g : g \xrightarrow{X_f \setminus M} f\}$.

^{*2000} Mathematics Subject Classification: 03B50, 04A20, 05A05, 05A10, 05A18 Key words: Discrete functions, range of a function, subfunction, spectrum, C-spectrum.

Definition 1.3 [1] If $g \in G$, then the **range** of the subfunction g is called **range** of the set M for the function f with respect to g.

By $\mathbf{Rng}(M, f; g)$ we denote the \mathbf{range} of the set M for f with respect to g, and

$$\mathbf{Rng}(M, f; g) = \mathbf{Rng}(g)$$

Definition 1.4[1] The set $Spr(M, f) = \bigcup_{g \in G} Rng(M, f; g) = \bigcup_{g \in G} Rng(g)$ is called **spectrum** of the set M for the function f.

Definition 1.5 [1] The number max Spr(M, f) is called the range of M for the function f.

The range of M for the function f will be denoted by $\mathbf{Rng}(M, f)$, and

$$\boldsymbol{Rng}(M,f) = \max \boldsymbol{Spr}\left(M,f\right) = \max \left(\bigcup_{g \in G} \boldsymbol{Rng}(M,f;g) \right) = \max \left(\bigcup_{g \in G} \boldsymbol{Rng}(g) \right)$$

Definition 1.6 [5] The set $\{1^{p_1}, 2^{p_2}, \dots, k^{p_k}\}$ is called **C-spectrum** of M for f, where $p_t, p_t \geq 0, t = 1, \dots, k$, is the number of the different sets of values for the variables of the set $X_f \setminus M$, by which from f we obtain subfunctions with a range equal to t, and

$$p_1 + p_2 + \dots + p_k = \frac{\lambda}{\lambda_M}$$
 for $f \in F_n^k$, and $p_1 + p_2 + \dots + p_k = k^{n-|M|}$ for $f \in P_n^k$.

The C-spectrum of M for f is denoted by C-Spr(M, f), where $\textbf{C-Spr}(M, f) = \{1^{p1}, \dots, k^{pk}\}.$

2. Results. If M is a non-empty set of variables of a function of F_n^k and $M = \{x_{j1}, x_{j2}, \dots, x_{jm}\}$, then let $X_M = K_{j1} \times K_{j2} \times \dots \times K_{jm}$ and $F_M^k = \{h : X_M \to K\}$ be the set of all functions of the variables of the set M defined in the set X_M and having values in the set K.

For $\lambda_M \geq q$ and $q \in \{1, 2, ..., k\}$, let us denote [2] by $\mu_M^k(q)$ the number of functions of F_M^k with a range equal to q, where for $\mu_M^k(q)$ we have

(3)
$$\mu_{M}^{k}(q) = C_{k}^{q} \cdot \sum_{\substack{r_{1}+r_{2}+\dots+r_{q}=\lambda_{M}\\r_{i}\geq 1,\ i=1,2,\dots,q}} \frac{\lambda_{M}!}{r_{1}!r_{2}!\dots r_{q}!} = C_{k}^{q} \cdot \sum_{j=1}^{q} (-1)^{q-j} C_{q}^{j} j^{\lambda_{M}}.$$

Theorem 2.1. If $\emptyset \neq M = \{x_{j_1}, x_{j_2}, \dots, x_{j_m}\}$, $M \subset X_f$, then the number of functions $f \in F_n^k$ for which $\textbf{C-Spr}(M, f) = \{1^{p_1}, 2^{p_2}, \dots, k^{p_k}\}$ is equal to

$$\frac{(\lambda/\lambda_M)!}{p_1!p_2!\dots p_k!}\alpha_1^{p_1}\cdot\alpha_2^{p_2}\dots\alpha_k^{p_k}, \text{ where } \alpha_t=\mu_M^k(t),\ t=1,\dots,k.$$

Proof. Let $M = \{x_{j_1}, x_{j_2}, ..., x_{j_m}\}$ and that $X_f \setminus M = \{x_{j_{m+1}}, ..., x_{j_n}\}$.

