
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2004

MATHEMATICS AND EDUCATION IN MATHEMATICS, 2004

Proceedings of the Thirty Third Spring Conference of

the Union of Bulgarian Mathematicians

Borovets, April 1–4, 2004

VERTICAL MODALITIES OF LANGUAGE OF eRATL

LOGIC AND EXISTENCE OF CHILDREN, PARENT AND

ANCESTORS*

Irena L. Atanassova

Let ∆1 and ∆2 be two maximally consistent set, and ⊥ be the canonical child relation
over maximally consistent set. We are going to show that for every formula ϕ ∈ ∆2

there must be corresponding Fx ϕ ∈ ∆1 and analogously for Xh and Fh. Our next
objective is to show that whenever we have Fx ϕ ∈ ∆1 then there exists a maximally
consistent set of formulas ∆2 such that ϕ ∈ ∆2. We are going to prove the similar
statements for vertical modalities Fh and Xh too.

1. Introduction. To prove the completeness theorem of enriched with abstractions
of time linear temporal logic eRATL, which is discrete, we have to use a method that
involves building a canonical model. The idea may be formally described as follows: The
objective of proving completeness is to show that any given formula A that is known to
be consistent must also be satisfiable. One way of proving satisfiability is to construct
a model for A. First step: We have to decide on a suitable set of worlds (nodes). We
construct a node for every combination of formulas that could be true at the same time.
Each node is a consistent set of formula. Second step: We have to decide suitable
relations for access over the set of nodes. For this purpose we have to arrange how modal
operators of eRATL work as intended.The difficult part of that step is to prove that there
exists a maximally consistent set of formulas, which is related to the first set and contains
a suitable witness formula in the case of an existential modality. Third step: We have
to show that a formula A belongs to a given maximally consistent set of formulas iff A
is satisfied at the corresponding node in our canonical model.

In the present paper, we are going to consider a part of the second step of proving
satisfiability of a given formula A.

2. Syntax and semantics of enriched temporal logic eRATL.

Definition 2.1.The set of well-formed formulas of eRATL is the smallest set such
that propositional letters, true and false are formulas and if ϕ and ψ are formulas, so are
(¬ϕ), (ϕ∧ψ), (ϕ∨ψ), (ϕ→ ψ), (ϕ↔ ψ), (Xhϕ), (Fhϕ), (Ghϕ), (Xpϕ), (Fpϕ), (Gpϕ),
(Xϕ), (Fϕ), (Gϕ), (Fxϕ), and (Gxϕ), where the modal operators X, F and G are taken
from the basic temporal logic. The informal definition of F, G, X, Xp, Fp, Gp are the
same as in LTLp. The following operators are the new vertical operators. There are five
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operators to refer to the states on the next lower or the higher level of abstraction, where
Fxϕ : ϕ is true at some state of the next lower level in the tree structure; Gxϕ : ϕ is
true at all states of the next lower level in the tree structure; Xhϕ : ϕ is true at the next
higher level in the tree structure; Fhϕ : ϕ is true at some higher level in the tree structure;
Ghϕ : ϕ is true at all higher levels in the tree structure. The following notation expresses
that the same modality is applied n times to a formula, n ∈ N+ : Xnϕ = X . . .X

︸ ︷︷ ︸

n−times

ϕ.

The semantics of formulas in eRATL will be given by a definition of truth of a formula
in a model. Models are based on trees of type α, i.e. the frames for this modal logic are
trees of type α. Using [2] we can obtain the following definition.

Definition 2.2. [using 2] A tree is a pair τ = (T,RT), where T is a set and RT is an
irreflexive binary relation over T satisfying the following conditions:

• For every t ∈ T there exists at most one t′ ∈ T with (t′, t) ∈ RT.

• There exists a unique r ∈ T such that {t ∈ T | (r, t) ∈ R∗

T} = T.

