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In this paper we investigate the asymptotic behaviour of a sequence of random indexed
maxima associated with a scale-transformated point process. The initial point process
consists of points whose first coordinates represent time and whose second coordinates
are space. The inter arrival times are independent identically distributed random
variables whose distribution tail is regularly varying with index β ∈ (0, 1). The
distribution function of the space points has regularly varying tail, too, with exponent
α > 0. Here is proved that such a sequence of random processes converges weakly
to composition of an extremal process whose univariate marginals are Fréchet with
exponent α and a hitting time process of β-stable Levy motion.

1. Introduction. There are several works on random sums, renewal counting
processes and related questions. Grandel [6] deals with the total claim amount process
and ruin under very general conditions. In [7] he gives an overview of the corresponding
theory of Mixed Poisson processes. A recent textbook treatment of random sums is
Gnedenko and Korolev [5].

This paper contains analogous result of Dobrushin’s Theorem 3.1.2 in [5] for random
indexed maxima. We call it Transfer Theorem, because it describes conditions providing
the transfer of convergence property from the maxima of non-random number of variables
to the maxima of random number.

Furrer, Michna and Weron [4] use random sums when looking at weak approximation
of a risk process by α-stable Levy motion with drift. They find estimation from above
for the probability of ruin in the heavy tailed case. When we tried analogously to find
assessment from below we had needed theory for random indexed maxima. So we got
to the idea of this paper. The application of these results to the ruin theory will appear
later.

The paper is organized as follows: in §2 we remind the main concepts used further,
§3 contains description of the model and in §4 the main result is formulated and proved,
and some properties of the limiting process are given.

2. Preliminaries. Throughout this paper M[0,∞) is the space of starting at zero,
non-decreasing, right-continuous functions with finite limit on the left. All discussed here
random processes have sample paths in M[0,∞). We consider random variables that are
defined on a given complete probability space (Ω,A,P) with filtration (At)t≥0 and we
assume that all P - null sets of A are added to A0. Let =⇒ stand for weak convergence

of random processes as random elements of M[0,∞),
fdd−→

n→∞
for weak convergence of
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their finite dimensional distributions (fdd) and
d−→

n→∞
for weak convergence of their one

dimensional marginals. We denote by
fdd
= equality of all fdd’s and by

d
= equality in

distribution.

Definition 2.1.We call the random process X : [0,∞) −→ [0,∞) selfsimilar with

exponent α if its fdd satisfy the equality

(1) X(st)
fdd
=

α
√

tX(s) ∀t > 0.

Particularly, X(t)
fdd
= α

√
tX(1).

Definition 2.2.For every random process {X(t)}t≥0 in M[0,∞) we define the hit-

ting time process or first passage time process of {X(t)}t≥0 in the following way:

τ(x) = inf{t ≥ 0 : X(t) > x} = sup{t ≥ 0 : X(t) ≤ x}

By Corollary 2.2.2 of [8] if X is selfsimilar with exponent β then τ is selfsimilar, too
with exponent 1\β. If the process X is stochastically continuous then the process τ is
also stochastically continuous.

Definition 2.3.A random process X : [0,∞) −→ [0,∞) with the properties:

a) X(0)
a.s.
= 0;

b) it has stationary increments;

c) it has independent increments;

is called a Levy process.

Remark: If we consider a process with additive increments, we speak on Levy process
in the sum-framework. Analogously if the process has max increments, it is a Levy process
in the max-framework.

Definition 2.4.A Levy process X : [0,∞) −→ [0,∞) in the sum-framework, whose
increments are stable random variables with index α is called α-stable Levy motion.

Henceforth by {Sβ(t)}t≥0 we denote a β-stable Levy motion.

The next statement is very useful when we have to prove weak convergence of random
processes. Its proof can be found in [2], Theorem 3.

Theorem 2.5. Let {Xn}n∈N be a sequence of stochastic processes, whose path func-
tions lie in M[0,∞). If

a) Xn
fdd−→

n→∞
X;

b) X is stochastically continuous,
then Xn =⇒ X, in the Scorohod topology.