Let us denote the number of the different sets of constants for the variables of $X_f \setminus M$ by s. Under the terms of formula (2) we have

$$\lambda_{X_f \setminus M} = s = k_{j_{m+1}} \cdot k_{j_{m+2}} \dots k_{j_n} = (k_1 k_2 \dots k_n) / (k_{j_1} k_{j_2} \dots k_{j_m}) = \lambda / \lambda_M.$$
 154

Let all possible sets of constants for the variables of $X_f \setminus M$ be $(c_{m+1}^i, \ldots, c_n^i)$, i = $1, 2, \ldots, s$. If the function f is from the ones we look for and

(4)
$$g_i = f(x_{j_{m+1}} = c_{m+1}^i, \dots, x_{j_n} = c_n^i), \quad i = 1, 2, \dots, s,$$

then it is obvious that

$$g_i \stackrel{X_f \setminus M}{\longrightarrow} f, \ g_i \in G \ \text{and} \ g_i \in F_n^k, \ i = 1, 2, \dots, s.$$

In Table 2.1 the function f is presented in tabular form, in accordance with the equations (4). From Table 2.1 we can see that the function f consists of s parts, and the parts are the subfunctions g_i , i = 1, 2, ..., s.

The function f depends on the subfunctions g_i , i = 1, 2, ..., s, and on the place they take.

Let us associate the number $t, t = 1, \dots, k$, to the sets of constants for the variables of $X_f \setminus M$, to which subfunctions with a range equal to t correspond.

From C- $Spr(M, f) = \{1^{p_1}, 2^{p_2}, \dots, k^{p_k}\}$ it follows that we have $p_t, t = 1, \dots, k$, sets of constants for the variables of $X_f \setminus M$, to which we have associated the number t (or we have an s-dimensional vector, in which the number t occurs p_t times, $t = 1, \dots, k$).

The number of the different mappings, in which we associate the number t to p_t , $t=1,\ldots,k$, sets of constants for the variables of $X_f\backslash M$ is equal to

$$\frac{(p_1 + p_2 + \dots + p_k)!}{p_1! p_2! \dots p_k!} = \frac{(\lambda/\lambda_M)!}{p_1! p_2! \dots p_k!}$$

Since we associate to every number t subfunction of F_M^k with a range equal to t, which we can choose among $\alpha_t = \mu_M^k(t)$ such subfunctions (under the terms of (3)), $t=1,\ldots,k,$ and having in mind that a subfunction with a range equal to t must be associated to p_t sets of constants for the variables of $X_f \setminus M$, then finally for the number of the functions $f \in F_n^k$, for which \mathbf{C} - $\mathbf{Spr}(M, f) = \{1^{p_1}, 2^{p_2}, \dots, k^{p_k}\}$, we get

(5)
$$\frac{(\lambda/\lambda_M)!}{p_1!p_2!\dots p_k!}\alpha_1^{p_1}\cdot\alpha_2^{p_2}\dots\alpha_k^{p_k},$$

where $\alpha_t = \mu_M^k(t)$, $t = 1, \dots, k$ and $p_1 + p_2 + \dots + p_k = \lambda/\lambda_M$. If $p_i = 0$, $i \in \{1, 2, \dots, k\}$ then $(p_i)! = 1$, $\alpha_i^{p_i} = \alpha_i^0 = 1$ and it follows that the result from formula (5) does not depend on p_i .

Corollary 2.1. If $\emptyset \neq M = \{x_{j_1}, x_{j_2}, \dots, x_{j_m}\}, M \subset X_f, \text{ then the number of functions } f \in F_n^k, \text{ for which } \textbf{C-Spr}(M, f) = \{q_1^{v_1}, q_2^{v_2}, \dots, q_s^{v_s}\}, v_i > 0, q_i \leq k, i = 1, 2, \dots, s,$

$$\frac{(\lambda/\lambda_M)!}{v_1!v_2!\cdots v_s!} \cdot \rho_1^{v_1} \cdot \rho_2^{v_2} \cdots \rho_s^{v_s}, \quad where \quad \rho_t = \mu_M^k(q_t), \quad t = 1, 2, \dots, s \quad and \quad \sum_{i=1}^s v_i = \lambda/\lambda_M.$$

For the functions of P_n^k the numbers λ_M and $\mu_M^k(q)$ do not depend on the variables in the set M, but they depend on the cardinality of the set M only.

