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ON THE COMMUTING OF CURVATURE OPERATORS
*

G. Stanilov, V. Videv

In the present note we characterize four-dimensional Riemannian manifolds for which
some curvature operators commute at each point of the manifolds. This problem was
stated by the first author, and it is a new idea for characterization of Riemannian and
another classes of smooth manifolds. In the present note we obtain a result, which
is one of the first in this field, namely, we characterize the four-dimensional Einstein
manifolds under the hypothesis of commuting of some curvature operators.

Let (M, g) be an n−dimensional Riemannian manifold with a metric tensor g, p be a
point of M , and Mp be the tangent space to Mat this point. In the Riemannian geometry
a very important role plays the curvature tensor R of the manifold (M, g), which has the
following properties

R(x, y, z, u) = −R(y, x, z, u),(1)

R(x, y, z, u) = −R(x, y, u, z),(2)

σx,y,zR(x, y, z, u) = 0 (the first Bianchi identity),(3)

where in (3) σ denotes a cyclic sum. In the properties (1)–(3) of R x, y, z, u are arbitrary
tangent vectors which belong to the tangent space Mp at a point p ∈ M .

Using the Riemannian curvature tensor R of a Riemannian manifold (M, g) it is
possible to define some curvature operators in the tangent space Mp, at any point p ∈ M .
We will use the following linear curvature operators:

1. Jacobi operator [1]

RX(u) = R(X)(u) = R(u, X, X),

defined for each unit tangent vector X ∈ Mp at a point p ∈ M ;
2. Stanilov skew-symmetric curvature operator

Sα(u) = SX,Y (u) = R(X, Y, u),

defined for each orthonormal basis X , Y of a two-dimensional tangent subspace α in Mp

at a point p ∈ M ;
3. Generalized Jacobi operator

R(Em)(u) = Σi=1,mR(Xi)(u),

defined for any m−dimensional subspace Em ⊂ Mp at a point p ∈ M , where {Xi}i=1,m

(m < n) is an orthonormal basis in Em.
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The curvature operators in 2. and 3. are defined in the Riemannian case by the
first author. It is easy to prove that these curvature operators don’t depend on the
orthonormal bases in the corresponding tangent subspace. A new series of investigations
were done in [2] under the assumption

(4) Sα ◦ Rα = Rα ◦ Sα,

which must be true for any two-dimensional tangent subspace α ∈ Mp at any point
p ∈ M . This condition is equivalent to the requirementSα ◦ Rα to be a skew-symmetric
curvature operator.

Further, we consider this problem again in the four-dimensional case. First example
of a four-dimensional Riemannian manifold, which satisfies condition (4), is every space
of constant sectional curvature K, with curvature tensor R of the form

(5) R(x, y, z) = K(g(y, z)x − g(x, z)y),

for any tangent vectors x, y, z in Mp, at any point p ∈ M . Second example of four-
dimensional Riemannian manifold which satisfies this condition is every four-dimensional
Einstein manifold. These are manifolds such that

(6) ρ(u, v) = c.g(u, v),

for some constant c on the whole manifold (M, g), where ρ(u, v) is the Ricci tensor which
can be defined by the equality ρ(u, v) = Σi=1,mR(ei, u, v, ei), for any orthonormal basis
{ei}i=1,n in the tangent subspace Mp. It is clear that the manifolds which satisfy (5)
satisfy (6) too.

In the present note we’ll prove that in the four-dimensional case Einstein manifolds are
the unique possible four-dimensional Riemannian manifolds which satisfy the hypothesis
(4).

