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ON THE COMMUTING OF CURVATURE OPERATORS"
G. Stanilov, V. Videv

In the present note we characterize four-dimensional Riemannian manifolds for which
some curvature operators commute at each point of the manifolds. This problem was
stated by the first author, and it is a new idea for characterization of Riemannian and
another classes of smooth manifolds. In the present note we obtain a result, which
is one of the first in this field, namely, we characterize the four-dimensional Einstein
manifolds under the hypothesis of commuting of some curvature operators.

Let (M, g) be an n—dimensional Riemannian manifold with a metric tensor g, p be a
point of M, and M, be the tangent space to Mat this point. In the Riemannian geometry
a very important role plays the curvature tensor R of the manifold (M, g), which has the
following properties

(1) R(Iay7z7u) = _R(y,I,Z,U),
(2) R(:E,y,z,u) - —R(x,y,u,z),
(3) Ozy-R(x,y,z,u) = 0 (the first Bianchi identity),

where in (3) o denotes a cyclic sum. In the properties (1)—(3) of R z, y, 2z, u are arbitrary
tangent vectors which belong to the tangent space M), at a point p € M.

Using the Riemannian curvature tensor R of a Riemannian manifold (M,g) it is
possible to define some curvature operators in the tangent space My, at any point p € M.
We will use the following linear curvature operators:

1. Jacobi operator [1]

Rx(u) = R(X)(u) = R(u, X, X),
defined for each unit tangent vector X € M, at a point p € M;
2. Stanilov skew-symmetric curvature operator
Sa(u) = Sxyy(’u,) = R(X, Y,u),
defined for each orthonormal basis X, Y of a two-dimensional tangent subspace a in M,
at a point p € M,
3. Generalized Jacobi operator
R(Em)(u) = zi:l,mR(Xi)(u)a
defined for any m—dimensional subspace E™ C M, at a point p € M, where {X;}i=1.m
(m < n) is an orthonormal basis in E™.
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The curvature operators in 2. and 3. are defined in the Riemannian case by the
first author. It is easy to prove that these curvature operators don’t depend on the
orthonormal bases in the corresponding tangent subspace. A new series of investigations
were done in [2] under the assumption

(4) Sqa0Rq =Ry 08,,
which must be true for any two-dimensional tangent subspace a € M, at any point

p € M. This condition is equivalent to the requirementS, o R, to be a skew-symmetric
curvature operator.

Further, we consider this problem again in the four-dimensional case. First example
of a four-dimensional Riemannian manifold, which satisfies condition (4), is every space
of constant sectional curvature K, with curvature tensor R of the form

for any tangent vectors x, y, z in M), at any point p € M. Second example of four-
dimensional Riemannian manifold which satisfies this condition is every four-dimensional
Einstein manifold. These are manifolds such that

(6) p(u,v) = c.g(u,v),

for some constant ¢ on the whole manifold (M, g), where p(u, v) is the Ricci tensor which
can be defined by the equality p(u,v) = 3ij=1 mR(ei, u, v, ¢;), for any orthonormal basis
{ei}i=1,» in the tangent subspace M. It is clear that the manifolds which satisfy (5)
satisfy (6) too.

In the present note we’ll prove that in the four-dimensional case Einstein manifolds are
the unique possible four-dimensional Riemannian manifolds which satisfy the hypothesis

(4)-

Let {e1,e2,e3,e4} be an orthonormal basis in the tangent space M,, at any point
p € M, and let in the general case A = (asj), (i, = 1,n) be the matrix of the skew-
symmetric curvature operator S, o R, for a two-dimensional tangent subspace a in M.
If & = span{ey, ez}, then

0  —2Ki2 —Roiiz —Roia\ [ Ki2 0 Ri223 Ri224
(7)(A)= éfu RO Rizo3  Rizoa 0 Ko Ro113 Ro114

