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SOME SUBMANIFOLDS OF CODIMENSION TWO OF
ALMOST COMPLEX MANIFOLDS WITH B-METRIC

Galia V. Nakova

Submanifolds of codimension two of almost complex manifolds with B-metric in the
case when the normal section is totally real are considered. These submanifolds are
not holomorphic. An almost complex structure and B-metric on the submanifolds are
defined. A class of some submanifolds of a Kaehler manifold with B-metric is found.

1. Introduction. Let (M, J,g) be a 2n—dimensional almost complex manifold with

B-metric, i.e. J is the almost complex structure and g is the metric on M such that:
J’X =-X; g(JX,JY)=—g(X,Y).

for all vector fields X,Y on M. The associated with g metric § on the manifold is given
by §(X,Y) = g(JX,Y). Both metrics g and § are indefinite of signature (n, n).

Let V be the Levi-Civita connection of the metric g. The tensor field F' of type
(0,3) on M is defined by F(X,Y,Z) = g((VxJ)Y,Z). This tensor has the following
symmetries:

F(X,Y,Z)=F(X,2Y); F(X,Y,Z)=F(X,JY,JZ).

1 .
The Lie form 6 associated with the tensor F'is defined by 6(z) = ——g¢" F(e;, e;, Jx),
n

where x € T,M, {e;}(i = 1,2,...,2n) is an arbitrary basis of T,M and (¢*/) is the inverse
matrix of (gi;).

A classification of the almost complex manifolds with B-metric with respect to the
tensor F is given in [2]. The class of the Kaehler manifolds with B-metric is defined by
the condition F'(X,Y,Z) = 0.

Let R be the curvature tensor field of type (1, 3) of the Levi-Civita connection V of g

R(X,Y,Z) =VxVyZ -VyVxZ2Z— V[ny]Z.
The corresponding to R tensor field of type (0,4) is given by
R(Xa Y, Z,W) = g(R(Xa Y, Z)aW)

Let o be a 2—dimensional section in T, M. A classification of the sections in 7, M
is given in [1]. Let us recall: a section « is said to be nondegenerate, weakly isotropic
or strongly isotropic if the rank of the restriction of the metric g (§) on « is 2,1, or
0 respectively. A section « is said to be holomorphic if Ja = a and totally real — if
Ja L a. A section « is of pure or hybrid type if the restriction of g (§) on a has a
signature (2,0), (0,2) or (1,1) respectively.
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2. Submanifolds of codimension 2 of an almost complex manifold with B-
metric. Let (M,J, g) be an almost complex manifold with B-metric and let M be a
submanifold of M. By T, M and (T,M)* are denoted the tangent space and the normal
space of M at p € M respectively. Also, by TM and (T'M)* are denoted the tangent
bundle and the normal bundle of M, respectively. In [3] definitions for holomorphic,
totally real and CR submanifold of a Hermitian manifold are given. Similar definitions
we apply to submanifolds of an almost complex manifold with B-metric:

o If J(T,M) C T,M for each p € M, then M is called a holomorphic (or invariant)
submanifold of M;

o If J(I,M) C (T,M)* for each p € M, then M is called a totally real (or anti-
invariant) submanifold of M;

e A submanifold M of M is called a CR submanifold of M if there exists a differen-
tiable distribution D : p — D, on M satisfying the two conditions:

(i) D is invariant, that is, JD, = D), for each p € M;

(ii) the complementary orthogonal distribution D+ : p — D]Dl C T,M of D is
anti-invariant, that is, JDZJ; C (T,M)* for each p € M.

In [4] holomorphic submanifolds of almost complex manifolds with B-metric are studied.
In this section we consider submanifolds of codimension 2 of a Kaehler manifold with
B-metric when the normal section a = (T, M)~ is totally real, i.e. Ja C T, M.

Let (M, J,g) be a (2n + 2)—dimensional almost complex manifold with B-metric g
and let M be a submanifold of codimension 2 of M. Let a = {Ny, N2} be a normal
section defined globally over the submanifold M such that:

(2.1) —g(N1, N1) = g(N2, N2) =1, g(Ny, Na) = 0.

