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Let [n, k, d]q codes be linear codes of length n, dimension k and minimum Hamming
distance d over GF (q). In this paper, six new linear codes over GF (7) are constructed.
The parameters of these codes are: [35, 7, 23]7, [27, 9, 14]7, [33, 10, 17]7, [50, 10, 30]7,
[36, 12, 18]7, [39, 13, 19]7. The obtained results improve the corresponding known
lower bounds on the minimum distance in Brouwer’s table [1].

Introduction. Let GF (q) denote the Galois field of q elements, and let V (n, q) de-
note the vector space of all ordered n-tuples over GF (q). The number of nonzero positions
in a vector x ∈ V (n, q) is called the Hamming weight wt(x) of x. The Hamming distance
d(x,y) between two vectors x,y ∈ V (n, q) is defined by d(x,y) = wt(x − y). A linear
code C of length n and dimension k over GF (q) is a k-dimensional subspace of V (n, q).
The minimum distance of a linear code C is d(C) = min {d(x,y)|x,y ∈ C,x 6= y}. Such
a code is called [n, k, d]q code if its minimum Hamming distance is d. For a linear code,
the minimum distance is equal to the smallest of the weights of the nonzero codewords.

A k × n matrix G having as rows the vectors of a basis of a linear code C is called a
generator matrix for C.

Given an [n, k, d]q code C, we denote by Ai the number of codewords of weight i in C.
The ordered (n + 1)-tuple of integers {Ai}

n
i=0 is called the weight distribution or weight

enumerator of C.
Well known fact in coding theory is that if there is likelihood of transmitting each

vector of C over a q-ary symmetric channel, the code C can correct up to ⌊(d − 1)/2⌋
errors, where ⌊x⌋ denotes the greatest integer ≤ x. Hence in order to obtain a q-ary
linear code which is capable of correcting most errors for given values of n, k, and q, it
is sufficient to obtain an [n, k, d]q code C with maximum minimum distance d among all
such codes or for given values of k, d, and q, to obtain an [n, k, d]q code C whose length
n is a smallest one. So a central problem in coding theory is that of optimizing one of
the parameters n, k and d for given values of the other two and q-fixed.

Two versions are:

Problem 1. Find dq(n, k), the largest value of d for which there exists an [n, k, d]q
code.

Problem 2. Find nq(k, d), the smallest value of n for which there exists an [n, k, d]q
code.
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A code which achieves one of these two values is called optimal.
For the case of linear codes over GF (7), Problem 2 has been solved for k ≤ 3 [7].

Fifty eight new linear codes over GF (7) are constructed and a table of d7(n, k), k ≤ 7,
n ≤ 100, is presented in [2]. Thirty three linear codes over GF (7) are constructed in
[8]. New linear codes (n ≤ 50) over GF (7) are constructed in [4,12]. All these and other
results are included in the Brouwer’s table over GF (7).

Our aim in this paper is to improve some lower bounds in the Brouwer’s table. Using a
nonexhaustive combinatorial computers search we constructed six new quasi-cyclic (QC)
codes, by method similar to that in [2,3,11].

Quasi-Cyclic Codes. Let n = pm, where p, m are positive integers. Let
(c1, c2, . . . , cn) ∈ C and

µp : C → V (n, q)

µp ((c1, c2, . . . , cn)) = (cn−(p−1), cn−(p−2), . . . , cn−1, cn, c1, c2, . . . , cn−p).

Definition 1. A linear code C is called p-quasi-cyclic (p-QC or QC) if and only if C
is invariant under µp, i.e. µp(C) = C.

A matrix B of the form

(1) B =













b0 b1 b2 · · · bm−2 bm−1

bm−1 b0 b1 · · · bm−3 bm−2

bm−2 bm−1 b0 · · · bm−4 bm−3
...

...
...

