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SOME SUBMANIFOLDS OF CODIMENSION TWO OF

ALMOST COMPLEX MANIFOLDS WITH B-METRIC

Galia V. Nakova

Submanifolds of codimension two of almost complex manifolds with B-metric in the
case when the normal section is totally real are considered. These submanifolds are
not holomorphic. An almost complex structure and B-metric on the submanifolds are
defined. A class of some submanifolds of a Kaehler manifold with B-metric is found.

1. Introduction. Let (M, J, g) be a 2n−dimensional almost complex manifold with
B-metric, i.e. J is the almost complex structure and g is the metric on M such that:

J2X = −X ; g(JX, JY ) = −g(X, Y ).

for all vector fields X, Y on M. The associated with g metric g̃ on the manifold is given
by g̃(X, Y ) = g(JX, Y ). Both metrics g and g̃ are indefinite of signature (n, n).

Let ∇ be the Levi-Civita connection of the metric g. The tensor field F of type
(0, 3) on M is defined by F (X, Y, Z) = g((∇XJ)Y, Z). This tensor has the following
symmetries:

F (X, Y, Z) = F (X, Z, Y ); F (X, Y, Z) = F (X, JY, JZ).

The Lie form θ associated with the tensor F is defined by θ(x) = −
1

n
gijF (ei, ej, Jx),

where x ∈ TpM, {ei}(i = 1, 2, . . . , 2n) is an arbitrary basis of TpM and (gij) is the inverse
matrix of (gij).

A classification of the almost complex manifolds with B-metric with respect to the
tensor F is given in [2]. The class of the Kaehler manifolds with B-metric is defined by
the condition F (X, Y, Z) = 0.

Let R be the curvature tensor field of type (1, 3) of the Levi-Civita connection ∇ of g

R(X, Y, Z) = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

The corresponding to R tensor field of type (0, 4) is given by

R(X, Y, Z, W ) = g(R(X, Y, Z), W )

Let α be a 2−dimensional section in TpM . A classification of the sections in TpM

is given in [1]. Let us recall: a section α is said to be nondegenerate, weakly isotropic
or strongly isotropic if the rank of the restriction of the metric g (g̃) on α is 2, 1, or
0 respectively. A section α is said to be holomorphic if Jα = α and totally real – if
Jα ⊥ α. A section α is of pure or hybrid type if the restriction of g (g̃) on α has a
signature (2, 0), (0, 2) or (1, 1) respectively.
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2. Submanifolds of codimension 2 of an almost complex manifold with B-

metric. Let (M̄, J, g) be an almost complex manifold with B-metric and let M be a
submanifold of M̄. By TpM and (TpM)⊥ are denoted the tangent space and the normal
space of M at p ∈ M respectively. Also, by TM and (TM)⊥ are denoted the tangent
bundle and the normal bundle of M, respectively. In [3] definitions for holomorphic,
totally real and CR submanifold of a Hermitian manifold are given. Similar definitions
we apply to submanifolds of an almost complex manifold with B-metric:

• If J(TpM) ⊂ TpM for each p ∈ M , then M is called a holomorphic (or invariant)
submanifold of M̄ ;

• If J(TpM) ⊂ (TpM)⊥ for each p ∈ M , then M is called a totally real (or anti-
invariant) submanifold of M̄ ;

• A submanifold M of M̄ is called a CR submanifold of M̄ if there exists a differen-
tiable distribution D : p → Dp on M satisfying the two conditions:

(i) D is invariant, that is, JDp = Dp for each p ∈ M ;

(ii) the complementary orthogonal distribution D⊥ : p → D⊥
p ⊂ TpM of D is

anti-invariant, that is, JD⊥
p ⊂ (TpM)⊥ for each p ∈ M .

In [4] holomorphic submanifolds of almost complex manifolds with B-metric are studied.
In this section we consider submanifolds of codimension 2 of a Kaehler manifold with
B-metric when the normal section α = (TpM)⊥ is totally real, i.e. Jα ⊂ TpM .

Let (M̄, J, g) be a (2n + 2)−dimensional almost complex manifold with B-metric g

and let M be a submanifold of codimension 2 of M̄ . Let α = {N1, N2} be a normal
section defined globally over the submanifold M such that:

(2.1) −g(N1, N1) = g(N2, N2) = 1, g(N1, N2) = 0.