We consider the following decomposition for JN7, JNa, JX (X € TM) with respect to
{N1, Nz} and T M:

(2.2) JNy =&,
(2.3) JN3 = &2,
(2.4) JX = pX + 0" (X)Ny +*(X)Ny X € TM,

where ¢ denotes a tensor field of type (1,1) on M; &,& € TM and n', n? are 1-forms
on M. We denote the restriction of g on M by the same letter. Taking into account
(2.1), (2.2) and (2.3) we have that the normal section o = {7, Na} is a nondegenerate
totally real section of hybrid type. These sections exist by dim M > 4 [1]. From (2.1),
(2.2) and (2.3) we obtain

(25) 9(51;51):17 9(527§2):_15 9(51,52)20
Using the equalities (2.1)+(2.4) we find
(26) nl(X):fg(X’gl)’ 772(X):9(Xa€2)

Proposition 2.1. The submanifold M of codimension 2 of (M, .J, g) in the case when
the normal section o« = {N1, N2} is nondegenerate totally real of hybrid type is not
holomorphic.
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Proof. If we assume that M is holomorphic, then g(JX, N;) = g(JX, N3) = 0 for
each X € TM. Hence, for 1,8 € TM we have g(J&, N;) = g(&, JN;) = g(&,&) =0
(¢ = 1,2), which is in contradiction to (2.5).

Let HyM = J(T,M) (T, M be the maximal holomorphic tangent space to M at p. It
is an even-dimensional subspace of T, M, since J‘QHPM = —id. Moreover, from (2.2), (2.3)
we have J(&1)p, J(&2)p € (TpM)* and for any x € H,M g(x,(&)p) = g(x, (JN;)p) =
g(Jz,(N;)p) = 0 (i = 1,2). So, there are two distributions on M D : p — H,M,
D+:p— {(&1)p, (&2)p} satisfying JD), = Dy, J(D;_) - (TPM)J_ and Dy, L {(§1)p, (§2)p}
for each p € M. Then T,M = H,M & span{(&1)p, (&2)p}, where dim(H,M) = 2n — 2
and the submanifold M of (M, J, g) is a CR submanifold.

From the last notes and Proposition 2.1 it follows that we can consider a submanifold
M of codimension 2 of (M, J, g) such that J(T,M) C T,M & (T,M)* for each p € M,
ie. in (2.4) (n'(X),n*(X)) # (0,0).

Applying J to (2.2), (2.3), (2.4) and comparing the tangential parts and the normal
parts to M, we have

(2.7) 0&1 = p&2 =0,

(2.8) ' (pX) = 1*(pX) =0,

(2.9) P*X = X =" (X)& — 1 (X)&e.

Using ¢g(JX,JY) = —g(X,Y) and (2.4) we obtain

(2.10) 9(eX,9Y) = —g(X.Y) + 0" (X)n' (V) = (X)n*(Y), XY € TM.
Now we define a tensor field J’ of type (1,1) on M by

(2.11) JIX =pX +n?(X)é& —n'(X)&, X € TM.

Taking into account the equalities (2.5) + (2.10) we have J?(X) = —X, g(J'X,J'Y)
= —g(X,Y), where X,Y € TM. Hence, J' is an almost complex structure on M and
the restriction of g on M is B-metric. Thus, the submanifold (M, J’, g) (dim M = 2n) of
(M, J,g) (dim M = 2n + 2) is an almost complex manifold with B-metric.

