ON THE STRUCTURE OF THE EFFICIENT SET*

Zdravko D. Slavov, Christina S. Evans

Abstract

The paper presents an efficient set of decision-making system with convex and compact set of alternatives and finite set of multiple criteria. It is proved that the efficient set is nonempty, path-connected and compact, if the objective functions are continuous, concave and strictly quasi-concave.

1. Introduction. Let a decision-making system (X, C) be given. In this system, $X \subset R^{m}$ is a set of alternatives, $m \geq 1,|X|>1$ and C is a finite set of multiple criteria, $|C|=n \geq 2$. Let each criterion $c_{i} \in C$ be defined by the continuous preference \succeq_{i}, which is a binary relation on X. It is known that each continuous preference \succeq_{i} can be represented by a continuous objective (or utility) function $u_{i}: X \rightarrow R$ [2].

In this paper, let the utility functions $\left\{u_{i}\right\}_{i=1}^{n}$ be continuous on the convex and compact set X. For each $x \in X$ and $i \in[1 ; n]$ let denote $R_{i}(x)=\left\{y \in X: u_{i}(y) \geq u_{i}(x)\right\}$. It is easy to prove that the sets $\left\{R_{i}(x)\right\}_{i=1}^{n}$ are compact subset of X.

Definition of an efficient set: an alternative $x \in X$ is called efficient alternative iff there does not exist an alternative $y \in X$ such that $u_{i}(y) \geq u_{i}(x)$ for all $i \in[1 ; n]$ and $u_{k}(y)>u_{k}(x)$ for some $k \in[1 ; n]$. We denote the set of the efficient alternatives by E and it is called an efficient set.

A function u_{i} is concave iff $x, y \in X$ and $t \in[0 ; 1]$, then $u_{i}(t x+(1-t) y) \geq t u_{i}(x)$ $+(1-t) u_{i}(y)$ and a function u_{i} is strictly quasi-concave iff $x, y \in X$ and $t \in(0 ; 1)$, then $u_{i}(t x+(1-t) y)>\min \left(u_{i}(x), u_{i}(y)\right)$.

In this paper, let the functions $\left\{u_{i}\right\}_{i=1}^{n}$ be concave and strictly quasi-concave on X.
2. Main results. Let denote a function $f: X \rightarrow R, f(x)=\sum_{i=1}^{n} u_{i}(x)$ for all $x \in X$. It is easy to show that the function f is continuous and concave on X. It is known that $E \subset \operatorname{Arg} \max (f, X)$ and $|E| \geq 1$ [5].

Let denote a function $U: X \rightarrow R^{n}, U(x)=\left(u_{1}(x), u_{2}(x), \ldots, u_{n}(x)\right)$ for all $x \in X$. It is easy to show that the function U is continuous and concave on X.

Let analyze the convex sets $\bigcap_{i=1}^{n} \operatorname{Arg} \max \left(u_{i}, X\right)$. There are two cases:
If the set $\bigcap_{i=1}^{n} \operatorname{Arg} \max \left(u_{i}, X\right)$ is nonempty, then a function U has a maximum on X at $x_{0} \in \bigcap_{i=1}^{n} \operatorname{Arg} \max \left(u_{i}, X\right)$. In this case, there are $E=\bigcap_{i=1}^{n} \operatorname{Arg} \max \left(u_{i}, X\right)$ and $|E| \geq 1$.

If the set $\bigcap_{i=1}^{n} \operatorname{Arg} \max \left(u_{i}, X\right)$ is empty, then a function U has not a maximum on X. In this case, we must only search for the efficient alternatives. It is easy to prove that if $|E|=1$, then $\bigcap_{i=1}^{n} \operatorname{Arg} \max \left(u_{i}, X\right)$ is nonempty. As a result, we obtain $|E| \geq 2$.

