MATEMATUKA W MATEMATUHYECKO OBPA3OBAHWE, 2004
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2004
Proceedings of the Thirty Third Spring Conference of

the Union of Bulgarian Mathematicians
Borovets, April 1-4, 2004

SYNTHETIC XML DATA

Pavel K. Azalov, Fani I. Zlatarova

This paper discusses an approach for Extended Markup Language (XML) document
synthesis. It is presumed that the structure of the XML documents is determined
by a corresponding description that represents a document type definition with some
restrictions. The approach proposed in the paper is used to implement a prototype
system generating XML documents.

1. Introduction. The synthetic generation of data is appropriate in many cases.
The application area of such data comprises not only the scientific research and analysis of
the real program system features, but the teaching activity, also [4]. The data generated
can be of different natures: program texts, tables, etc. The XML is emerging as the
standard for data exchange on the Web. Because of this, the automated synthesis of
XML documents is a topic of interest in the recent research.

The development and testing of systems processing XML documents imposes the
generation of synthetic XML data. A similar problem also exists when researching the
possibility for processing of XML documents to be accomplished by existing relational
database systems.

Problem Definition. The main result presented in this paper consists in the descrip-
tion of an approach for synthetic XML document generation. The generation procedure
is based on a description that could be considered to be a document type definition
(DTD) with some constraints, and we therefore (by slight abuse) will continue to use
this term. The basic constraints are reduced to the following:

— Recursion is not permitted in DTDs;

— DTDs do not include entity definitions;

— Mixed-content elements are not considered in DTDs.

The XML documents created in this way differ from each other. Random numbers
control the process of generation. In general, the same DTD leads to production of
different XML document sets. Therefore, the problem solved below is formulated as
follows:

Problem: Suppose that ¢ is a DTD and S(t) is the set of all XML documents that
conforms to ¢. Develop a procedure for random generation of a finite set S’(¢) consisting
of XML documents conforming to t, i.e. S’(t) C S(t).

The maximum number of different XML documents having the same DTD is deter-
mined by both the corresponding DTD and the current values of certain parameters.
This is discussed in detail in Section 4.

203

Related Work. There exist two basic approaches for XML document synthesis. The
idea of the first approach consists in generating a tree that specifies the structure of the
XML data. The idea of the second approach recommends using a DTD to generate XML
documents that conform to it. The generator of XML documents developed by IBM [2]
is of the second type. A variance of the first approach is presented in [1]. The so-called
path tree is generated first. The next steps of the process assign a corresponding name
and a positive integer, used as a node frequency, to each of the nodes. Figure 1 illustrates
the example described in [1].

It shows the respective path tree and an
XML document whose structure is deter-
mined by this path tree. A number beside <A> @ 1
the nodes indicates the corresponding node
frequency. Two parameters of the genera-

. . <D/>
tion process exist: 2 @ 1

— the number of levels in the path tree;

— the minimum and maximum number of <C2D /> l
children for nodes at this level, considered <D/>
for every level of the path tree, except the </C> @ 1 @ 2
lowest level.

An essential advantage of this approach
is the possibility to generate a path tree of
random complexity.

2. Preliminaries. XML Trees. Our abstraction for an XML document is an XML
tree. XML trees are labeled ordered trees. Every node of an XML tree is determined
by its name and content. The mame is a symbol from some finite alphabet ¥ and is
considered as a label of this node. The content represents a list (a totally ordered set,
eventually empty) of children, each of them being an XML tree. An example of an XML
tree is given in Figure 2.

XML trees have a commonly accepted linear representation as strings of elements [3].
Each of these elements is described through its opening and closing tags.

Suppose that ais a symbol of the ¥ alphabet, a € 3. The corresponding opening and

closing tags are noted here respectively as a and a°. The hierarchical structure from Fi-
gure 2 can then be represented in a linear form through

the following string: d

(1) dUammyy°a°U°Namm a® N°d° / \
The DTD provides a typing mechanism for XML doc-

uments. DTDs use regular expressions to describe the U

allowed sequences of children of a node. Figure 3 shows

the example considered in [6] with an insignificant mod-
ification of a DTD. This DTD matches the XML tree

Figure 1

Se«e—o<—2

from Figure 2. According to [5], “the optional character a

following a name or list governs whether the element or / \

the content particles in the list may occur one or more

(+), zero or more (*), or zero or one times (?). The m Y
absence of such an operator means that the element or Figure 2

content particle must appear exactly once. Any content
204

particle in a choice list (“|”) may appear in the element content at the location where
the choice list appears in the grammar. Content particles occurring in a sequence list
(“y) must each appear in the element content in the order given in the list.”