We consider the following decomposition for JN1, JN2, JX (X ∈ TM) with respect to
{N1, N2} and TM :

(2.2) JN1 = ξ1,

(2.3) JN2 = ξ2,

(2.4) JX = ϕX + η1(X)N1 + η2(X)N2 X ∈ TM,

where ϕ denotes a tensor field of type (1, 1) on M ; ξ1, ξ2 ∈ TM and η1, η2 are 1-forms
on M . We denote the restriction of g on M by the same letter. Taking into account
(2.1), (2.2) and (2.3) we have that the normal section α = {N1, N2} is a nondegenerate
totally real section of hybrid type. These sections exist by dim M̄ ≥ 4 [1]. From (2.1),
(2.2) and (2.3) we obtain

(2.5) g(ξ1, ξ1) = 1, g(ξ2, ξ2) = −1, g(ξ1, ξ2) = 0.

Using the equalities (2.1)÷(2.4) we find

(2.6) η1(X) = −g(X, ξ1), η2(X) = g(X, ξ2).

Proposition 2.1.The submanifold M of codimension 2 of (M̄, J, g) in the case when

the normal section α = {N1, N2} is nondegenerate totally real of hybrid type is not

holomorphic.
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Proof. If we assume that M is holomorphic, then g(JX, N1) = g(JX, N2) = 0 for
each X ∈ TM. Hence, for ξ1, ξ2 ∈ TM we have g(Jξi, Ni) = g(ξi, JNi) = g(ξi, ξi) = 0
(i = 1, 2), which is in contradiction to (2.5).

Let HpM = J(TpM)
⋂

TpM be the maximal holomorphic tangent space to M at p. It
is an even-dimensional subspace of TpM, since J2

|HpM
= −id. Moreover, from (2.2), (2.3)

we have J(ξ1)p, J(ξ2)p ∈ (TpM)⊥ and for any x ∈ HpM g(x, (ξi)p) = g(x, (JNi)p) =
g(Jx, (Ni)p) = 0 (i = 1, 2). So, there are two distributions on M D : p → HpM ,
D⊥ : p → {(ξ1)p, (ξ2)p} satisfying JDp = Dp, J(D⊥

p ) ⊂ (TpM)⊥ and Dp ⊥ {(ξ1)p, (ξ2)p}
for each p ∈ M . Then TpM = HpM ⊕ span {(ξ1)p, (ξ2)p}, where dim(HpM) = 2n − 2
and the submanifold M of (M̄, J, g) is a CR submanifold.

From the last notes and Proposition 2.1 it follows that we can consider a submanifold
M of codimension 2 of (M̄, J, g) such that J(TpM) ⊂ TpM ⊕ (TpM)⊥ for each p ∈ M ,
i.e. in (2.4) (η1(X), η2(X)) 6= (0, 0).

Applying J to (2.2), (2.3), (2.4) and comparing the tangential parts and the normal
parts to M , we have

(2.7) ϕξ1 = ϕξ2 = 0,

(2.8) η1(ϕX) = η2(ϕX) = 0,

(2.9) ϕ2X = −X − η1(X)ξ1 − η2(X)ξ2.

Using g(JX, JY ) = −g(X, Y ) and (2.4) we obtain

(2.10) g(ϕX, ϕY ) = −g(X, Y ) + η1(X)η1(Y ) − η2(X)η2(Y ), X, Y ∈ TM.

Now we define a tensor field J ′ of type (1, 1) on M by

(2.11) J ′X = ϕX + η2(X)ξ1 − η1(X)ξ2, X ∈ TM.

Taking into account the equalities (2.5) ÷ (2.10) we have J ′2(X) = −X, g(J ′X, J ′Y )
= −g(X, Y ), where X, Y ∈ TM . Hence, J ′ is an almost complex structure on M and
the restriction of g on M is B-metric. Thus, the submanifold (M, J ′, g) (dim M = 2n) of
(M̄, J, g) (dim M̄ = 2n + 2) is an almost complex manifold with B-metric.

