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FOUR-DIMENSIONAL RIEMANNIAN MANIFOLDS WITH

COMMUTING STANILOV CURVATURE OPERATORS
*

Vesselin Videv, Maria Ivanova

We characterize locally the four-dimensional Rimannian manifolds of constant sec-
tional curvature by applying a condition for commuting of the Stanilov skew-
symmetric curvature operator and the generalized Jacobi operator of second order.

Let (M, g) be an n-dimensional Riemannian manifold with curvature tensor R of type
(1, 3), or of type (0, 4), both related by the identity

(1) g(R(x, y, z), u) = R(x, y, z, u).

Further we denote by Mp the tangent space to M at a point p ∈ M .
The classical Jacobi operator

(2) Jx : Mp → Mp,

induced by a unit tangent vector x ∈ Mp is given by

(3) Jx(u) = R(u, x, x).

It is a symmetric curvature operator.
In 1990 G. Stanilov [1, 2] defined the now well-known and widely used skew-symmetric

curvature operator:

(4) kE2
: Mp → Mp,

induced by a two-dimensional tangent subspace E2 ∈ Mp, in the following way:

(5) kE2
(u) = R(x, y, u),

were (x, y) is an orthonormal basis of E2.
It is easy to see that the curvature operator kE2

is invariant with respect to any
orthogonal transformation of E2 with positive determinant.

Let Em be an m-dimensional tangent subspace of the tangent space Mp.
In 1991 G. Stanilov [2, 3] defined the so-called generalized Jacobi operator:

(6) SEm
: Mp → Mp,

by the formula

(7) SEm
=

m
∑

i=1

Jei
,
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where {ei}, i = 1, . . . , m is an orthonormal basis of Em.

It is clear that SEm
is invariant with respect to any orthogonal transfornation of Em

and it is a symmetric curvature operator.

Hence every m-dimensional tangent subspace Em ∈ Mp induces a corresponding
generalized Jacobi operator SEm

[4, 5, 6, 7].

Using these curvature operators, Stanilov and Tsankov [8] gave a characterization for
their commuting in the tangent space Mp, at any point p ∈ M .

Based on these investigations, in the present paper we consider the class of four-
dimensional Rimannian manifolds such that at any point p ∈ M and for any tangent
plane E2 ∈ Mp the following relation holds:

(8) K⊥E2
◦ SE2

= SE2
◦ k⊥E2

,

where ⊥ denotes the orthogonal complement of E2 in Mp.

Remark 1. This condition is equivalent to the requirement that k⊥E2
◦ SE2

is a
skew-symmetric curvature operator [8].

Let (e1, e2, e3, e4) be an arbitrary orthonormal basis of the tangent space Mp at a
point p ∈ M . Then the matrices of the curvature operators ke1,e2

and Se3,e4
with respect

to this basis are the following:

(ke1,e2
) =

















0 −K12 −R2113 −R2114

K12 0 R1223 R1224

R2113 −R1223 0 R1234

R2114 −R1224 −R1234 0

















,

(Se3,e4
) =

















K13 + K14 R1332 + R1442 R1443 R1334

R1332 + R1442 K23 + K24 R2443 R2334

R1443 R2443 K34 0

R1334 R2334 0 K34

















Following Remark 1 we have that the matrix (aij) of the curvature operator ke1,e2
◦

Se3,e4
is skew-symmetric. Thus we get:

(9)

a11 = −K12ρ12 − R2113R1443 − R2114R1334 = 0,

a22 = K12ρ12 + R1223R2443 + R1224R2334 = 0,

a33 = R2113R1443 − R1223R2443 = 0,

a44 = −R2114R1334 + R1224R2334 = 0.

Here Kij = R(ei, ej , ej, ei) is the sectional curvature of the plane spanned by the
tangent vectors ei, ej and ρuv = ρ(u, v) is the Ricci tensor, for which

ρ(u, v) =

4
∑

i=1

R(ei, u, v, ei).
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In (9) we change the indeces 1 and 2. Thus we get:

(10)

K12ρ12 + R1223R2443 + R1224R2334 = 0,

K12ρ12 + R2113R1443 + R2114R1334 = 0,

R1223R2443 − R2113R1443 = 0,

−R1224R2334 + R2114R1334 = 0.

Let x be a smooth tangent vector field on the manifold (M, g). Having in mind that
any Jacobi operator Jx is a symmetric linear operator and following some results for this
class of operators [9], we define the three submanifolds M3, M2, M1 of M , consisting of
the points x ∈ M at which Jx has 3, 2 or 1 different, non-zero eigenvalues, respectively.