3. Description of the model. To make things clear, we use point pocesses. Here
and below under a point process N we understand the collection of random points

(2) N = {(Jk, Xk) : k ≥ 1}.
J1, J2, . . . are non-negative independent and identically distributed (iid) random vari-
ables, whose distribution function (df) G belongs to the strict domain of attraction (DA)
of some stable law with index β, β ∈ (0, 1). This means that there exists a slowly varying
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function L(n), such that

J1 + · · · + Jn

β
√

nL(n)

d−→
n→∞

Sβ ,

where the distribution of Sβ is stable with index β, briefly G ∈ DA(Sβ). If additionally
Tn(t) := J1 + · · ·+J[nt] and Tn(0) := 0, than it is well known that there exists a regularly

varying function b(n) with index 1
β
, briefly b ∈ RV 1

β
, such that

Tn(t)

b(n)

fdd−→
n→∞

Sβ(t),

Note that {Sβ(t)}t≥0 is stochastically continuous with sample paths in M([0,∞)). We
can also say that it has stationary independent incrementsit and is selfsimilar with ex-
ponent 1\β.

By Seneta [11] if b(t) = β
√

[t]L([t]), then there exists b̃ ∈ RVβ such that

(3) b(̃b(s)) ∼ s as s → ∞.

We denote the renewal function max{n ≥ 0 : J1 + · · ·+ Jn ≤ t} by N(t) and the hitting
time process of {Sβ(t)}t≥0 by E(t). The following result, due to M. M. Meerschaert,
H.P.Scheffler (Theorem 3.6 of [9]) is the main tool of this paper:

Theorem 3.1. In the considered model

(4)
N(nt)

b̃(n)

fdd−→
n→∞

E(t).

Note. By the definition of E(t), we can conclude that it is stochastically continuous

with monotone sample paths. The path functions of the processes
N(nt)

b̃(n)
are in M[0,∞).

Combining this with (4) and using Theorem 2.5, we get the convergence

(5)
N(nt)

b̃(n)
=⇒E(t), as n → ∞ in M([0,∞)).

Finally let us describe the space points {Xn}n∈N in (2). We suppose them iid r.v’s with
common df F (x), which has the property:

F̄ ∈ RV−α, α > 0.

Further we will prove that for the time changes τn(t) =
t

n
, there exist space changes

un(t) =
t

B(n)
, where B(n) are positive numbers, such that the extremal process associ-

ated with the point process

(6) Nn = {(τn(Jk), un(Xk)) : k ≥ 1} n ∈ N,

converges weakly to the composition of an extremal process Yα with Fréchet’s univariate
marginals and the hitting time process E.

4. The main result.

Theorem 4.1. In the considered model there exists a sequence {B(n)}n∈N such that

{
∨

k

un(Xk) : τn(Jk) ≤ t} =

N(nt)∨

k=1

Xk

B(n)
=⇒ Yα(E(t)),
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where Yα is an extremal process with Fréchet one-dimensional marginals with exponent α
and E is the hitting time process of the strictly stable one-sided Levy motion {Sβ(t)}t≥0.

Moreover: a) when n → ∞

B(n) ∼ F←

(
1 − 1

b̃(n)

)
∈ RVβα−1 .

where b̃ ∈ RVβ is defined in (3);

b) The processes Yα and E are independent.

Proof. F̄ ∈ RV−α. By Resnick’s Invariance Principle for maxima – Theorem 4.20 of
[10], if

(7) Yn(t) =





(
[nt]∨
k=1

(Xk − an)/b∗n t ≥ n−1

(X1 − an)/b∗n 0 < t < n−1

.

then

(8) Yn(t) =⇒ Yα(t) in M[0,∞)

and {Yα(t)}t≥0 is an extremal process generated by Fréchet univariate marginals. Fur-
thermore an ∼ 0 and

(9) b∗n ∼ F←
(

1 − 1

n

)
∈ RVα−1 .

Since b̃(n) converges to infinity when n → ∞, then

(10) Yeb(n)(t) =⇒ Yα(t) in M[0,∞).

Note that Jk and Xk are independent. The processes Yα and N(t) are independent and
hence it follows from (10) together with (5) that we also have

(11) {Yeb(n)(t),
N(nt)

b̃(n)
} =⇒ {Yα(t),E(t)} as n → ∞.

in J1-topology of Scorohod and hence also in the weak topology of M[0,∞). Since
the process {E(t)}n∈N is not strictly increasing Theorem 3.1 in Whitt [12] does not
apply, so we can not prove convergence in J1-topology. Instead we use Theorem 13.2.4
in Whitt [13], which applies as long as x = E(t) is a.s. strictly increasing whenever
Yα(x)6=Yα(x−). This condition is easily shown to be equivalent to the statement that
the independent processes {Sβ(t)} and {Yα(x)} a.s. have no simultaneous jumps, which
is easy to check. So the composition is stochastically continuous and we can apply
Continuous Mapping Theorem – (see Billingsley [1] Th. 5.1 and Th. 5.5). This fact
together with (7) and (10) leads to

(12)

N(nt)∨

k=1

Xk

B(n)

fdd
= Yeb(n)(

N(nt)

b̃(n)
) =⇒ Yα(E(t)) as n → ∞.

