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FOUR-DIMENSIONAL RIEMANNIAN MANIFOLDS WITH
COMMUTING STANILOV CURVATURE OPERATORS"

Vesselin Videv, Maria Ivanova

We characterize locally the four-dimensional Rimannian manifolds of constant sec-
tional curvature by applying a condition for commuting of the Stanilov skew-
symmetric curvature operator and the generalized Jacobi operator of second order.

Let (M, g) be an n-dimensional Riemannian manifold with curvature tensor R of type
(1, 3), or of type (0, 4), both related by the identity
(1) g(R(m)y7 Z)?“) = R(x7y)z)u)'
Further we denote by M, the tangent space to M at a point p € M.

The classical Jacobi operator

(2) Jo : My — My,
induced by a unit tangent vector x € M, is given by
3) Jo(u) = R(u, z, ).

It is a symmetric curvature operator.
In 1990 G. Stanilov [1, 2] defined the now well-known and widely used skew-symmetric
curvature operator:

(4) kg, : My — My,
induced by a two-dimensional tangent subspace Ey € My, in the following way:
(5) kg,(u) = R(z,y,u),

were (z,y) is an orthonormal basis of Fs.

It is easy to see that the curvature operator kg, is invariant with respect to any
orthogonal transformation of E5 with positive determinant.

Let E,, be an m-dimensional tangent subspace of the tangent space M,,.

In 1991 G. Stanilov [2, 3] defined the so-called generalized Jacobi operator:

by the formula

(7) B = > Jess
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where {e;}, i =1,...,m is an orthonormal basis of E,,.

It is clear that Sg,, is invariant with respect to any orthogonal transfornation of E,,
and it is a symmetric curvature operator.

Hence every m-dimensional tangent subspace F, € M, induces a corresponding
generalized Jacobi operator Sg,, [4, 5, 6, 7].

Using these curvature operators, Stanilov and Tsankov [8] gave a characterization for
their commuting in the tangent space M, at any point p € M.

Based on these investigations, in the present paper we consider the class of four-
dimensional Rimannian manifolds such that at any point p € M and for any tangent
plane Ey € M, the following relation holds:

(8) K,ig,oSg, = Sg, o kLE,,
where L denotes the orthogonal complement of Fy in M,,.

Remark 1. This condition is equivalent to the requirement that kg, o Sg, is a
skew-symmetric curvature operator [8].

Let (e1,e2,€3,€e4) be an arbitrary orthonormal basis of the tangent space M, at a
point p € M. Then the matrices of the curvature operators ke, ¢, and Se, ., with respect
to this basis are the following:

0 —Kio —Roniz —Roia

Ko 0  Rizez  Rioo
(kersea) = Ro113 —Ri2zs 0 Rigza |’
Ro114  —Rizoa  —Rio3g 0
K3+ K14 Rizse + Risaz Rigas Risse
Rizso + Risaz Koz + Koy Roauz  Rassa
(Seases) = Ri4a3 Roqas K3y 0
R334 R334 0 K3y

Following Remark 1 we have that the matrix (a;;) of the curvature operator ke, ¢, ©
Ses.e, 15 skew-symmetric. Thus we get:

a11 = —Kiap12 — Ro113R1443 — R2114R1334 = 0,
) azs = Ki2p12 + Ri203 Roaa3 + Ri224 R334 = 0,

az3 = R2113R1443 — Ri223Ro4a3 = 0,

a4q = —Ro114R1334 + Ri1224R2334 = 0.

Here K;; = R(ei,ej,¢e;,€e;) is the sectional curvature of the plane spanned by the
tangent vectors e;, e; and py, = p(u,v) is the Ricci tensor, for which

4
p(uv 1}) = Z R(eia u, v, ei)'
i=1
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In (9) we change the indeces 1 and 2. Thus we get:
Ki2p12 + Ri223Ro443 + Ri224 Ro334 = 0,

(10) Ki2p12 + Ro113R1443 + Ro114R1334 = 0,
Ri223R2443 — R2113R1443 = 0,
—Ri224Ro334 + Ro1141334 = 0.

Let = be a smooth tangent vector field on the manifold (M, g). Having in mind that
any Jacobi operator J, is a symmetric linear operator and following some results for this
class of operators [9], we define the three submanifolds Ms, M, M7 of M, consisting of
the points © € M at which J, has 3, 2 or 1 different, non-zero eigenvalues, respectively.