Denoting by ∇̄ and ∇ the Levi-Civita connections of the metric g on M̄ and M ,
respectively, the formulas of Gauss and Weingarten are

∇̄XY = ∇XY + σ(X, Y ) X, Y ∈ TM ;

∇̄XN1 = −AN1
X + DXN1; ∇̄XN2 = −AN2

X + DXN2; X ∈ TM,

where σ is the second fundamental form on M , ANi
(i = 1, 2) is the second fundamental

tensor with respect to Ni (i = 1, 2) and D is the normal connection of M. Having in mind
the properties of ∇̄ and (2.1), from the formulas of Gauss and Weingarten we compute

σ(X, Y ) = −g(AN1
X, Y )N1 + g(AN2

X, Y )N2 = −g(X, AN1
Y )N1 + g(X, AN2

Y )N2;

DXN1 = γ(X)N2; DXN2 = γ(X)N1,

where γ is an 1-form on M. Then the formulas of Gauss and Weingarten become

(2.12) ∇̄XY = ∇XY − g(AN1
X, Y )N1 + g(AN2

X, Y )N2;

∇̄XN1 = −AN1
X + γ(X)N2; ∇̄XN2 = −AN2

X + γ(X)N1.
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3. Submanifolds of codimension 2 of a Kaehler manifold with B-metric.

From now on, in this section the ambient almost complex manifold with B-metric (M̄, J, g)
will be a Kaehler manifold with B-metric and (M, J ′, g) will be a submanifold of M̄ of
codimension 2 such that J(TpM)⊥ ⊂ TpM , J(TpM) ⊂ TpM ⊕ (TpM)⊥ for each p ∈ M .
Then ∇̄J = 0 and using (2.11), (2.12) we obtain

(3.1) (∇XJ ′)Y = η1(Y ){AN1
X −∇Xξ2} + η2(Y ){AN2

X + ∇Xξ1}

+{(∇Xη2)Y − g(AN1
X, Y )}ξ1 − {(∇Xη1)Y − g(AN2

X, Y )}ξ2.

From (∇̄XJ)N1 = (∇̄XJ)N2 = 0, (2.4), (2.6), (2.12) we find

∇Xξ1 = −ϕ(AN1
X) + γ(X)ξ2, ∇Xξ2 = −ϕ(AN2

X) + γ(X)ξ1,

(3.2) g(ANi
X, ξi) = 0 ⇐⇒ ANi

ξi = 0 (i = 1, 2),

g(AN1
X, ξ2) = −g(AN2

X, ξ1) ⇐⇒ AN1
ξ2 = −AN2

ξ1.

Using the equalities (2.6), (2.11), (3.1) and (3.2) we arrive to the following assertion

Theorem 3.1.Let (M, J ′, g) be a submanifold of (M̄, J, g). Then

(3.3) F ′(X, Y, Z) = η1(Y ){g(AN1
X, Z) + g(AN2

X, J ′Z)} + η2(Y ){g(AN2
X, Z)

−g(AN1
X, J ′Z)} + η1(Z){g(AN1

X, Y ) + g(AN2
X, J ′Y )}

+η2(Z){g(AN2
X, Y ) − g(AN1

X, J ′Y )} + 2γ(X){η1(Y )η1(Z) + η2(Y )η2(Z)}

for arbitrary X, Y, Z ∈ TM .

Let R̄ and R be the curvature tensors of M̄ and M respectively. The curvature tensor
of the normal connection D is denoted by R⊥ and R⊥(X, Y, V ) = DXDY V − DY DXV

−D[X,Y ]V, where X, Y ∈ TM, V ∈ (TM)⊥. According to [3] the Gauss, Codazzi and
Ricci equations are

(3.4) R̄(X, Y, Z, W )=R(X, Y, Z, W )+π1(AN1
X, AN1

Y, Z, W )−π1(AN2
X, AN2

Y, Z, W ),

(3.5) R̄(X, Y, Z)⊥ = {g((∇Y A)N1
X, Z) − g((∇XA)N1

Y, Z)}N1

+{g((∇XA)N2
Y, Z) − g((∇Y A)N2

X, Z)}N2,

(3.6) R̄(X, Y, N1, N2) = dγ(X, Y ) + g(AN2
(AN1

X), Y ) − g(AN1
(AN2

X), Y ),

where π1(X, Y, Z, W ) = g(Y, Z)g(X, W )−g(X, Z)g(Y, W ), dγ(X, Y ) = (∇Xγ)Y −(∇Y γ)X ,
X, Y, Z, W ∈ TM , N1, N2 ∈ (TM)⊥.