This is the first part of our conclusion.

From (7) with an ∼ 0 and (12) B(n) = b∗eb(n)
. Substituting (9) in the last equality we

get
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B(n) ∼ F←

(
1 − 1

b̃(n)

)
, n → ∞.

So we proved the asymptotic equivalence in a). Since F̄ ∈ RV−α, then
1
¯̄F

∈ RVα and

its inverse F←(1 − 1
n
) is regularly varying with index 1

α
. Let us remind that b̃ was RVβ .

The function in a) is composition of b̃ and F←
(
1 − 1

n

)
, so it is RV β

α

.

b) {Xk}k∈N and {Js}s∈N are independent. Yα depends on X and does not depend
on J. Analogously, the random process E depends on J and does not depend on X .
Two random processes are defined on the same probability space, this is why they are
independent. �

Theorem 4.2. In the considered model the limiting process Yα ◦ E is

a) selfsimilar with exponent βα−1 i.e.

(13) Yα ◦ E(st)
fdd
= α

√
s

β
Yα ◦ E(t)

and Yα ◦ E(t)
fdd
= α

√
t
β
Yα ◦ E(1)

fdd
= α

√
t
β
Yα(S−β

β );

b) stochastically continuous.

c) For all x ≥ 0 its one dimensional marginals are

P(Yα ◦ E(t) < x) =
∞∑

n=0

(−x−αtβ)n

Γ(1 + nβ)
, β ∈ (0, 1);

Proof. a) By the definitions of {N(t)} and {Jn} and by the note after Theorem
3.1 we know that (5) is fulfilled and {E(t)}t≥0 is the hitting time process of the strictly
β-stable Levy motion {Sβ(t)}t≥0. By Proposition 3.1 of [8] we know that {E(t)}t≥0 is a
selfsimilar process with exponent β. Note that {Yα(t)}t≥0 is selfsimilar with exponent
1/α. So, because the composition of selfsimilar processes is again a selfsimilar process
with exponent the product of the both exponents we get that Yα ◦ E is selfsimilar with
exponent βα−1. Now (13) follows by (1).

b) As a composition of two stochastically continuous processes Yα◦E is stochastically
continuous.

c) P(Yα ◦ E(t) < x) = P(Yα ◦ E(1) <
x

α
√

tβ
) =

=

∞∫

0

P(Yα(z) <
x

α
√

tβ
)dP(E(1) < z) =

=

∞∫

0

exp{−z(
x

α
√

t
β
)
−α

}dP(E(1) < z) =

=

∞∫

0

exp{−ztβx−α}dP(E(1) < z) =

= E exp{−tβx−αE(1)} = E exp{−tβx−α(Sβ)−β},
where the last equality follows by Corrolary 3.2,(a) in [9].

In [3] is shown that (Sβ)−β is Mittag-Leffler distributed. So, we completed the
proof. �
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Remarks. 1. In c) for β = 0 we get the exponential law and for β = 1 we get the
degenerate law.

2. When α = β the sample paths of the composition of Yα and E are straight lines
with random slope.
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ЕДНА ЕКСТРЕМАЛНА ТЕОРЕМА ЗА ПРЕНОСА

Павлина К. Йорданова

В статията се изследва асимптотичното поведение на редица от случайно ин-

дексирани максимуми, асоциирани с мащабно трансформиран точков процес.

Изходният точков процес се състои от точки, чиито първи координати представ-

ляват времето, а вторите – пространството. Моментите от време са независими,

еднакво разпределени случайни величини, чиято функция на разпределение има

правилно изменяща се опашка, но с индекс β ∈ (0, 1). В статията доказваме, че

една такава редица от случайни процеси е слабо сходяща към композиция на

екстремален процес, генериран от едномерни маргинали на Фреше с експонента

и момента на достигане на дадено ниво от β-устойчиво движение на Леви.
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