The elements of T are called nodes. The element r from second condition is called the
root of τ.RT is called the child relation, (R−1

T
)+ is the ancestor relation and R−1

T
◦RT is the

brotherhood relation. The brotherhood relation R−1

T
◦ RT is an equivalence relation over

the set of nodes excluding the root. For a node t [t]
R

−1

T
◦RT

= {t′ ∈ T | (t, t′) ∈ R−1

T
◦RT}

is the set of brothers of t. If t is the root then [t]
R

−1

T
◦RT

is the empty set, where R+

T
is a

transitive closure of RT and R∗

T is a transitive reflexive closure of RT.

Definition 2.3.A tree of type α is a tuple τ = (T,RT,R,Rn), where (T,RT) is a
tree, R ⊆ R−1

T
◦ RT, and in a pair ([t]

R
−1

T
◦RT

,R) the relation R is irreflexive, transitive

and connected for every t ∈ T. If t1Rt2, then t1 is called a left brother of t2, and t2 is
called the right brother of t1. The relation R ◦ R is called the neighborhood relation and
Rn ≡ R ◦ R ⊆ R.

Definition 2.4. A tree of type α model is a pair M = (τ,V), where τ is a tree of type
α and V as a valuation, which maps propositional letter to subsets of the set of nodes in
τ .

We think of V(P) as the set of nodes in τ at which the atomic proposition P is true.
We can extend this notation to complex formulas in the following definition.

Definition 2.5. The notion of a formula of eRATL being true in a tree of type α

model M=(τ ,V) at a node t∈T is defined inductively as follows:

•M, t|=P iff t∈V(P) for P; •M,t|=true;
•M, t|= ¬ϕ iff M, t 6|= ϕ; •M, t|=ϕ ∧ ψ iff M, t|= ϕ and M, t|= ψ;
•M, t|=F ϕ iff (∃t′)(t R t′) M, t′ |= ϕ;
•M, t|=Fp ϕ iff (∃t′)(t′ R t) M, t′ |= ϕ;
•M, t|=X ϕ iff (∃t′)(t Rn t′) M, t′ |= ϕ;
•M, t|=Xp ϕ iff (∃t′)(t′ Rn t) M, t′ |= ϕ;
•M, t|=Fx ϕ iff (∃t′)(t RT t′) M, t′ |= ϕ;
•M, t|=Xh ϕ iff (∃t′)(tR−1

T
t′ and t is not the root of τ) M, t′|= ϕ;

•M, t|=Fh ϕ iff (∃t′)(t (R−1

T
) +t′) M, t′ |= ϕ;

Definition 2.6.The dual operators of our language are defined as follows:
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false=¬true ϕ ∨ ψ=¬(¬ϕ ∧ ¬ψ) Gh ϕ = ¬Fh ¬ϕ
Gp ϕ = ¬Fp ¬ϕ G ϕ = ¬F ¬ϕ Gx ϕ = ¬Fx ¬ϕ

Definition 2.7.

(1) A formula ϕ has a tree of type α model M = (τ,V) iff there is a node t in τ such that
M, t |= ϕ holds. A formula is called satisfiable if it has a tree of type α model.

(2) A formula ϕ is called valid iff it is satisfied at every node in every tree of type α
model.

The axioms of eRATL are:

(K1) X (A→B)→(X A→X B) (K2) Xp (A→B)→(Xp A→Xp B)
(K3) Xh (A→B)→(Xh A→Xh B) (K4) G (A→B)→(G A→G B)
(K5) Gp (A→B)→(Gp A→Gp B) (K6) Gh (A→B)→(Gh A→Gh B)
(K7) Gx (A→B)→(Gx A→Gx B) (D1) G A↔ ¬F ¬A
(D2) Gp A↔ ¬Fp ¬A (D3) Gh A↔ ¬Fh ¬A
(D4) Gx A↔ ¬Fx ¬A (B1) A →GFp A
(B2) A →GpF A (B3) (A∧X true)→XXp A
(B4) (A∧Xp true)→XpX A (B5) A →GxFh A
(B6) (A∧Xh true)→XhFx A (41) G A→GG A
(42) GG A→(G A∨X true) (43) G A→GG ¬Xp ¬ A
(X1) X A↔(¬X ¬A∧X true) (X2) Xp A↔(¬Xp ¬A∧Xp true)
(X3) Xh A↔(¬Xh ¬A∧Xh true) (FX1) F A→XhFx A
(FX2) Xh FxA→(A∨Fp A∨FA) (FX3) (F∧X true)↔(XA ∨XFA)
(FX4) (Fp A∧Xp true)↔(Xp A ∨XpFp A) (FX5) Fh A↔(Xh A ∨XhFh A)

The rules of eRATL are: MP, N, and US, and all propositional tautologies.