If |M| = m for the functions of P_n^k we have:

$$\lambda_m = \lambda_M = \lambda_{|M|} = k^m, \quad \lambda = k^n, \quad \lambda/\lambda_M = k^{n-|M|} = k^{n-m}$$
 and

$$\mu_m^k(q) = \mu_M^k(q) = C_k^q \cdot \sum_{\substack{r_1 + r_2 + \dots + r_q = k^m \\ r_i > 1, \ i = 1, 2, \dots, q}} \frac{k^m!}{r_1! r_2! \dots r_q!} = C_k^q \cdot \sum_{j=1}^q (-1)^{q-j} C_q^j j^{k^m}.$$

					.	
x_{j_1}	x_{j_2}	 x_{j_m}	$x_{j_{m+1}}$	 x_{j_n}	$f(x_{j_1}, x_{j_2}, \dots, x_{j_m}, x_{j_{m+1}}, \dots, x_{j_n})$	g_i
0	0	 0	c_{m+1}^1	 c_n^1	$f(0,0,\ldots,0,c_{m+1}^1,\ldots,c_n^1)=g_1(0,0,\ldots,0)$	
0	0	 1	c_{m+1}^1	 c_n^1	$f(0,0,\ldots,1,c_{m+1}^1,\ldots,c_n^1)=g_1(0,0,\ldots,1)$	
	• • •	 • • •		 		g_1
$k_{j_1} - 1$	$k_{j_2} - 1$	 $k_{j_m}-1$	c_{m+1}^1	 c_n^1	$f(k_{j_1}-1, k_{j_2}-1, \dots, k_{j_m}-1, c_{m+1}^1, \dots, c_n^1) = g_1(k_{j_1}-1, k_{j_2}-1, \dots, k_{j_m}-1)$	
0	0	 0	c_{m+1}^2	 c_n^2	$f(0,0,\ldots,0,c_{m+1}^2,\ldots,c_n^2)=g_2(0,0,\ldots,0)$	
0	0	 1	c_{m+1}^2	 c_n^2	$f(0,0,\ldots,1,c_{m+1}^2,\ldots,c_n^2)=g_2(0,0,\ldots,1)$	
		 • • •		 		g_2
$k_{j_1} - 1$	$k_{j_2} - 1$	 $k_{jm}-1$	c_{m+1}^2	 c_n^2	$f(k_{j_1}-1, k_{j_2}-1, \dots, k_{j_m}-1, c_{m+1}^2, \dots, c_n^2) = g_2(k_{j_1}-1, k_{j_2}-1, \dots, k_{j_m}-1)$	
		 • • •		 		
0	0	 0	c_{m+1}^s	 c_n^s	$f(0,0,\ldots,0,c_{m+1}^s,\ldots,c_n^s)=g_s(0,0,\ldots,0)$	
0	0	 1	c_{m+1}^s	 c_n^s	$f(0,0,\ldots,1,c_{m+1}^s,\ldots,c_n^s)=g_s(0,0,\ldots,1)$	
		 • • •		 		g_s
$k_{j_1}-1$	$k_{j_2} - 1$	 $k_{j_m}-1$	c_{m+1}^s	 c_n^s	$f(k_{j_1}-1, k_{j_2}-1, \dots, k_{j_m}-1, c_{m+1}^s, \dots, c_n^s) = g_s(k_{j_1}-1, k_{j_2}-1, \dots, k_{j_m}-1)$	

Table 2.1

Corollary 2.2. If $\emptyset \neq M \subset X_f$, |M| = m, then the number of functions $f \in P_n^k$, for which C- $Spr(M, f) = \{q_1^{v_1}, q_2^{v_2}, \dots, q_s^{v_s}\}$, $v_i > 0$, $q_i \in \{1, \dots, k\}$, $i = 1, 2, \dots, s$ is equal to

$$\frac{k^{n-m}!}{v_1!v_2!\dots v_s!}.\rho_1^{v_1}\cdot\rho_2^{v_2}\dots\rho_s^{v_s},$$

where $\rho_t = \mu_m^k(q_t)$, t = 1, 2, ..., s and $\sum_{i=1}^{s} v_i = k^{n-m}$.