2113 — 11223 0 Ri234 Ri223 Roniz Kis+Kaz  Rsp1a+R3224

Ro114 —Ri224 —Ri234 0 Ri224 Ro11a Rziia+Rzoos  Kig+Koy

and hence for the entries of (A) we have the formulas
(8) a1 = —Ro113R1223 — Ro114R1224

aze = Ri223R2113 + Ri224R2114

azs = Riz34(R3114 + R3224)

asa = —Riz34(Rs3114 + R3224)

a2 = _K122 - 35113 - R§114

ag1 = Kf+ Risos + Risgy

a3 = —KiaRo113 — (K13 + Ka3)Ra113 — Ra114(R3114 + Ro114)

a1 = KiaRo113 + Ri234R1224
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a1a = —KiaRo114 — Ro113(R3114 + R3224) — Ro114(K14 + Ko4)
as1 = KiaRo11a — Ri234R1203

azs = (K2 + K13+ Ko3)Ri223 + Ri224(R3114 + R3224)
azz = —Kia2Ri203 + Ro114R1234
azy = KioRi904 + Ri203(R3114 + R3224) + (K14 + K24) R1224
as2 = —KiaRi224 — R1234R2113
aza = Ro113R1224 — Ri223Ro114 + (K14 + K24)R1234
as3 = Ro11aRi1223 — Ri224Ro113 — Ri234(K13 + Kag).
Since A is a skew-symmetric matrix, then we have
(9) ai; =0, (1=1,2,3,4), and a;; = —aj;,
for any different indices 7,5 = 1,2,3,4. Hence aj2 = —as1, which according to the
corresponding above entries of (A4), gives
(10) R3113 + R3114 = Risas + Risoy.

Let eq, ea, e3, e4 be an orthonormal basis of eigenvectors of the Jacobi operator R,
in the tangent space M, at a point p € M (that is possible since R.; is a symmetric
linear operator). In this case we have the relations
(11) Ro113 = Ro114 = R3114 = 0,
and now we have

Ro113 = R2114 = Ri223 = Ri224 = 0.

Since the relation (4) is true for any 2-plane E? = e; Ae; (j = 2,3,4), from the last
equality we get (if 1 is fixed and we change the indices):

(2 3) R3112 = R3114 = Riz32 = R334 =0
(3—4) Ri112 = R4113 = Riga2 = Riaa3 = 0.
Now from (11) it follows that

p12 = p13 = p14a =0,
because of

p12 = Ri332 + Ri442,

p13 = Ri203 + Ri443,

p14 = Ri224 + Ri33s.

From the last three equalities, and using that p is a bilinear function on M,,, we can
obtain the equation p1, = p (e1,2) = 0, which holds for any unit tangent vector z_Ley,
x € Mp, and a point p € M.

Since e; is an arbitrary tangent vector in M, this relation is valid for any orthonormal
pair of tangent vector x, e; in the tangent space M, at any point p € M, and this means
that (M, g) is an Einstein manifold.

Thus we proved our

Theorem 1. Let (M, g) be a 4-dimensional Riemannian manifold. Then the following
assertions are equivalent:
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a) For any 2-dimentional tangent plane E* € M,, and for any point p of the manifold
(M, g) relation kg2 o Sg2 = Sg2 0 kg22 holds;
b) (M,g) is an Finstein Riemannian manifold.
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BbPXY KOMYTNPAHETO HA KPUBUHHUN OIIEPATOPU

I'posbo CranusoB MBanos, Beceaun T. Bunes

Pasriiexxiar ce ciaegHuTe nBa KPUBMHHE OMEPATOpPa: KOCOCUMETPUYHUS OIEPATOP U
06001IeHUsT onepaTop Ha fKobu 3a 2-MepHO JIONMUPATEHO IIPOCTPAHCTBO B TOYKA HA
4-mepHo PumanoBo muoroobpaswme. IlocraBsi ce mpobiema 3a xapakTepu3upaHe Ha
TaKWBa MHOTOOpa3ue MpU yCJIOBHE 3a TIXHOTO KOMyTupane. Jloka3sa ce, 4e Te KOMy-
TUPAT TOYHO KOTaTo MHOroobpasuero € ARHIaiiHoBO.
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