MATEMATИKA И MATEMATИЧЕСКО ОБРАЗОВАНИЕ, 2004 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2004 Proceedings of the Thirty Third Spring Conference of the Union of Bulgarian Mathematicians Borovets, April 1–4, 2004

SOME SUBMANIFOLDS OF CODIMENSION TWO OF ALMOST COMPLEX MANIFOLDS WITH B-METRIC

Galia V. Nakova

Submanifolds of codimension two of almost complex manifolds with B-metric in the case when the normal section is totally real are considered. These submanifolds are not holomorphic. An almost complex structure and B-metric on the submanifolds are defined. A class of some submanifolds of a Kaehler manifold with B-metric is found.

1. Introduction. Let (M, J, g) be a 2n-dimensional almost complex manifold with B-metric, i.e. J is the almost complex structure and g is the metric on M such that:

$$J^{2}X = -X; \quad g(JX, JY) = -g(X, Y).$$

for all vector fields X, Y on M. The associated with g metric \tilde{g} on the manifold is given by $\tilde{g}(X,Y) = g(JX,Y)$. Both metrics g and \tilde{g} are indefinite of signature (n,n).

Let ∇ be the Levi-Civita connection of the metric g. The tensor field F of type (0,3) on M is defined by $F(X,Y,Z) = g((\nabla_X J)Y,Z)$. This tensor has the following symmetries:

$$F(X,Y,Z) = F(X,Z,Y); \quad F(X,Y,Z) = F(X,JY,JZ).$$

The Lie form θ associated with the tensor F is defined by $\theta(x) = -\frac{1}{n}g^{ij}F(e_i, e_j, Jx)$, where $x \in T_pM$, $\{e_i\}(i = 1, 2, ..., 2n)$ is an arbitrary basis of T_pM and (g^{ij}) is the inverse matrix of (g_{ij}) .

A classification of the almost complex manifolds with B-metric with respect to the tensor F is given in [2]. The class of the Kaehler manifolds with B-metric is defined by the condition F(X, Y, Z) = 0.

Let R be the curvature tensor field of type (1,3) of the Levi-Civita connection ∇ of g

$$R(X, Y, Z) = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X, Y]} Z.$$

The corresponding to R tensor field of type (0,4) is given by

$$R(X, Y, Z, W) = g(R(X, Y, Z), W)$$

Let α be a 2-dimensional section in T_pM . A classification of the sections in T_pM is given in [1]. Let us recall: a section α is said to be nondegenerate, weakly isotropic or strongly isotropic if the rank of the restriction of the metric g (\tilde{g}) on α is 2, 1, or 0 respectively. A section α is said to be holomorphic if $J\alpha = \alpha$ and totally real – if $J\alpha \perp \alpha$. A section α is of pure or hybrid type if the restriction of g (\tilde{g}) on α has a signature (2,0), (0,2) or (1,1) respectively.

162

2. Submanifolds of codimension 2 of an almost complex manifold with Bmetric. Let (\overline{M}, J, g) be an almost complex manifold with B-metric and let M be a submanifold of \overline{M} . By T_pM and $(T_pM)^{\perp}$ are denoted the tangent space and the normal space of M at $p \in M$ respectively. Also, by TM and $(TM)^{\perp}$ are denoted the tangent bundle and the normal bundle of M, respectively. In [3] definitions for holomorphic, totally real and **CR** submanifold of a Hermitian manifold are given. Similar definitions we apply to submanifolds of an almost complex manifold with B-metric:

- If $J(T_pM) \subset T_pM$ for each $p \in M$, then M is called a holomorphic (or invariant) submanifold of \overline{M} ;
- If $J(T_pM) \subset (T_pM)^{\perp}$ for each $p \in M$, then M is called a totally real (or antiinvariant) submanifold of \overline{M} ;
- A submanifold M of \overline{M} is called a **CR** submanifold of \overline{M} if there exists a differentiable distribution $D: p \to D_p$ on M satisfying the two conditions:
 - (i) D is invariant, that is, $JD_p = D_p$ for each $p \in M$;

(ii) the complementary orthogonal distribution $D^{\perp}: p \to D_p^{\perp} \subset T_p M$ of D is anti-invariant, that is, $JD_p^{\perp} \subset (T_p M)^{\perp}$ for each $p \in M$.