Let x = e1 and e1, e2, e3, e4 be an orthonormal basis of eigenvectors of the Jacobi
operator Je1

in the tangent space Mp at a point p ∈ M . Then

(11) R2113 = R2114 = R3114 = 0

and for the corresponding eigenvalues c0, c1, c2, c3 of the eigenvectors e1, e2, e3, e4 we
have

c0 = 0, c1 = K12, c2 = K13, c3 = K14.

From (11) and (9), we obtain the equality

K12ρ12 = 0.

Since the relation (8) is true for any 2-plane E2 = e1 ∧ ej , we get the system

(12) K1j.ρ1j = 0, (j = 2, 3, 4).

Now we consider the case when the non-zero eigenvalues c1, c2, c3 of the Jacobi
operator Je1

are different at a point p ∈ M3. Then (12) implies

(13) ρ1j = 0 (j = 2, 3, 4)

from where it is easy to find that

(14) ρ1x = 0,

for any tangent vector x⊥e1, at any point p ∈ M3.

The second possibility is when the Jacoby operator Je1
has two different non-zero

eigenvalues at a point p ∈ M2, say c2 = K13 and c3 = K14. Then from the system (12)
we get

(15) ρ13 = 0, ρ14 = 0.

From (9), (10), (11) changing the index 1 by indeces 3 and 4, we get:

(16)

K12ρ12 = 0,

K23ρ23 = 0,

K24ρ24 = 0.

Suppose ρ12 = 0. Then using (15) we obtain (13) and (14) again, but for any tangent
vector x⊥ei at a point p ∈ M2.

If ρ12 = ρ11 − ρ22 6= 0, then

(17) ρ11 6= ρ22.
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Since from (15) it follows that

(18) ρ11 − ρ33 = 0, ρ11 − ρ44 = 0,

we get from (17) and (18) that

(19) ρ23 6= 0, ρ24 6= 0.

These unequalities and (16) imply that

K23 = K24 = 0,

and then using c1 = K12 = 0, we obtain

(20)
ρ33 = K13 + K23 + K24 = c2 + K34,

ρ44 = K14 + K24 + K34 = c3 + K34.

From the second equality in (15) we obtain

(21) ρ33 = ρ44,

and then from (20) and the equality (21) we get c2 = c3, a contradiction.
The third possibility is when the Jacobi operator Je1

has just one non-zero eigenvalue
c on M1. If e1, u2, u3, u4 is an arbitrary orthonormal basis of the tangent space Mp at
a point p ∈ M1, then using the special form of the characteristic equation of the Jacobi
operator Je1

with respect to this basis we find

R2113 = 0,

which holds for any orthonormal triple e1, u2, u3 in the tangent space Mp at a point
p ∈ M1. This equality means that the submanifold M1 has a constant sectional curvature,
and hence (14) is valid again, now for any tangent vector x⊥e1, at a point p ∈ M1.

Thus, the equality (14) is always true. More exactly the equality (14) holds good for
any tangent vector x⊥e1, at any point p ∈ Mi, 1 ≤ i ≤ k, which means that all these
submanifolds of the basic manifold M are Einstein submanifolds. Then the Riemannian
manifold (M, g) is also an Einstein manifold. Now we apply Lemma 1 and Lemma 2
from the paper [8]. It follows that the operators kE2

= k and S⊥E2
= S are orthogonal

and for any orthonormal basis (ei), i = 1, 2, 3, 4 we have

g(k(ei), S(ej)) + g(k(ej), S(ei)) = 0,

for all i, j = 1, 2, . . . , n. If (ei) is the well-khown Singer-Thorpe basis then Rijkl = 0,
when three of the indeces are distinct. Hence ρ = Kij and the manifold is of constant
sectional curvature.

Converselly, if the Riemannian manifold (M, g) is of constant sectional curvature,
then the relation (8) holds true. Hence the following conditions are equivalent:

(1) The relation (8) holds true for any tangent plane E2 ∈ Mp, p ∈ M ;
(2) (M, g) is locally isometric to a Riemannian manifold of constant sectional curva-

ture.
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ЧЕТИРИМЕРНИ РИМАНОВИ МНОГООБРАЗИЯ С КОМУТИРАЩИ

КРИВИННИ ОПЕРАТОРИ НА СТАНИЛОВ

Веселин Видев, Мария Иванова

Получена е локална характеризация на Римановите многообразия с постоянна

секционни кривина, като се използва едно условие за комутиране на антисимет-

ричния кривинен оператор на Станилов и обобщения оператор на Якоби от втори

ред.
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