DTD Expression Tree. Our abstraction for a DTD is a DTD expression tree. A
DTD expression tree (DTDET) is a binary tree that contains all operators and names,
determined in the corresponding DTD. The root and the internal nodes are operators,
and the leaves are names. In the example given in Figure 3, the operators are “+7, “*”
(unary operators), “|”, “” (binary operators), and the names are “dealer” (d), “UsedCars”
(U), “NewCars” (N), “ad”(a), “model”(m), and “year”(y).

An XML tree over X satisfies a DTD named d if it is derived from the corresponding
DTD expression tree [3].

3. Internal DTD Representation. The XML data synthesis is accomplished
in a sequence of steps whose description is offered below. Transformations of the DTD
occur first. As a result, the corresponding DTDET is obtained. These transformations
are illustrated through the example from Figure 3 with certain modifications.

<DOCTYPE dealer [
<!ELEMENT dealer (UsedCars, NewCars)>
<!ELEMENT UsedCars (ad*)>
<!ELEMENT NewCars (ad+)>
<!ELEMENT ad ((model, year) | model)>
1>

Figure 3

DTD Table Representation. A text file ¢ containing a DTD represents the input
data for the procedure considered below. The data provided by this file is used for the
construction of two tables: the element table ET(¢) and attribute table AT(¢). Each
element declared in ¢ is included in ET(¢) together with the set (eventually empty) of its
corresponding attributes. The attributes and their values are given in AT(t) table. The
relationship between both tables is established through the attribute names.

First DTD String Representation. The right-hand sides of productions in a DTD
are regular expressions over the terminals and non-terminals. The set consisting of four
productions (Figure 3) is transformed into a single expression through multiple nesting
in the following way:

(2) d(U(a*((m,y)|m)), N(a + ((m,y)|m))))
where only the first letters of the respective names were used. In this expression, there
are included two binary operations, “,” and “|”, and two unary operations, “*” and “4”.

In the general case, one more unary operation is available, “?”. By applying the unary
operator “*”, the expression (2) is transformed to the following expression:

3) d(U ((a((m, y)Im))*), N ((a((m, y)|m))+))
Second DTD Strings Representation. In expression (3), the binary operation
linking the name of an element with its definition is implicitly used. If this operation is
205

noted by “—”, then expression (3) can be rewritten in the following way:
(4) (d—= (U= ((a = ((m,y)lm))"), N = ((a = ((m,y)|m))+)))
DTD Tree Representation. The last expression (4) could be transformed in a

DTDET. This could be accomplished in different ways. One of them is to use the Polish
Notation first. The postfix form of this expression is the following:

(5) dUamy, m| =*—= Namy, m| -+ —,— $

The unary operators are of highest priority. They are followed by the “—” operator.
The lowest priority is assigned to the “|” and “,” operators which are left associative.

Figure 4 shows the final result from the transformation of the DTD, considered in
Figure 3, into a DTDET.

N

s

/ .,

U/ ot of
N

©F

N
,/@\y ’"

jol
ol AR

ol

SN

Figure 4. DTD expression tree

4. Generating XML Data. ¥ Randomization of XML Data Generation.
A pair of nonnegative integers min and max is assigned to each inner node during the
DTDET generation. The integer min has a determined value for each of the operator
types. For example, its value is 0, 0, and 1 for the respective operators “?”, “*” and “+”.
These integers indicate the minimum number of repetitions for each unary operation. The

206

max integer is generated randomly according to the constraint min < max < m, where
m is a parameter. This parameter has a given value determined by default, but it can
take another value during the execution of the system. For unary operators, the pair of
integers min and max determines the repetition coefficient of the subtree whose root is the
unary operation considered. During the XML document generation, a 0 or 1 is assigned
in a random way to the binary operator “|” each time it is met. The corresponding
value 0 or 1 will determine which of both subtrees should be selected. The value of
both integers min and max corresponding to the binary operators “,” and “—” is always
1. It means that the trees having such roots are traversed only once. In this way, the
generation of different XML documents is accomplished using the repetition coefficients
introduced above and a modified procedure for inorder traversal of a DTDET.