In [4] holomorphic submanifolds of almost complex manifolds with B-metric are studied. In this section we consider submanifolds of codimension 2 of a Kaehler manifold with B-metric when the normal section $\alpha = (T_p M)^{\perp}$ is totally real, i.e. $J\alpha \subset T_p M$.

Let (\overline{M}, J, g) be a (2n + 2)-dimensional almost complex manifold with B-metric gand let M be a submanifold of codimension 2 of \overline{M} . Let $\alpha = \{N_1, N_2\}$ be a normal section defined globally over the submanifold M such that:

(2.1)
$$-g(N_1, N_1) = g(N_2, N_2) = 1, \quad g(N_1, N_2) = 0.$$

We consider the following decomposition for $JN_1, JN_2, JX (X \in TM)$ with respect to $\{N_1, N_2\}$ and TM:

$$(2.2) JN_1 = \xi_1.$$

$$(2.3) JN_2 = \xi_2.$$

(2.4)
$$JX = \varphi X + \eta^1(X)N_1 + \eta^2(X)N_2 \quad X \in TM,$$

where φ denotes a tensor field of type (1, 1) on M; $\xi_1, \xi_2 \in TM$ and η^1, η^2 are 1-forms on M. We denote the restriction of g on M by the same letter. Taking into account (2.1), (2.2) and (2.3) we have that the normal section $\alpha = \{N_1, N_2\}$ is a nondegenerate totally real section of hybrid type. These sections exist by dim $\overline{M} \geq 4$ [1]. From (2.1), (2.2) and (2.3) we obtain

(2.5)
$$g(\xi_1,\xi_1) = 1, \ g(\xi_2,\xi_2) = -1, \ g(\xi_1,\xi_2) = 0.$$

Using the equalities $(2.1) \div (2.4)$ we find

(2.6)
$$\eta^1(X) = -g(X,\xi_1), \quad \eta^2(X) = g(X,\xi_2).$$

Proposition 2.1. The submanifold M of codimension 2 of (M, J, g) in the case when the normal section $\alpha = \{N_1, N_2\}$ is nondegenerate totally real of hybrid type is not holomorphic.

163

Proof. If we assume that M is holomorphic, then $g(JX, N_1) = g(JX, N_2) = 0$ for each $X \in TM$. Hence, for $\xi_1, \xi_2 \in TM$ we have $g(J\xi_i, N_i) = g(\xi_i, JN_i) = g(\xi_i, \xi_i) = 0$ (i = 1, 2), which is in contradiction to (2.5).

Let $H_pM = J(T_pM) \bigcap T_pM$ be the maximal holomorphic tangent space to M at p. It is an even-dimensional subspace of $T_p M$, since $J^2_{|H_n M} = -id$. Moreover, from (2.2), (2.3) we have $J(\xi_1)_p, J(\xi_2)_p \in (T_pM)^{\perp}$ and for any $x \in H_pM$ $g(x, (\xi_i)_p) = g(x, (JN_i)_p) =$ $g(Jx, (N_i)_p) = 0$ (i = 1, 2). So, there are two distributions on $M D : p \to H_p M$, $D^{\perp}: p \to \{(\xi_1)_p, (\xi_2)_p\}$ satisfying $JD_p = D_p, J(D_p^{\perp}) \subset (T_pM)^{\perp}$ and $D_p \perp \{(\xi_1)_p, (\xi_2)_p\}$ for each $p \in M$. Then $T_pM = H_pM \oplus \text{span}\{(\xi_1)_p, (\xi_2)_p\}$, where $\dim(H_pM) = 2n - 2$ and the submanifold M of (\overline{M}, J, g) is a **CR** submanifold.

