MATEMATUKA И MATEMATUYECKO ОБРАЗОВАНИЕ, 2004 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2004

Proceedings of the Thirty Third Spring Conference of the Union of Bulgarian Mathematicians Borovets, April 1–4, 2004

ON THE RESTRICTED DOMINATION IN GRAPHS*

Vladimir D. Samodivkin

An upper bound in terms of order and degrees on the restricted domination number of claw-free and net-free graphs is obtained.

1. Introduction. For the terminology in graph theory not presented here, we follow HAYNES, et al. [4]. We denote the vertex set and the edge set of a graph Gby V(G) and E(G), respectively. For any vertex v of G its open neighborhood N(v,G)is $\{x \in V(G) | vx \in E(G)\}$, its closed neighborhood N[v,G] is $N(v,G) \cup \{v\}$, and its degree deg(v,G) is |N(v,G)|. The minimum and maximum degrees of vertices in V(G)are denoted by $\delta(G)$ and $\Delta(G)$, respectively. For a set $S \subseteq V(G)$ its open neighborhood N(S,G) is $\cup_{v\in S}N(v,G)$, its closed neighborhood N[S,G] is $N(S,G)\cup S$, and its degree $\deg(S,G)$ is $|N(S,G)\backslash S|$. The k-set minimum degree of G is the greatest integer $\delta_k(G)$ such that $\delta_k(G) \leq \deg(X,G)$ for all subsets X of V(G) of cardinality k. The k-set maximum degree of G is the smallest integer $\Delta_k(G)$ such that $\Delta_k(G) \geq \deg(X,G)$ for all subsets X of V(G) of cardinality k. The subgraph induced by $S \subseteq V(G)$ is denoted by $\langle S,G\rangle$. The *corona* of two graphs G_1 and G_2 is the graph $G=G_1\circ G_2$ formed from one copy of G_1 and $|V(G_1)|$ copies of G_2 where the ith vertex of G_1 is adjacent to every vertex in the ith copy of G_2 . The complete bipartite graph $K_{1,3}$ is called a claw and the graph $K_3 \circ K_1$ is called a net. A set D of vertices in G is a dominating set if N[D,G]=V(G). The domination number $\gamma(G)$ of a graph G is the minimum cardinality taken over all dominating sets of G. A dominating set with $\gamma(G)$ vertices is called γ -set. The problem of determining $\gamma(G)$ for an arbitrary graph is NP-complete (GAREY et al. [3]). Various authors have investigated bounds on the domination number of a graph in terms of order. The earliest such result is due to ORE [7]. McCuaig and Shepherd [6] investigated upper bounds on $\gamma(G)$ in the case $\delta(G) \geq 2$.

Theorem A. Let G be a graph.

- (a) ([7]) If $\delta(G) \geq 1$, then $\gamma(G) \leq |V(G)|/2$.
- (b) ([6]) If G is a connected graph of order at least 8 and $\delta(G) \geq 2$ then $\gamma(G) \leq 2|V(G)|/5$.

In this paper, we study restricted domination in graphs. The concept of restricted domination was introduced by Sanchis [8]. We shall use the notation which was proposed by Henning [5]. Let U be a subset of vertices of a graph G. The restricted domination number $r(G, U, \gamma)$ of U is the minimum cardinality of a dominating set of G containing

^{*2000} Mathematics Subject Classification: 05C69.

U. A smallest possible dominating set of G containing all the vertices in U is called a γ_U -set. The k-restricted domination number of G is the smallest integer $r_k(G,\gamma)$ such that $r_k(G,U,\gamma) \leq r_k(G,\gamma)$ for all subsets U of V(G) of cardinality k. In the case k=0, the k-restricted domination number is the domination number.

HENNING [5] extends the bounds on the domination number obtained in Theorem A to the restricted domination number:

Theorem B ([5]). Let G be a connected graph and $1 \le k \le |V(G)|$.

- (a) If $\delta(G) \geq 1$, then $2r_k(G, \gamma) \leq |V(G)| + k$;
- (b) If $\delta(G) \geq 2$, then $5r_k(G, \gamma) \leq 2|V(G)| + 3k$.
- **2.** Bounds in terms of order and degrees. In this section, we extend the following bound on the domination number to the restricted domination number.

Theorem C (Cockayne, Ko and Shepherd [1]). If a connected graph G is claw-free and net-free, then $\gamma(G) \leq (|V(G)| + 2)/3$.

We shall need the following lemma.

Lemma 2.1. Let G be a graph, $\delta(G) \ge 1$, $\emptyset \ne X \subseteq V_0 \subseteq V(G)$ and $Z_0 \ne \emptyset$ be the set of isolated vertices of $G_0 = G - V_0$. Let $D \subseteq N(Z_0, G)$ be minimal with respect to the property $Z_0 \subseteq N(D, G)$. Then:

- (a) $[2] \ 2|D| \le |Z_0| + |N(Z_0, G)| / \delta(G);$
- (b) Let at most one of the components of G_0 have at least two vertices and let $G_1 = \langle N[Z_0, G], G \rangle$.
 - (b1) If G_0 is claw-free and net-free then $3r(G,X,\gamma) \leq 3r(\langle V_0,G\rangle,X,\gamma) + 3|D| + |V(G)| |V_0| |Z_0| + 2$
 - (b2) If G_1 is claw-free graph then $|Z_0| \leq 2|N(Z_0, G)|/\delta(G)$.