Let {e1, e2, e3, e4} be an orthonormal basis in the tangent space Mp, at any point
p ∈ M , and let in the general case A = (aij), (i, j = 1, n) be the matrix of the skew-
symmetric curvature operator Sα ◦Rα for a two-dimensional tangent subspace α in Mp.
If α = span {e1, e2}, then

(7)(A)=









0 −2K12 −R2113 −R2114

K12 0 R1223 R1224

R2113 −R1223 0 R1234

R2114 −R1224 −R1234 0

















K12 0 R1223 R1224

0 K12 R2113 R2114

R1223 R2113 K13+K23 R3114+R3224

R1224 R2114 R3114+R3224 K14+K24









and hence for the entries of (A) we have the formulas

a11 = −R2113R1223 − R2114R1224(8)

a22 = R1223R2113 + R1224R2114

a33 = R1234(R3114 + R3224)

a44 = −R1234(R3114 + R3224)

a12 = −K2

12
− R2

2113
− R2

2114

a21 = K2

12 + R2

1223 + R2

1224

a13 = −K12R2113 − (K13 + K23)R2113 − R2114(R3114 + R2114)

a31 = K12R2113 + R1234R1224
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a14 = −K12R2114 − R2113(R3114 + R3224) − R2114(K14 + K24)

a41 = K12R2114 − R1234R1223

a23 = (K12 + K13 + K23)R1223 + R1224(R3114 + R3224)

a32 = −K12R1223 + R2114R1234

a24 = K12R1224 + R1223(R3114 + R3224) + (K14 + K24)R1224

a42 = −K12R1224 − R1234R2113

a34 = R2113R1224 − R1223R2114 + (K14 + K24)R1234

a43 = R2114R1223 − R1224R2113 − R1234(K13 + K23).

Since A is a skew-symmetric matrix, then we have

(9) aii = 0, (i = 1, 2, 3, 4), and aij = −aji,

for any different indices i, j = 1, 2, 3, 4. Hence a12 = −a21, which according to the
corresponding above entries of (A), gives

(10) R2

2113 + R2

2114 = R2

1223 + R2

1224.

Let e1, e2, e3, e4 be an orthonormal basis of eigenvectors of the Jacobi operator Re1

in the tangent space Mp, at a point p ∈ M (that is possible since Re1 is a symmetric
linear operator). In this case we have the relations

(11) R2113 = R2114 = R3114 = 0,

and now we have

R2113 = R2114 = R1223 = R1224 = 0.

Since the relation (4) is true for any 2-plane E2 = e1 ∧ ej (j = 2, 3, 4), from the last
equality we get (if 1 is fixed and we change the indices):

(2 ↔ 3) R3112 = R3114 = R1332 = R1334 = 0

(3 ↔ 4) R4112 = R4113 = R1442 = R1443 = 0.

Now from (11) it follows that

ρ12 = ρ13 = ρ14 = 0,

because of
ρ12 = R1332 + R1442,

ρ13 = R1223 + R1443,

ρ14 = R1224 + R1334.

From the last three equalities, and using that ρ is a bilinear function on Mp, we can
obtain the equation ρ1x = ρ (e1, x) = 0, which holds for any unit tangent vector x⊥e1,
x ∈ Mp, and a point p ∈ M .

Since e1 is an arbitrary tangent vector in M , this relation is valid for any orthonormal
pair of tangent vector x, e1 in the tangent space Mp, at any point p ∈ M , and this means
that (M, g) is an Einstein manifold.

Thus we proved our

Theorem 1. Let (M, g) be a 4-dimensional Riemannian manifold. Then the following

assertions are equivalent:
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a) For any 2-dimentional tangent plane E2 ∈ Mp, and for any point p of the manifold

(M, g) relation kE2 ◦ SE2 = SE2 ◦ kE22 holds;

b) (M, g) is an Einstein Riemannian manifold.
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ВЪРХУ КОМУТИРАНЕТО НА КРИВИННИ ОПЕРАТОРИ

Грозьо Станилов Иванов, Веселин Т. Видев

Разглеждат се следните два кривинни оператора: кососиметричния оператор и

обобщения оператор на Якоби за 2-мерно допирателно пространство в точка на

4-мерно Риманово многообразие. Поставя се проблема за характеризиране на

такива многобразие при условие за тяхното комутиране. Доказва се, че те кому-

тират точно когато многообразието е Айнщайново.
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