From the last notes and Proposition 2.1 it follows that we can consider a submanifold M of codimension 2 of (\overline{M}, J, g) such that $J(T_pM) \subset T_pM \oplus (T_pM)^{\perp}$ for each $p \in M$, i.e. in (2.4) $(\eta^1(X), \eta^2(X)) \neq (0, 0).$

Applying J to (2.2), (2.3), (2.4) and comparing the tangential parts and the normal parts to M, we have

(2.7)
$$\varphi \xi_1 = \varphi \xi_2 = 0,$$

(2.8)
$$\eta^1(\varphi X) = \eta^2(\varphi X) = 0,$$

(2.9)
$$\varphi^2 X = -X - \eta^1(X)\xi_1 - \eta^2(X)\xi_2.$$

Using g(JX, JY) = -g(X, Y) and (2.4) we obtain $g(\varphi X, \varphi Y) = -g(X, Y) + \eta^{1}(X)\eta^{1}(Y) - \eta^{2}(X)\eta^{2}(Y), \ X, Y \in TM.$ (2.10)

Now we define a tensor field J' of type (1,1) on M by

(2.11)
$$J'X = \varphi X + \eta^2(X)\xi_1 - \eta^1(X)\xi_2, \ X \in TM.$$

Taking into account the equalities $(2.5) \div (2.10)$ we have $J^{\prime 2}(X) = -X, g(J^{\prime}X, J^{\prime}Y)$ = -g(X,Y), where $X,Y \in TM$. Hence, J' is an almost complex structure on M and the restriction of g on M is B-metric. Thus, the submanifold (M, J', g) $(\dim M = 2n)$ of (\overline{M}, J, g) (dim $\overline{M} = 2n + 2$) is an almost complex manifold with B-metric.

Denoting by $\overline{\nabla}$ and ∇ the Levi-Civita connections of the metric q on \overline{M} and M, respectively, the formulas of Gauss and Weingarten are

$$\bar{\nabla}_X Y = \nabla_X Y + \sigma(X,Y) \quad X,Y \in TM;$$
$$\bar{\nabla}_X N_1 = -A_{N_1} X + D_X N_1; \quad \bar{\nabla}_X N_2 = -A_{N_2} X + D_X N_2; \quad X \in TM,$$

where
$$\sigma$$
 is the second fundamental form on M , A_{N_i} $(i = 1, 2)$ is the second fundamental tensor with respect to N_i $(i = 1, 2)$ and D is the normal connection of M . Having in mind the properties of $\overline{\nabla}$ and (2.1), from the formulas of Gauss and Weingarten we compute

 $\sigma(X,Y) = -g(A_{N_1}X,Y)N_1 + g(A_{N_2}X,Y)N_2 = -g(X,A_{N_1}Y)N_1 + g(X,A_{N_2}Y)N_2;$

$$D_X N_1 = \gamma(X) N_2; \quad D_X N_2 = \gamma(X) N_1,$$

where γ is an 1-form on M. Then the formulas of Gauss and Weingarten become

(2.12)
$$\bar{\nabla}_X Y = \nabla_X Y - g(A_{N_1}X, Y)N_1 + g(A_{N_2}X, Y)N_2;$$
$$\bar{\nabla}_X N_1 = -A_{N_1}X + \gamma(X)N_2; \quad \bar{\nabla}_X N_2 = -A_{N_2}X + \gamma(X)N_1.$$

164

t

3. Submanifolds of codimension 2 of a Kaehler manifold with B-metric. From now on, in this section the ambient almost complex manifold with B-metric (\bar{M}, J, g) will be a Kaehler manifold with B-metric and (M, J', g) will be a submanifold of \bar{M} of codimension 2 such that $J(T_pM)^{\perp} \subset T_pM$, $J(T_pM) \subset T_pM \oplus (T_pM)^{\perp}$ for each $p \in M$. Then $\bar{\nabla}J = 0$ and using (2.11), (2.12) we obtain

(3.1)
$$(\nabla_X J')Y = \eta^1(Y)\{A_{N_1}X - \nabla_X\xi_2\} + \eta^2(Y)\{A_{N_2}X + \nabla_X\xi_1\}$$

$$+\{(\nabla_X \eta^2)Y - g(A_{N_1}X, Y)\}\xi_1 - \{(\nabla_X \eta^1)Y - g(A_{N_2}X, Y)\}\xi_2.$$

From $(\bar{\nabla}_X J)N_1 = (\bar{\nabla}_X J)N_2 = 0$, (2.4), (2.6), (2.12) we find

$$\nabla_X \xi_1 = -\varphi(A_{N_1}X) + \gamma(X)\xi_2, \ \nabla_X \xi_2 = -\varphi(A_{N_2}X) + \gamma(X)\xi_1,$$