Let x = e; and ey, es, e3, e4 be an orthonormal basis of eigenvectors of the Jacobi
operator J, in the tangent space M), at a point p € M. Then

(11) Ro113 = Ro114 = R3114 =0

and for the corresponding eigenvalues cg, c1, ca, c3 of the eigenvectors ey, es, €3, e4 we
have

o =0, 1=K, c2=Ki3 c3=Kiu.
From (11) and (9), we obtain the equality
Ki2p12 = 0.
Since the relation (8) is true for any 2-plane Es = e1 A ¢, we get the system
(12) Kyj.p1; =0, (J=234).

Now we consider the case when the non-zero eigenvalues cj, co, cs of the Jacobi
operator J., are different at a point p € M3. Then (12) implies

(13) p1; =0 (J=2,34)
from where it is easy to find that
(14) Plz = 0)

for any tangent vector xl ey, at any point p € Ms.

The second possibility is when the Jacoby operator J., has two different non-zero
eigenvalues at a point p € Ma, say co = K33 and ¢3 = K14. Then from the system (12)
we get

(15) p13 =0, p1a = 0.
From (9), (10), (11) changing the index 1 by indeces 3 and 4, we get:
Ki2p12 =0,
(16) Kazpaz =0,
Kaspoy = 0.

Suppose p12 = 0. Then using (15) we obtain (13) and (14) again, but for any tangent
vector z_le; at a point p € Ms.
If p12 = p11 — p22 # 0, then

(17) p11 # p2a.
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Since from (15) it follows that

(18) pi1 — p33 =0, p11 — paa = 0,
we get from (17) and (18) that
(19) p23 # 0, p2a # 0.
These unequalities and (16) imply that

Koz = Koy =0,

and then using ¢; = K12 = 0, we obtain
p33 = K13 + Koz + Koy = c2 + Kaa,

pas = K14 + Kog + K34 = 3 + K.
From the second equality in (15) we obtain

(21) P33 = Pad;
and then from (20) and the equality (21) we get co = c3, a contradiction.

The third possibility is when the Jacobi operator .J., has just one non-zero eigenvalue
con M. If er, ua, us, ug is an arbitrary orthonormal basis of the tangent space M, at
a point p € My, then using the special form of the characteristic equation of the Jacobi
operator J., with respect to this basis we find

Ra113 =0,

which holds for any orthonormal triple e;, u2, us in the tangent space M, at a point
p € M;. This equality means that the submanifold M; has a constant sectional curvature,
and hence (14) is valid again, now for any tangent vector x_Ley, at a point p € Mj.

Thus, the equality (14) is always true. More exactly the equality (14) holds good for
any tangent vector xlej, at any point p € M;, 1 < ¢ < k, which means that all these
submanifolds of the basic manifold M are Einstein submanifolds. Then the Riemannian
manifold (M, g) is also an Einstein manifold. Now we apply Lemma 1 and Lemma 2
from the paper [8]. It follows that the operators kg, = k and S| g, = S are orthogonal
and for any orthonormal basis (e;), i = 1,2, 3,4 we have

g(k(es), S(ej)) + g(k(e;), S(ei)) =0,

for all ¢, = 1,2,...,n. If (e;) is the well-khown Singer-Thorpe basis then R;;n = 0,
when three of the indeces are distinct. Hence p = Kj;; and the manifold is of constant
sectional curvature.

Converselly, if the Riemannian manifold (M, g) is of constant sectional curvature,
then the relation (8) holds true. Hence the following conditions are equivalent:

(1) The relation (8) holds true for any tangent plane Es € M, p € M;

(2) (M, g) is locally isometric to a Riemannian manifold of constant sectional curva-
ture.

(20)
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YETUPNMEPHU PUMAHOBU MHOT'OOBPA3MYA C KOMYTUPAIIIN
KPUBWUHHUN OIIEPATOPU HA CTAHMNJIOB

Becenuun Bunes, Mapusi IBanosa

ITonydena e sokasiHa xapakrepusalusi Ha PuManoBuTe MHOroob6pasusi ¢ IIOCTOSTHHA
CEKIIMOHHU KPUBHUHA, KATO C€ M3II0JI3Ba €J[HO YCJIOBHE 38 KOMYyTHPaHE HA AHTUCAMET-
puuHus KpuBuHeH oneparop Ha CranuioB u 06001enHust oneparop Ha Jkobu ot Bropu

pex.
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