The procedure, generating random XML

The XML Identifier: 40100201 data, is controlled by a special variable whose
values are random numbers, too. When the
<dealer>
UsedCarss system is activated at the very beginning,
cad> it generates the seed for this variable first.
<model></model> To avoid the external factor, when obtaining
</ad> the seed, an expression, including the current
<ad> time, is calculated. At the end of the exe-
<model></model> cution, the current value of this variable is
<year></year> stored in a file. Later, it is used as the new
</ad> seed for the generation of the next XML data
<ad> set. A similar approach was used in [4].
<model></model> XML Identifiers. The numbers associ-
</ad> ated to each of the inner nodes in the XML
<ad> document generation process identify in a
<model></model> . .
<Jad> unique way each XML document obtained.
</UsedCars> For example, given the sequence of num-
NewCars> bers from Figure 4, it represents a number
<ad> with base m. It will be the following: 111 4
<model></model> 1010012101 and is obtained through a
</ad> modified procedure of inorder traversal of the
<ad> respective DTDET. The digits, which are not
<model></model> underlined, are the same for all XML docu-
<year></year> ments generated by the same execution. This
</ad> allows to determine the number build only of
</NewCars> the underlined digits 4 0 1 0 0 2 0 1. This
</dealer> number is considered to represent the iden-
Figure 5 tifier of the corresponding XML document

(Figure 5). The bolded digits indicate unary
operators. For example, the digit 4 is the repetition coefficient of the subtree, whose
root is the “*” operator. The next four digits, 0 1 0 0, are assigned to the “|” node.
They indicate that first, the right subtree of “|” is selected. After that, its left subtree
is selected. In the next two steps, the left subtree is selected. The digit 2 indicates
the unary operator “+”, and the sequence of the next two digits, 0 1, indicates the “|”
operator.

207

5. XML-DG: AN XML Data Generator. The idea described here is used to
develop a prototype of a system, XML-DG that generates XML documents. First, the
DTD is input from a text file and is transformed into two tables: elements table and
attributes table. After a sequence of other transformations, the DTD is converted into
a DTDET. It is used to generate XML documents stored as text files that contain the
structure of the respective documents.

REFERENCES

[1] J. ABOULNAGA, J. NAUGHTON, C. ZHANG. Generating Synthetic Complex-structured XML
Data, The Niagara Project: http://www.cs.wisc.edu/niagara, 2002.

[2] IBM XML generator, http://www.alphaworks.ibm.com/tech/xmlgenerator, 2001.

[3]L. SEGOUFLIN, V. VIANU. Validating Streaming XML Documents. Madison, WI: ACM
PODS, 2002.

[4]P. AzavLov, F. ZLATAROVA. SDG — A System for Synthetic Data Generation. IEEE Com-
puter Society: Proceedings of the International Conference on Information Technology: Coding
and Computing, Las Vegas, NV, April 2003, 69-75.

[5] T. BrAY, J. PaoLi, C. M. SPERBERG-MCQUEEN. Extensible Markup Language (XML) 1.0,
http://wuw.w3.org/TR/REC-xml.

[6] Y. PAPAKONSTANTINOU, V. VIANU. DTD Inference for Views of XML Data. Dallas, TX:
ACM POD, 2000.

Pavel K. Azalov Fani 1. Zlatarova

Engineering Division, CWC Computer Science Department
Pennsylvania State University Elizabethtown College
Hazleton, PA 18202, USA Elizabethtown, PA 17022, USA

CUHTE3 HA XML

ITlaBea K. Azbios, ®anu 1. 3narapeBa

B macrosimara cratusi e npejcraBed moaxon 3a cuare3 na XML (Extended Markup
Language) nanuu. IIpeaunosnara ce, ue crpykrypara Ha XML jnanHuTe e onpejeineHa
oT choTBeTHA Jedunnmrsa Ha Tuna Ha mokyMmenta (DTD) ¢ u3BecTHH OrpaHWYEHUS.
IIpeamaranusaT mOaX0/ € M3MOJI3BAH 338 PeaTn3alis Ha MPOTOTUI Ha IPOrPAMHA CHC-
TeMa 3a renepupane Ha XML nannu.

208