Denoting by V and V the Levi-Civita connections of the metric ¢ on M and M,
respectively, the formulas of Gauss and Weingarten are

VxY =VxY +0(X,Y) X,Y € TM;
val =—An, X + DxNy; vaQ =—-An, X +DxNy; X € TM,

where o is the second fundamental form on M, Ay, (¢ = 1,2) is the second fundamental
tensor with respect to V; (¢ = 1,2) and D is the normal connection of M. Having in mind
the properties of V and (2.1), from the formulas of Gauss and Weingarten we compute

o(X,Y) = —g(AnN, X, Y)N1 + g(AN, X, Y) N2 = —g(X, AN, Y) N1 + g(X, AN, Y) No;
Dx Ny =~(X)N2; DxNgy=~(X)Ny,
where v is an 1-form on M. Then the formulas of Gauss and Weingarten become
(2.12) VxY =VxY — g(An, X, Y)N1 + g(An, X, Y)No;
VxN; = —An, X +v(X)Na; VxNo = —An, X +7(X)Ny.
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3. Submanifolds of codimension 2 of a Kaehler manifold with B-metric.
From now on, in this section the ambient almost complex manifold with B-metric (M ,J, )
will be a Kaehler manifold with B-metric and (M, J’, g) will be a submanifold of M of
codimension 2 such that J(T,M)*+ c T,M, J(T,M) C T,M & (T,M)* for each p € M.
Then VJ = 0 and using (2.11), (2.12) we obtain

(3.1) (VxJVY =" (Y){An X = Vx&} + P (V){An X + Vx&i}
+{(VX772)Y - g(ANlXa Y)}€1 - {(Van)Y - g(ANsz Y)}£2

From (VxJ)N1 = (VxJ)Na =0, (2.4), (2.6), (2.12) we find
Vx& = —p(An, X) +7(X)&2, Vx& = —p(An,X) +v(X)é1,

g(ANlX) 52) = 7g(AN2X7 51) <~ AN1€2 = *Aszl-
Using the equalities (2.6), (2.11), (3.1) and (3.2) we arrive to the following assertion
Theorem 3.1. Let (M, J', g) be a submanifold of (M, J,g). Then
(33) FI(Xv Y, Z) = 771 (Y){Q(ANle Z) + g(ANsz JIZ)} + 7’2(Y){9(AN2X; Z)
_g(ANlXa JIZ)} + 771 (Z){Q(AN1X7 Y) + g(AN2X7 JIY)}
(2 9(An, X, Y) = g(An, X, JY )} + 29(X) {0 (V)0 (Z) +0* (V) (2)}
for arbitrary XY, Z € TM.

Let R and R be the curvature tensors of M and M respectively. The curvature tensor
of the normal connection D is denoted by R+ and R+ (X,Y,V) = DxDyV — Dy DxV
—Dix y1V, where X, Y € TM,V € (TM)*. According to [3] the Gauss, Codazzi and
Ricci equations are

(3.4) R(X,Y,Z,W)=R(X.,Y,Z,W)+m (An, X, An,Y, Z,W)—m1(An, X, AN, Y, Z, W),

(3.5) R(X,Y, 2)* = {g(VyA)n, X, Z) — g(Vx AN, Y, Z)} Ny
Ho(VxA)n,Y, Z) = g(Vy A)n, X, Z)} Na,
(36) R(Xv Ya Nla NQ) = d’)/(Xv Y) + g(ANz (AN1X)a Y) - g(AN1 (ANzX)a Y)a

where m (X, Y, Z, W) = g(Y, Z2)g(X,W)—g(X, Z)g(Y, W), dv(X,Y) = (Vx7)Y = (Vyvy)X,
X,Y,Z,W € TM, Ny, Ny € (TM)".
Theorem 3.2. The submanifold (M, J’, g) of (M, J,g) belongs to the class Wo @ W3
if
1 1
(3.7) (&) = G{tr(An) +tr(J" 0 Any )} (&) = S{tr(J e Any) — trAn, ).

Proof. From (3.3) we find the Lee form 6 for M 0(Z) = {tr(An,) — tr(J' o An,)
+29(&) N (2)—{tr(An, ) +tr(J 0o An,)—27v(&1) In?(Z). Tt is known [2] that M € WodWs
iff 0 = 0iff —{tr(An,)—tr(J o An,) +27(&2) Y1 — {tr(An,) +tr(J 0 An,) —27v(€1) } o = 0.
Since &1, &» are linearly independent, the last equality is true iff (3.7) is valid.