...
...

b1 b2 b3 · · · bm−1 b0













,

is called a circulant matrix. With a suitable permutation of coordinates [15] a class of
QC codes can be constructed from m×m circulant matrices. In this case, the generator
matrix G can be represented as

(2) G = [B1, B2, ... , Bp] ,

where Bi is a circulant matrix.
The algebra of m × m circulant matrices over GF (q) is isomorphic to the algebra

of polynomials in the ring GF (q)[x]/(xm − 1) if B is mapped onto the polynomial b(x)
= b0 + b1x + b2x

2 + · · · + bm−1x
m−1 formed from the entries in the first row of B. The

bi(x) associated with a QC code are called the defining polynomials [6].
If the defining polynomials bi(x) contain a common factor which is also a factor of

xm − 1, then the QC code is called degenerate [6]. The dimension k of the QC code is
equal to the degree of h(x), where [13]

(3) h(x) =
xm − 1

gcd (xm − 1, b0(x), b1(x), · · · , bp−1(x))
.

If the polynomial h(x) has degree m, the dimension of the code is m, and (2) is a generator
matrix. If deg(h(x)) = k < m, a generator matrix for the code can be constructed by
deleting m − k rows of (2).

Quasi-cyclic codes form an important class of linear codes. Some of the reasons for
the investigation of these codes are:

• QC codes meet a modified version of Gilbert-Varshamov bound [8]; some of the
best quadratic residue codes and Pless symmetry codes are QC codes [10];

• a large number of optimal and record breaking codes are QC codes [1];
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• there is a link between QC codes and convolutional codes [14,5].

The new codes. Now, we present the new codes. The parameters of these codes
are given in Table I. The minimum distances dbr [1] of the previously best known codes
are given for comparison. The defining polynomials are separated by comma.

Table I: The new linear codes over GF(7).

N: code d dbr

1 [35,7] 23 22
2 [27,9] 14 13
3 [33,10] 17 16
4 [50,10] 30 29
5 [36,12] 18 17
6 [39,13] 19 18

Theorem 1. There exist QC codes with parameters:

[35, 7, 23]7, [27, 9, 14]7, [33, 10, 17]7, [50, 10, 30]7, [36, 12, 18]7, [39, 13, 19]7.

Proof. The coefficients of the defining polynomials and the weight distributions of
the new codes are as follows:
1. A [35, 7, 23]7 code:

1245635, 0125114, 0122512, 0111324, 0014262;
0123222624415825116762627510274968628906422912747030160440311501503211096433632523421882353486

2. A [27, 9, 14]7 code:

000112123, 001113413, 000000001;
0114810155778162305817883981828567219836784201995786213985920

22652266023850915824851475625613234826282187827630600

3. A [33, 10, 17]7 code:

00011111414, 00111111125, 00012162144;
0117594184422191907420741842128822222927894232663166246676296

251443472826266780582741332566285326464029550766703044159610

3125525434329598710331750980

4. A [50, 10, 30]7 code:

0011132425, 0001112541, 0001125313, 0010215314, 0000000001;
01301410317200322250033747003421990035615072361525710373419880

3870927503913042800402161839641315627004240569780434527708044432636004534566192

4622552590471154604048431577049105510050126078

5. A [36, 12, 18]7 code:

000113335163, 001152463501, 000000000001;
011845721927504201425602163938422261846023950983224309748502589053128

262263488122750311041628970257402291604459016302248472244312609968392322447012214331779605424

34942239520353229984803653844990

6. A [39, 13, 19]7 code:

0011112564164, 0011111203502, 0000000000001;

01194446202667621151476227064462332078282412657528254563538226147615780

2742645938428109607058629249600741030499043758231869321232032130377938343316599153090

34175716826743515061843056361004114311237488511238838154286519439237224214
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ШЕСТ НОВИ КВАЗИ-ЦИКЛИЧНИ ЛИНЕЙНИ КОДА НАД GF(7)

Елена Методиева

Нека [n, k, d]q-код е линеен код с дължина n, размерност k и минимално Хемин-
гово разстояние d над GF (q). В тази статия са конструирани шест нови линей-
ни кода със следните параметри: [35, 7, 23]7, [27, 9, 14]7, [33, 10, 17]7, [50, 10, 30]7,
[36, 12, 18]7, [39, 13, 19]7. Получените резултати подобряват съответните познати
до момента долни граници за минималните разстояния в таблиците на Брауер [1].

161