(3.2)
$$g(A_{N_i}X,\xi_i) = 0 \iff A_{N_i}\xi_i = 0 \quad (i = 1,2),$$

$$g(A_{N_1}X,\xi_2) = -g(A_{N_2}X,\xi_1) \iff A_{N_1}\xi_2 = -A_{N_2}\xi_1.$$

Using the equalities (2.6), (2.11), (3.1) and (3.2) we arrive to the following assertion **Theorem 3.1.** Let (M, J', g) be a submanifold of (\overline{M}, J, g) . Then

$$(3.3) \qquad F'(X,Y,Z) = \eta^{1}(Y)\{g(A_{N_{1}}X,Z) + g(A_{N_{2}}X,J'Z)\} + \eta^{2}(Y)\{g(A_{N_{2}}X,Z) \\ -g(A_{N_{1}}X,J'Z)\} + \eta^{1}(Z)\{g(A_{N_{1}}X,Y) + g(A_{N_{2}}X,J'Y)\} \\ + \eta^{2}(Z)\{g(A_{N_{2}}X,Y) - g(A_{N_{1}}X,J'Y)\} + 2\gamma(X)\{\eta^{1}(Y)\eta^{1}(Z) + \eta^{2}(Y)\eta^{2}(Z)\} \\ for arbitrary X, Y, Z \in TM.$$

Let \overline{R} and R be the curvature tensors of \overline{M} and M respectively. The curvature tensor of the normal connection D is denoted by R^{\perp} and $R^{\perp}(X, Y, V) = D_X D_Y V - D_Y D_X V$ $-D_{[X,Y]}V$, where $X, Y \in TM, V \in (TM)^{\perp}$. According to [3] the Gauss, Codazzi and Ricci equations are

(3.4)
$$\bar{R}(X,Y,Z,W) = R(X,Y,Z,W) + \pi_1(A_{N_1}X,A_{N_1}Y,Z,W) - \pi_1(A_{N_2}X,A_{N_2}Y,Z,W),$$

(3.5) $\bar{R}(X,Y,Z)^{\perp} = \{g((\nabla_Y A)_{N_1}X,Z) - g((\nabla_X A)_{N_1}Y,Z)\}N_1$

$$+\{g((\nabla_X A)_{N_2}Y, Z) - g((\nabla_Y A)_{N_2}X, Z)\}N_{2,2}$$

 $\begin{array}{l} (3.6) \qquad \bar{R}(X,Y,N_1,N_2) = d\gamma(X,Y) + g(A_{N_2}(A_{N_1}X),Y) - g(A_{N_1}(A_{N_2}X),Y), \\ \text{where } \pi_1(X,Y,Z,W) = g(Y,Z)g(X,W) - g(X,Z)g(Y,W), d\gamma(X,Y) = (\nabla_X\gamma)Y - (\nabla_Y\gamma)X, \\ X,Y,Z,W \in TM, \, N_1, N_2 \in (TM)^{\perp}. \end{array}$

Theorem 3.2. The submanifold (M, J', g) of (\overline{M}, J, g) belongs to the class $W_2 \oplus W_3$ iff

(3.7)
$$\gamma(\xi_1) = \frac{1}{2} \{ tr(A_{N_1}) + tr(J' \circ A_{N_2}) \}; \ \gamma(\xi_2) = \frac{1}{2} \{ tr(J' \circ A_{N_1}) - trA_{N_2} \}.$$

Proof. From (3.3) we find the Lee form θ for $M \theta(Z) = \{tr(A_{N_2}) - tr(J' \circ A_{N_1}) + 2\gamma(\xi_2)\}\eta^1(Z) - \{tr(A_{N_1}) + tr(J' \circ A_{N_2}) - 2\gamma(\xi_1)\}\eta^2(Z)$. It is known [2] that $M \in W_2 \oplus W_3$ iff $\theta = 0$ iff $-\{tr(A_{N_2}) - tr(J' \circ A_{N_1}) + 2\gamma(\xi_2)\}\xi_1 - \{tr(A_{N_1}) + tr(J' \circ A_{N_2}) - 2\gamma(\xi_1)\}\xi_2 = 0$. Since ξ_1, ξ_2 are linearly independent, the last equality is true iff (3.7) is valid.