Theorem 2.8. If Γ is a G-operator then Γn(A ∧ B) ↔ (ΓnA ∧ ΓnB) is a theorem,
where A and B are formulas and n ∈ N.

Proof.

(A∧B)→A propositional tautology (1)
G(A∧B)→G A (1)+N+K4 (2)
G(A∧B)→G B as (1), (2) (3)
A→(B→(A∧B)) propositional tautology (4)
(G A∧G B)→G A∧B)) (4)+N+K4 (5)
G(A∧B)↔(G A∧G B) (2), (3), (5) (6)

In our proof we repeat the application of N and K5. N with respect to an iterated G-
operator is a valid rule in our proof system. The distribution laws have been formulated
only for two propositions A and B. It is easy this law be generalized to any number of
propositions: Gp(A1 ∧ ... ∧An) ↔ (GpA1 ∧ · · · ∧An) is a theorem, if A1, . . . ,An are any
finite number of formulas. This result can be obtain by requiring n − 1 instance of the
derived theorem (10). �

Theorem 2.9.The formula ⊢ FhA ↔ (XhA ∨ · · · ∨XhnA ∨ XhnFhA) is theorem for
all n ∈ N.

Proof. The formula can be proved by induction over index n.
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n=1 Fh A↔(Xh A∨XhFh A) FX5 (1)
Fh A↔(Xh A∨...∨Xhn A∨Xhn Fh A) ind. hypothesis (2)
XhnFh A↔(Xhn (Xh A∨XhFh A) (1) (3)
XhnFh A↔(Xhn+1∨Xhn+1Fh A) (3) (4)
Fh A↔(Xh A∨...∨Xhn∨Xhn+1 A∨Xhn+1Fh A) (2), (4) (5) �

3. Maximally consistent sets.

Definition 3.1.A consistent set of formulas ∆ is called maximally consistent iff every
proper extension of ∆ is inconsistent.

The Definition 3.1 is not the only way of defining maximally consistent sets of for-
mulas. Hughes and Cresswell [1] define maximally consistent sets as consistent sets
containing either ϕ or ¬ϕ for every formula ϕ. The following two lemmas are standard
results in modal logic.

Lemma 3.2. [1] Let ∆ be a maximally consistent set and let ϕ, ϕ1, and ϕ2 be for-
mulas. Then the following statements are true:

• if ⊢ ϕ then ϕ ∈ ∆; •¬ϕ ∈ ∆ iff ϕ 6∈ ∆;
•ϕ1 ∧ ϕ2 ∈ ∆ iff ϕ1 ∈ ∆ and ϕ2 ∈ ∆; •ϕ1 ∨ ϕ2 ∈ ∆ iff ϕ1 ∈ ∆ or ϕ2 ∈ ∆;
• if ϕ1 ∈ ∆ and ϕ1 → ϕ2 ∈ ∆ then also ϕ2 ∈ ∆;

Lemma 3.3. (Lindenbaum’s Lemma) Every consistent set of formulas can be extended
to a maximally consistent set.

Definition 3.4. Let ∆1 and ∆2 be maximally consistent sets. The canonical child
relation ⊥ over maximally consistent sets is defined as follows: ∆1 ⊥ ∆2 iff Gx ϕ ∈ ∆1

implies ϕ ∈ ∆2 for all formulas ϕ.

We refer to vertical accessibility relation over maximally consistent sets of formulas
as the child relation. The next theorem shows some consequence of Definition 3.4.

