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ON THE RESTRICTED DOMINATION IN GRAPHS
*

Vladimir D. Samodivkin

An upper bound in terms of order and degrees on the restricted domination number
of claw-free and net-free graphs is obtained.

1. Introduction. For the terminology in graph theory not presented here, we
follow Haynes, et al. [4]. We denote the vertex set and the edge set of a graph G
by V (G) and E(G), respectively. For any vertex v of G its open neighborhood N(v, G)
is {x ∈ V (G)| vx ∈ E(G)}, its closed neighborhood N [v, G] is N(v, G) ∪ {v}, and its
degree deg(v, G) is |N(v, G)|. The minimum and maximum degrees of vertices in V (G)
are denoted by δ(G) and ∆(G), respectively. For a set S ⊆ V (G) its open neighborhood

N(S, G) is ∪v∈SN(v, G), its closed neighborhood N [S, G] is N(S, G) ∪ S, and its degree

deg(S, G) is |N(S, G)\S|. The k-set minimum degree of G is the greatest integer δk(G)
such that δk(G) ≤ deg(X, G) for all subsets X of V (G) of cardinality k. The k-set
maximum degree of G is the smallest integer ∆k(G) such that ∆k(G) ≥ deg(X, G) for
all subsets X of V (G) of cardinality k. The subgraph induced by S ⊆ V (G) is denoted
by 〈S, G〉. The corona of two graphs G1 and G2 is the graph G = G1 ◦ G2 formed
from one copy of G1 and |V (G1)| copies of G2 where the ith vertex of G1 is adjacent to
every vertex in the ith copy of G2. The complete bipartite graph K1,3 is called a claw

and the graph K3 ◦ K1 is called a net. A set D of vertices in G is a dominating set if
N [D, G] = V (G). The domination number γ(G) of a graph G is the minimum cardinality
taken over all dominating sets of G. A dominating set with γ(G) vertices is called γ-set.
The problem of determining γ(G) for an arbitrary graph is NP -complete (Garey et al.
[3]). Various authors have investigated bounds on the domination number of a graph in
terms of order. The earliest such result is due to Ore [7]. McCuaig and Shepherd [6]
investigated upper bounds on γ(G) in the case δ(G) ≥ 2.

Theorem A. Let G be a graph.

(a) ([7]) If δ(G) ≥ 1, then γ(G) ≤ |V (G)|/2.
(b) ([6]) If G is a connected graph of order at least 8 and δ(G) ≥ 2 then

γ(G) ≤ 2|V (G)|/5.

In this paper, we study restricted domination in graphs. The concept of restricted
domination was introduced by Sanchis [8]. We shall use the notation which was proposed
by Henning [5]. Let U be a subset of vertices of a graph G. The restricted domination

number r(G, U, γ) of U is the minimum cardinality of a dominating set of G containing
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U . A smallest possible dominating set of G containing all the vertices in U is called a
γU -set. The k-restricted domination number of G is the smallest integer rk(G, γ) such
that rk(G, U, γ) ≤ rk(G, γ) for all subsets U of V (G) of cardinality k. In the case k = 0,
the k-restricted domination number is the domination number.

Henning [5] extends the bounds on the domination number obtained in Theorem A
to the restricted domination number:

Theorem B ([5]). Let G be a connected graph and 1 ≤ k ≤ |V (G)|.
(a) If δ(G) ≥ 1, then 2rk(G, γ) ≤ |V (G)| + k;

(b) If δ(G) ≥ 2, then 5rk(G, γ) ≤ 2|V (G)| + 3k.

2. Bounds in terms of order and degrees. In this section, we extend the
following bound on the domination number to the restricted domination number.

Theorem C (Cockayne, Ko and Shepherd [1]). If a connected graph G is claw-free

and net-free, then γ(G) ≤ (|V (G)| + 2)/3.

We shall need the following lemma.

Lemma 2.1.Let G be a graph, δ(G) ≥ 1, ∅ 6= X ⊆ V0 ⊆ V (G) and Z0 6= ∅ be the set

of isolated vertices of G0 = G − V0. Let D ⊆ N(Z0, G) be minimal with respect to the

property Z0 ⊆ N(D, G). Then:

(a) [2] 2|D| ≤ |Z0| + |N(Z0, G)| / δ(G);

(b) Let at most one of the components of G0 have at least two vertices and let G1

= 〈N [Z0, G], G〉.