Theorem 3.3. Let A_{N_1} and A_{N_2} commute with J'. Then the submanifold (M, J', g)of (\bar{M}, J, g) belongs to the class $W_1 \oplus W_2$ iff (2.2)

(3.8)
$$\gamma(X) = -\gamma(\xi_1)\eta^1(X) - \gamma(\xi_2)\eta^2(X).$$

165

Proof. According to [2] $M \in W_1 \oplus W_2$ iff F'(X, Y, J'Z) + F'(Y, Z, J'X) + F'(Z, X, J'Y) = 0 iff the following equality is valid

(3.9)
$$\gamma(X)\{\eta^{1}(Z)\eta^{2}(Y) - \eta^{1}(Y)\eta^{2}(Z)\} + \gamma(Y)\{\eta^{1}(X)\eta^{2}(Z) - \eta^{1}(Z)\eta^{2}(X)\} + \gamma(Z)\{\eta^{1}(Y)\eta^{2}(X) - \eta^{1}(X)\eta^{2}(Y)\} = 0.$$

If we substitute ξ_1 for Y and ξ_2 for Z in (3.9) we obtain (3.8). For the converse, let (3.8) be valid. Then by direct verification we obtain (3.9).

Taking into account the characteristic condition of the class W_2 from [2] and Theorem 3.2, Theorem 3.3 we get

Theorem 3.4. Let A_{N_1} and A_{N_2} commute with J'. Then the submanifold (M, J', g) of (\overline{M}, J, g) belongs to the class W_2 iff the equalities (3.7) and (3.8) are valid.

Let us recall [3]: the normal connection D of M is said to be flat if $R^{\perp} = 0$.

Theorem 3.5. The normal connection of the submanifold (M, J', g) of (\overline{M}, J, g) is flat iff the 1-form γ is closed.

Proof. The formulas of Gauss and Weingarten imply

(3.10) $R^{\perp}(X, Y, N_i) = \{ (\nabla_X \gamma) Y - (\nabla_Y \gamma) X \} N_j, \ i \neq j \ i, j = 1, 2.$

If V is an arbitrary vector field normal to M, then $V = aN_1 + bN_2$, where $a, b \in F\bar{M}$ and

(3.11) $R^{\perp}(X,Y,V) = aR^{\perp}(X,Y,N_1) + bR^{\perp}(X,Y,N_2).$

Since N_1, N_2 are linearly independent, from (3.10) and (3.11) we have $R^{\perp} = 0$ iff $(\nabla_X \gamma)Y - (\nabla_Y \gamma)X = d\gamma(X, Y) = 0$, i.e. γ is closed.

REFERENCES

[1] A. BORISOV, G. GANCHEV. Curvature properties of Kaehlerian manifolds with B-metric. *Math. and Education in Math.*, **14** (1985), 220–226.

[2] G. GANCHEV, A. BORISOV. Note on almost complex manifolds with Norden metric. C. R. Acad. Bulg. Sci., **39** (1986), 31–34.

[3] K. YANO, M. KON. CR-Submanifolds of Kaehlerian and Sasakian manifolds. *Progress in mathematics*, vol. **30**, Birkhauser, Boston, Basel, Stuttgart, 1983.

[4] К. ГРИБАЧЕВ. Подмногообразия на В-многообразия. ПУ "Паисий Хилендарски", Научни трудове – Математика, том **22**, кн. 2 (1984), 249–263.

Galia V. Nakova Department of Algebra and Geometry University of Veliko Tarnovo 1, Theodosij Tarnovsky Str. Veliko Tarnovo 5000, Bulgaria e-mail: gnakova@yahoo.com

НЯКОИ ПОДМНОГООБРАЗИЯ НА ПОЧТИ КОМПЛЕКСНИ МНОГООБРАЗИЯ С В-МЕТРИКА С КОРАЗМЕРНОСТ ДВЕ

Галя В. Накова

Подмногообразия на почти комплексни многообразия с В-метрика с коразмерност 2 в случая, когато нормалната площадка е напълно реална са разгледани. Тези подмногообразия не са холоморфни. Почти комплексна структура и В-метрика върху подмногообразията са дефинирани. Класът на някои подмногообразия на Келерово многообразие с В-метрика е намерен.