Theorem 3.5. Let ∆1 and ∆2 be maximally consistent sets and let ϕ be a formula,
then:

• ϕ ∈ ∆1 and ∆1 ⊥ ∆2 imply Xh ϕ ∈ ∆2;
• ϕ ∈ ∆1 and ∆1 ⊥+ ∆2 imply Fh ϕ ∈ ∆2;
• ϕ ∈ ∆2 and ∆1 ⊥ ∆2 imply Fx ϕ ∈ ∆1.

Proof. The proof of these statements follows all most directly from the Definition 3.4.

• ϕ ∈ ∆1 (1)
GxXh ϕ ∈ ∆1 (1)+B5 (2)
Xh ϕ ∈ ∆2 from definition of ⊥ (3)

• ϕ ∈ ∆1 (1)
∆1 ⊥+ ∆2 (2)
∆1 ⊥n ∆2 ∃n ∈N + (2) (3)
Xhnϕ ∈ ∆2 from case one of the theorem (4)
Fh ϕ ∈ ∆2 Theorem 2.9 (5)

• ϕ ∈ ∆2 (1)
¬ϕ 6∈ ∆2 ∆2 is max.consistent + (1) (2)
Gx ¬ϕ 6∈ ∆1 (3)
¬Gx ¬ϕ ∈ ∆1 ∆1 is max.consistent (4)
Fx ϕ ∈ ∆1 D4 (5) �

200



4. Vertical accessability relations. Let ∆1 and ∆2 be two maximally consistent
sets with ∆1 ⊥ ∆2.

Theorem 4.1.Let ∆1 be a maximally consistent set. If Fx ϕ ∈ ∆1 then there exists
a maximally consistent set ∆2 such that ∆1 ⊥ ∆2 and ϕ ∈ ∆2.

Proof. Let first define a set ∆3 = {ϕ} ∪ {ψ | Gx ψ ∈ ∆1} that contains all formulas
which are bound to be part of any maximally consistent set. Our aim is to find a set ∆2

with ϕ ∈ ∆2, and therefore the formula ϕ must be contained in any such set. When we
have Gx ψ ∈ ∆1, ∆2 will have to contain ψ if we want ∆1 ⊥ ∆2. Let us assume that ∆3

is not consistent: ∃ψ1, . . . , ψn such that Gx ψi ∈ ∆1, i = 1, n and ⊢ ¬(ψ1 ∧ ... ∧ ψn ∧ ϕ).

⊢ ¬(ψ1 ∧ · · · ∧ ψn ∧ ϕ) ≡⊢ (ψ1 ∧ · · · ∧ ψn) → ¬ϕ (1)
⊢ Gx (ψ1 ∧ · · · ∧ ψn) →Gx ¬ϕ 1+N+K7 (2)
⊢ (Gx ψ1 ∧ · · · ∧Gx ψn) →Gx (ψ1 ∧ · · · ∧ ψn) from Theorem 2.8 (3)
⊢ (Gx ψ1 ∧ · · · ∧Gx ψn) →Gx ¬ϕ (2)+(3) (4)
Gx ¬ϕ ∈ ∆1 (5)
(5)≡Fx ϕ 6∈ ∆1 D4 (6)

(6) contradicts assumption Fx ϕ ∈ ∆1, hence ∆3 must be a consistent set of formulas.
∆3 is a consistent set. We can apply Lemma 3.3, and we can extend ∆3 to a maximally
consistent set ∆2. ∆3 fulfils requirements by: ϕ ∈ ∆1 and ∆1 ⊥ ∆2. �

Theorem 4.2.Let ∆2 be a maximally consistent set. If Xh ϕ ∈ ∆2 then there exists
a maximally consistent set ∆1: ∆1 ⊥ ∆2 and ϕ ∈ ∆1.

Proof. Let first define a set ∆3 = {ψ | Xh ψ ∈ ∆2} and this implies that ϕ ∈ ∆3.
Let us assume that ∆3 is not consistent.