Theorem 3.3. Let Ay, and Ay, commute with J'. Then the submanifold (M,J',g)
of (M, J, g) belongs to the class Wy & Wy iff

(3.8) Y(X) = =y (&' (X) — y(&)n*(X).
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Proof. According to 2] M € WieWL it F/(X,Y, J' Z2)+F'(Y, Z, J X))+ F'(Z,X,J'Y)
= 0 iff the following equality is valid

(3.9) VX (2 (V) =0 (V)n*(2)} + (V) {0 (X)n*(Z) = n' (Z)n*(X)}

+1(Z2) {0 (V)n* (X) =0 (X)n*(YV)} = 0.
If we substitute &; for Y and & for Z in (3.9) we obtain (3.8). For the converse, let (3.8)
be valid. Then by direct verification we obtain (3.9).
Taking into account the characteristic condition of the class W5 from [2] and Theorem
3.2, Theorem 3.3 we get

Theorem 3.4. Let Ay, and Ay, commute with J'. Then the submanifold (M, J', g)
of (M, J,g) belongs to the class Wy iff the equalities (3.7) and (3.8) are valid.

Let us recall [3]: the normal connection D of M is said to be flat if R+ = 0.

Theorem 3.5. The normal connection of the submanifold (M, J',g) of (M,J,g) is
flat iff the 1-form ~ is closed.

Proof. The formulas of Gauss and Weingarten imply
(3.10) RE(X,Y,Ni) = {(Vx7)Y = (Vyy)XIN;, i#j i.j=1.2.
If V is an arbitrary vector field normal to M, then V = aN; + bN,, where a,b € FM
and

(3.11) RY(X,Y,V) = aR (X,Y,N;) + bR (X,Y, Ny).
Since Ni, Ny are linearly independent, from (3.10) and (3.11) we have Rt = 0 iff
(Vx7)Y — (Vyy)X =dy(X,Y) =0, i.e. 7 is closed.

REFERENCES

[1] A. Borisov, G. GANCHEV. Curvature properties of Kaehlerian manifolds with B-metric.
Math. and Education in Math., 14 (1985), 220-226.

[2] G. GANCHEV, A. BORrisov. Note on almost complex manifolds with Norden metric. C. R.
Acad. Bulg. Sci., 39 (1986), 31-34.

[3] K. YaNO, M. KoN. CR-Submanifolds of Kaehlerian and Sasakian manifolds. Progress in
mathematics, vol. 30, Birkhauser, Boston, Basel, Stuttgart, 1983.

[4] K. I'PuBA4EB. I[logmHOroo6pasus Ha B-muoroobpasust. I1V “Tlaucuti Xuaendaperu”, Haywnu
mpydose — Mamemamura, Tom 22, k. 2 (1984), 249-263.

Galia V. Nakova

Department of Algebra and Geometry
University of Veliko Tarnovo

1, Theodosij Tarnovsky Str.

Veliko Tarnovo 5000, Bulgaria

e-mail: gnakova@yahoo.com

166



HAKOU ITIOAMHOI'OOBPA3UMS HA ITIOYTU KOMITJIEKCHUA
MHOT'OOBPA3U4 C B-METPUKA C KOPASMEPHOCT JIBE

Taina B. Hakosa

TTogmuOrOo06pasust Ha MOYTH KOMILIEKCHU MHOroobpasusi ¢ B-meTpuka ¢ Kopasmep-
HOCT 2 B CjIydasi, KOraTO HOPMAaJIHATA IIOIIAJKA € HAI'bJIHO PeajiHa Ca DPas3riielia-
vu. Tesu mommHOrOOOpasusi He ca xojiomopdHu. [louTn KOMILIEKCHA CTPYKTypa U
B-merpuka Bbpxy mogMmuHOroobpasusita ca jgedpunupanu. KiachbT HA HSIKOU TTOIMHO-
roobpasusi Ha KeysiepoBo muoroobpasue ¢ B-merpuka e HamepeH.
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