Proof. (b1) Let P be a γ_X -set of a graph $\langle V_0, G \rangle$ and Q be a γ -set of a graph $\langle V(G) - (V_0 \cup Z_0), G \rangle$. Then the set $S = P \cup Q \cup D$ is a dominating set of G and $X \subset S$. Hence $r(G, X, \gamma) \leq |S| \leq |P| + |Q| + |D|$ and from Theorem C it follows $r(G, X, \gamma) \leq r(\langle V_0, G \rangle, X, \gamma) + (|V(G)| - |V_0| - |Z_0| + 2)/3 + |D|$. Hence we have the result.

(b2) Let $M \subseteq E(G)$ be the set of all edges between Z_0 and $N(Z_0,G)$. Then $|M| = \sum_{z \in Z_0} \deg(z,G) \geq \delta(G)|Z_0|$. On the other hand, since G_1 is claw-free, then $1 \leq |N(a,G) \cap Z_0| \leq 2$ for each $a \in N(Z_0,G)$. Hence $|M| \leq 2|N(Z_0,G)|$. Therefore $\delta(G)|Z_0| \leq 2|N(Z_0,G)|$ and the result follows. \square

Theorem 2.2. Let G be claw-free and net-free graph, $\delta(G) \geq 1$, $\emptyset \neq X \subseteq V(G)$, Z_0 be the set of isolated vertices of a graph $G_0 = G - N[X, G]$ and let G_0 have at most one component with at least two vertices.

- (i) If $Z_0 = \emptyset$ then $3r(G, X, \gamma) \le |V(G)| + 2|X| \deg(X, G) + 2$.
- (ii) If $Z_0 \neq \emptyset$ then $6r(G, X, \gamma) \leq 2|V(G)| + 4|X| + 4 + \deg(X, G)/(5/\delta(G) 2)$.

Proof. Let $V_0 = N[X, G]$. Then $r(\langle V_0, G \rangle, X, \gamma) = |X|$ and $|V_0| = \deg(X, G) + |X|$.

- (i): If $V_0 = V(G)$ then the result is obvious. Now, let $V_0 \neq V(G)$ and let M be a γ -set of G_0 . Then $X \cup M$ is a dominating set of G. Hence by Theorem C: $r(G, X, \gamma) \leq |X| + |M| \leq |X| + (|V(G)| |X| \deg(X, G) + 2)/3$ and the result follows.
- (ii): From Lemma 2.1 (a) and (b2) we have: $6|D| 2|Z_0| \le 3|Z_0| + 3|N(Z_0, G)|/\delta(G) 2|Z_0| \le 5|N(Z_0, G)|/\delta(G)$. From this and from Lemma 2.1 (b1) it follows: $6r(G, X, \gamma) \le 6|X| + 6|D| + 2|V(G)| 2\deg(X, G) 2|X| 2|Z_0| + 4 = 4|X| + 2|V(G)| 2\deg(X, G) + 4 + 6|D| 2|Z_0| \le 2|V(G)| + 4|X| + 4 2\deg(X, G) + 5|N(Z_0, G)|/\delta(G)$. Now, the result follows because of $N(Z_0, G) \subseteq N(X, G) \setminus G$. \square

Corollary 2.3. Let G be a claw-free and net-free graph, $\delta(G) \geq 1$ and $1 \leq k \leq |V(G)|$. Let for each vertex set $X \subseteq V(G)$ of cardinality k, the graph $G_0 = G - N[X, G]$ have at most one component of order at least two.

- (i) If $\delta(G) = 1$ then $6r_k(G, \gamma) \le 2|V(G)| + 4k + 4 + 3\Delta_k(G)$;
- (ii) If $\delta(G) = 2$ then $6r_k(G, \gamma) \le 2|V(G)| + 4k + 4 + \Delta_k(G)/2$;
- (iii) If $\delta(G) \geq 3$ then $6r_k(G, \gamma) \leq 2|V(G)| + 4k + 4 \delta_k(G)(2 5/\delta(G))$.

REFERENCES

- [1] E. J. COCKAJNE, C. W. Ko, F. B. Shepherd. Inequalities concerning dominating sets in graphs. Technical Report DM-370-IR, Dept. Math., Univ. Victoria, 1985.
- [2] P. FLACH, L. VOLKMANN. Estimations for the domination number of a graph. *Discrete Mathematics*, **80** (1990), 145–151.
- [3] M. R. Garey, D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP Complectedness. Freeman, New York, 1979.
- [4] T. W. Haynes, S. T. Hedetniemi, P. J. Slater. Fundamentals of Domination in Graphs. Marcel Dekker, New York, 1998.
- [5] M. A. Henning., Restricted domination in graphs. Discrete Mathematics, 254 (2002), 175–189.
- [6] W. McCuaig, B. Shepherd. Domination in graphs with minimum degree two. *J. Graph Theory*, **13** (1989), 749–762.
- [7] O. Ore. Theory of Graphs. Amer. Math. Soc. Colloq. Publ., vol. 38, Amer. Math. Soc., Providence, RI, 1962.
- [8] L. A. Sanchis. Bounds related to domination in graphs with minimum degree two. *J. Graph Theory*, **25** (1997), 139–152.

V. D. Samodivkin

University of Architecture, Civil Engineering and Geodesy

1, Hr. Smirnenski Blvd.

1046 Sofia, Bulgaria

e-mail: vlsam_fte@uacg.bg

ЗА ОГРАНИЧЕНОТО ДОМИНИРАНЕ В ГРАФИ

Владимир Д. Самодивкин

Намерена е горна граница за числото на ограничено доминиране на $(K_{1,3}, K_3 \circ K_1)$ -свободни графи.