∃ψ1, . . . , ψn : Xh ψ1, . . . , Xh ψn ∈ ∆2 and ⊢ ¬(ψ1 ∧ · · · ∧ ψn) (1)
Xh (ψ1 ∧ · · · ∧ ψn) ∈ ∆2 Theorem 2.8 (2)
⊢ ¬Xh ¬¬(ψ1 ∧ · · · ∧ ψn) N+(1) (3)

(3) ≡ ⊢ ¬Xh (ψ1 ∧ · · · ∧ ψn) contradicts ∆2 6∋ ¬Xh (ψ1 ∧ · · · ∧ ψn). We have proved
that ϕ ∈ ∆1. Let ∆1 be a maximally consistent set with ∆3 ⊆ ∆1. Let us assume that
∆1 6⊥ ∆2 : ∃ξ : Gx ξ ∈ ∆1 but ξ 6∈ ∆2.

¬ξ ∈ ∆2 ∆2 is maximally consistent (4)
Xh true ∈ ∆2 from Theorem 3.5 (5)
Fx ¬ξ ∈ ∆2 (B6) + (4) + construction of ∆3 (6)
Fx ¬ξ ∈ ∆1 ∆3 ⊆ ∆1 (7)
Gx ξ 6∈ ∆1 (D4) (8)

(8) contradicts assumption Gx ξ ∈ ∆1 ⇒ ∆1 ⊥ ∆2. �

Now we have to formalize the notion of a set of formulas having a level.

Definition 4.3. Let ∆ be a maximally consistent set and let n ∈ N0. The set ∆ has
level n iff XhnGh false ∈ ∆. A formula has a level iff it is a conjunction of the form
ϕ ∧ XhnGh false, n ∈ N0.

Theorem 4.4.Let ∆2 be a maximally consistent set with level. IfFhϕ ∈ ∆2 then
there exists a maximally consistent set ∆1 : ∆1 ⊥∗ ∆2 and ϕ ∈ ∆1.

Proof. Let ∆2 has n level.
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XhnGh false ∈ ∆2, n ∈N0 (1)
Fh ϕ ∈ ∆2 (2)
Fh ϕ↔(Xh ϕ ∨ · · · ∨ Xhnϕ∨ XhnFh ϕ) from Theorem 2.9 (3)
Xh ϕ ∨ · · · ∨ Xhnϕ ∈ ∆2 and XhnFh ϕ ∈ ∆2 (3) (4)

We will prove that (4) is not possible. Let us assume that XhnFhϕ ∈ ∆2

Xhn(Fh ϕ∧ Gh false) ∈ ∆2 (1) + (4) (5)
Fh ϕ∧Gh false is inconsistent (6)
¬Xhn(Fh ϕ∧ Gh false) is a theorem (6) + N (7)
(5)+(7) contradict our assumption (8)
∃m = 1, n : Xhmϕ ∈ ∆2 (4)+(8) (9)

By Theorem 4.2 ∃ ∆3, . . . ,∆m+2 : ∆m+2 ⊥ ∆m+1 ⊥ · · ·∆3 ⊥ ∆2 and Xhm+2−iϕ ∈
∆i, i = 3,m+ 2 ⇒ ϕ ∈ ∆m+2. If we define ∆1 = ∆m+2 ⇒ ∆1 ⊥m ∆2,∆1 ⊥+ ∆2, and
ϕ ∈ ∆1. �
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ВЕРТИКАЛНИ МОДАЛНОСТИ И СЪЩЕСТВУВАНЕ НА СИНОВЕ,

РОДИТЕЛ И ПРЕДШЕСТВЕНИЦИ В ЛОГИКАТА eRATL

Ирена Л. Атанасова

Нека ∆1 и ∆2 да бъдат две пълни множества, и ⊥ да бъде канонична релация
над пълното множество. Ще докажем, че за всяка формула ϕ ∈ ∆2 формулата
Fxϕ ∈ ∆1 (аналогично за Xh и Fh). Следващата ни цел е да докажем, че всеки
път, когато Fxϕ ∈ ∆1, то съществува пълно множество от формули ∆2 такова,
че ϕ ∈ ∆2. Ще докажем подобни твърдения и за вертикалните модалности Fh и
Xh.
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