Theorem 3.2.The submanifold (M, J ′, g) of (M̄, J, g) belongs to the class W2 ⊕ W3

iff

(3.7) γ(ξ1) =
1

2
{tr(AN1

) + tr(J ′ ◦ AN2
)}; γ(ξ2) =

1

2
{tr(J ′ ◦ AN1

) − trAN2
}.

Proof. From (3.3) we find the Lee form θ for M θ(Z) = {tr(AN2
) − tr(J ′ ◦ AN1

)
+2γ(ξ2)}η

1(Z)−{tr(AN1
)+tr(J ′◦AN2

)−2γ(ξ1)}η
2(Z). It is known [2] that M ∈ W2⊕W3

iff θ = 0 iff −{tr(AN2
)−tr(J ′◦AN1

)+2γ(ξ2)}ξ1−{tr(AN1
)+tr(J ′◦AN2

)−2γ(ξ1)}ξ2 = 0.
Since ξ1, ξ2 are linearly independent, the last equality is true iff (3.7) is valid.

Theorem 3.3.Let AN1
and AN2

commute with J ′. Then the submanifold (M, J ′, g)
of (M̄, J, g) belongs to the class W1 ⊕ W2 iff

(3.8) γ(X) = −γ(ξ1)η
1(X) − γ(ξ2)η

2(X).

165



Proof. According to [2] M ∈ W1⊕W2 iff F ′(X, Y, J ′Z)+F ′(Y, Z, J ′X)+F ′(Z, X, J ′Y )
= 0 iff the following equality is valid

(3.9) γ(X){η1(Z)η2(Y ) − η1(Y )η2(Z)} + γ(Y ){η1(X)η2(Z) − η1(Z)η2(X)}

+γ(Z){η1(Y )η2(X) − η1(X)η2(Y )} = 0.

If we substitute ξ1 for Y and ξ2 for Z in (3.9) we obtain (3.8). For the converse, let (3.8)
be valid. Then by direct verification we obtain (3.9).

Taking into account the characteristic condition of the class W2 from [2] and Theorem
3.2, Theorem 3.3 we get

Theorem 3.4.Let AN1
and AN2

commute with J ′. Then the submanifold (M, J ′, g)
of (M̄, J, g) belongs to the class W2 iff the equalities (3.7) and (3.8) are valid.

Let us recall [3]: the normal connection D of M is said to be flat if R⊥ = 0.

Theorem 3.5.The normal connection of the submanifold (M, J ′, g) of (M̄, J, g) is

flat iff the 1-form γ is closed.

Proof. The formulas of Gauss and Weingarten imply

(3.10) R⊥(X, Y, Ni) = {(∇Xγ)Y − (∇Y γ)X}Nj, i 6= j i, j = 1, 2.

If V is an arbitrary vector field normal to M, then V = aN1 + bN2, where a, b ∈ FM̄

and

(3.11) R⊥(X, Y, V ) = aR⊥(X, Y, N1) + bR⊥(X, Y, N2).

Since N1, N2 are linearly independent, from (3.10) and (3.11) we have R⊥ = 0 iff
(∇Xγ)Y − (∇Y γ)X = dγ(X, Y ) = 0, i.e. γ is closed.
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НЯКОИ ПОДМНОГООБРАЗИЯ НА ПОЧТИ КОМПЛЕКСНИ

МНОГООБРАЗИЯ С В-МЕТРИКА С КОРАЗМЕРНОСТ ДВЕ

Галя В. Накова

Подмногообразия на почти комплексни многообразия с В-метрика с коразмер-
ност 2 в случая, когато нормалната площадка е напълно реална са разгледа-
ни. Тези подмногообразия не са холоморфни. Почти комплексна структура и
В-метрика върху подмногообразията са дефинирани. Класът на някои подмно-
гообразия на Келерово многообразие с В-метрика е намерен.
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