(b1) If G0 is claw-free and net-free then 3r(G, X, γ) ≤ 3r(〈V0, G〉, X, γ) + 3|D|
+|V (G)| − |V0| − |Z0| + 2

(b2) If G1 is claw-free graph then |Z0| ≤ 2|N(Z0, G)|/δ(G).

Proof. (b1) Let P be a γX -set of a graph 〈V0, G〉 and Q be a γ-set of a graph
〈V (G) − (V0 ∪ Z0), G〉. Then the set S = P ∪ Q ∪ D is a dominating set of G and
X ⊂ S. Hence r(G, X, γ) ≤ |S| ≤ |P | + |Q| + |D| and from Theorem C it follows
r(G, X, γ) ≤ r(〈V0, G〉, X, γ) + (|V (G)| − |V0| − |Z0| + 2)/3 + |D|. Hence we have the
result.

(b2) Let M ⊆ E(G) be the set of all edges between Z0 and N(Z0, G). Then |M |
= Σz∈Z0

deg(z, G) ≥ δ(G)|Z0|. On the other hand, since G1 is claw-free, then
1 ≤ |N(a, G) ∩ Z0| ≤ 2 for each a ∈ N(Z0, G). Hence |M | ≤ 2|N(Z0, G)|. Therefore
δ(G)|Z0| ≤ 2|N(Z0, G)| and the result follows. �

Theorem 2.2.Let G be claw-free and net-free graph, δ(G) ≥ 1, ∅ 6= X ⊆ V (G), Z0

be the set of isolated vertices of a graph G0 = G − N [X, G] and let G0 have at most one

component with at least two vertices.

(i) If Z0 = ∅ then 3r(G, X, γ) ≤ |V (G)| + 2|X | − deg(X, G) + 2.

(ii) If Z0 6= ∅ then 6r(G, X, γ) ≤ 2|V (G)| + 4|X |+ 4 + deg(X, G)/(5/δ(G) − 2).

Proof. Let V0 = N [X, G]. Then r(〈V0, G〉, X, γ) = |X | and |V0| = deg(X, G) + |X |.
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(i): If V0 = V (G) then the result is obvious. Now, let V0 6= V (G) and let M be a
γ-set of G0. Then X ∪ M is a dominating set of G. Hence by Theorem C: r(G, X, γ)
≤ |X | + |M | ≤ |X | + (|V (G)| − |X | − deg(X, G) + 2)/3 and the result follows.

(ii): From Lemma 2.1 (a) and (b2) we have: 6|D|− 2|Z0| ≤ 3|Z0|+3|N(Z0, G)|/δ(G)
−2|Z0| ≤ 5|N(Z0, G)|/δ(G). From this and from Lemma 2.1 (b1) it follows: 6r(G, X, γ)
≤ 6|X |+6|D|+2|V (G)|−2 deg(X, G)−2|X |−2|Z0|+4 = 4|X |+2|V (G)|−2 deg(X, G)
+4 + 6|D| − 2|Z0| ≤ 2|V (G)| + 4|X | + 4 − 2 deg(X, G) + 5|N(Z0, G)|/δ(G). Now, the
result follows because of N(Z0, G) ⊆ N(X, G)\G. �

Corollary 2.3.Let G be a claw-free and net-free graph, δ(G) ≥ 1 and 1 ≤ k ≤ |V (G)|.
Let for each vertex set X ⊆ V (G) of cardinality k, the graph G0 = G − N [X, G] have at

most one component of order at least two.

(i) If δ(G) = 1 then 6rk(G, γ) ≤ 2|V (G)| + 4k + 4 + 3∆k(G);

(ii) If δ(G) = 2 then 6rk(G, γ) ≤ 2|V (G)| + 4k + 4 + ∆k(G)/2;

(iii) If δ(G) ≥ 3 then 6rk(G, γ) ≤ 2|V (G)| + 4k + 4 − δk(G)(2 − 5/δ(G)).
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ЗА ОГРАНИЧЕНОТО ДОМИНИРАНЕ В ГРАФИ

Владимир Д. Самодивкин

Намерена е горна граница за числото на ограничено доминиране на (K1,3, K3 ◦

K1)-свободни графи.
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