Theorem 2.2. If $\emptyset \neq M = \{x_{j_1}, x_{j_2}, \dots, x_{j_m}\}$, $M \subseteq X_f$, then the number of functions $f \in F_n^k$, for which $Spr(M, f) = \{q_1, q_2, \dots, q_s\}$, $s \leq k$, $q_i \leq k$, $i = 1, 2, \dots, s$ is equal to

$$\sum_{\substack{r_1+r_2+\dots+r_s=\lambda/\lambda_M\\r_i\geq 1,\ i=1,2,\dots,s\\r_i\geq 1,\ i=1,2,\dots,s}} \frac{(\lambda/\lambda_M)!}{r_1!r_2!\dots r_s!} \cdot \rho_1^{r_1} \cdot \rho_2^{r_2}\dots \rho_s^{r_s}, \quad where \quad \rho_I=\mu_M^k(q_i), \quad i=1,2,\dots,s.$$

Proof. Let us denote by r_i the number of the sets of constants for the variables of $X_f \setminus M$, by which from f we obtain subfunctions with a range equal to q_i , i = 1, 2, ..., s. In this case for the set M and the function f we have

$$C$$
- $Spr(M, f) = \{q_1^{r_1}, q_2^{r_2}, \dots, q_s^{r_s}\}.$

Taking into consideration that every function f, for which

 $C-Spr(M, f) = \{q_1^{r_1}, q_2^{r_2}, \dots, q_s^{r_s}\}, \text{ where } r_1 + r_2 + \dots + r_s = \lambda/\lambda_M, r_i \geq 1, i = 1, 2, \dots, s, \text{ has } Spr(M, f) = \{q_1, q_2, \dots, q_s\}, \text{ and applying Theorem 2.1, we get the proof of the theorem.}$

Corollary 2.3. [5] If $\emptyset \neq M \subseteq X_f$, |M| = m, then the number of functions $f \in P_n^k$, for which $Spr(M, f) = \{q_1, q_2, \dots, q_s\}$, $q_i \leq k$, $i = 1, 2, \dots, s$, $s \leq k$, is equal to

$$\sum_{\substack{v_1+v_2+\cdots+v_s=k^{n-m}\\v_i\geq 1,\ i=1,2,\ldots,s}} \frac{k^{n-m}!}{v_1!v_2!\ldots v_s!} \rho_1^{v_1} \rho_2^{v_2}\ldots \rho_s^{v_s},$$

where

$$\rho_t = \mu_m^k(q_t), \quad t = 1, 2, \dots, s \quad and \quad \sum_{i=1}^s v_i = k^{n-m}.$$

The proof of Theorem 2.1 can be used for the "construction", i.e. the tabular presentation of functions with a given *C-spectrum*.

REFERENCES

- [1] D. St. Kovachev. On the Number of Discrete Functions with a Given Range, *General Algebra and Applications*, Proceedings of the "59th Workshop on General Algebra", Potsdam (2000), edited by K. Denecke and H.-J. Vogel, 125–134.
- [2] V. N. Sachkov. Introduction into Combinatorial Methods of Discrete Mathematics, Moscow, Nauka Publishing House, 1982 (in Russian).
- [3] K. N. CHIMEV. Discrete Functions and Subfunctions, Blagoevgrad, 1991 (in Bulgarian).
- [4] K. N. Chimev. Functions and Graphs, Blagoevgrad, 1983 (in Bulgarian).
- [5] D. St. Kovachev. On The Number of Some k-Valued Functions, Proc. 2nd Congress of Math. and Inf. in Macedonia, Skopie, (2003), 83–88.

Dimiter S. Kovachev Neofit Rilski South-West University 2700 Blagoevgrad, Bulgaria e-mail: dkovach@aix.swu.bg

ВЪРХУ БРОЯ НА ДИСКРЕТНИ ФУНКЦИИ С ДАДЕН C-СПЕКТЪР ИЛИ С ДАДЕН СПЕКТЪР

Димитър С. Ковачев

В настоящата статия се обобщават резултати от [5]. Нека M е множество от променливи на дискретна функция. Рангът или спектърът на M относно функцията, освен че са продължение на изследванията свързани със съществено множество от променливи на функция (виж [1] и [4]), могат да се използват и като мярка за същественост.