[^0]Let denote a point-to-set mapping $\rho: X \rightarrow 2^{X}$ such that $\rho(x)=\{y \in X: y \in$ $\left.\bigcap_{i=1}^{n} R_{i}(x)\right\}$ for all $x \in X$. It is easy to show that the set $\rho(x)$ is a nonempty, convex and compact set for all $x \in X$ and there is $x \in \rho(x)$.

Theorem 1. If $x \in X$, then $|\operatorname{Arg} \max (f, \rho(x))|=1$ and $\operatorname{Arg} \max (f, \rho(x)) \subset E$.
Proof. Clearly, there is $|\operatorname{Arg} \max (f, \rho(x))| \geq 1$. Let choose $y_{1}, y_{2} \in \operatorname{Arg} \max (f, \rho(x))$, $y_{1} \neq y_{2}, t \in[0 ; 1]$ and $z=t y_{1}+(1-t) y_{2}$. It is known that the set $\operatorname{Arg} \max (f, \rho(x))$ is convex, therefore there is $z \in \operatorname{Arg} \max (f, \rho(x))$. Thus, we obtain $f(z)=f\left(y_{1}\right)=f\left(y_{2}\right)$.

For each $i \in[1 ; n]$ we have $u_{i}(z) \geq t u_{i}\left(y_{1}\right)+(1-t) u_{i}\left(y_{2}\right)$. By using this result we derive that $f(z) \geq t f\left(y_{1}\right)+(1-t) f\left(y_{2}\right)=f\left(y_{1}\right)$. Since $f(z)=f\left(y_{1}\right)$ implies $u_{i}(z)$ $=t u_{i}\left(y_{1}\right)+(1-t) u_{i}\left(y_{2}\right)$ for all $i \in[1 ; n]$ and for all $t \in[0 ; 1]$. As a result, we have that $u_{i}(z)=u_{i}\left(y_{2}\right)+t\left(u_{i}\left(y_{1}\right)-u_{i}\left(y_{2}\right)\right)$ for all $t \in[0 ; 1]$, therefore we find that $u_{i}\left(y_{1}\right)=u_{i}\left(y_{2}\right)$ for all $i \in[1 ; n]$.

Let choose $t \in(0 ; 1)$ and $i \in[1 ; n]$. It is known that the function u_{i} is strictly quasiconcave, therefore we obtain $u_{i}(z)>\min \left(u_{i}\left(y_{1}\right), u_{i}\left(y_{2}\right)\right)=u_{i}\left(y_{1}\right)$. But $u_{i}(z) \geq t u_{i}\left(y_{1}\right)$ $+(1-t) u_{i}\left(y_{2}\right)$ and by using this result we have that $f(z)>t f\left(y_{1}\right)+(1-t) f\left(y_{2}\right)=f\left(y_{1}\right)$. This lead to a contradiction, and thus we derive $|\operatorname{Arg} \max (f, \rho(x))|=1$.

Let choose $y \in \operatorname{Arg} \max (f, \rho(x))$ and assume that $y \notin E$. From condition $y \notin E$ it follows that there exists $z \in X$ such that $u_{i}(z) \geq u_{i}(y)$ for all $i \in[1 ; n]$ and $u_{k}(z)>u_{k}(y)$ for some $k \in[1 ; n]$. As a result we have that $z \in \rho(x)$ and $f(z)>f(y)$. This lead to a contradiction, therefore we derive $y \in E$, see also [5, Theorem 5]. The theorem is proved.

Corollary 1. If $x \in X$, then $x \in E$ is equivalent to $\{x\}=\rho(x)$.
Proof. Let $x \in E$ and assume that $\{x\} \neq \rho(x)$. From $x \in \rho(x)$ and $\{x\} \neq \rho(x)$ it follows that there exists $y \in \rho(x) \backslash\{x\}$ such that $u_{i}(y) \geq u_{i}(x)$ for all $i \in[1 ; n]$. Let choose $t \in(0 ; 1)$ and $z=t x+(1-t) y$, therefore $z \in \rho(x)$. Since $x \neq y$ implies $u_{i}(z)>u_{i}(x)$ for all $i \in[1 ; n]$, which contradicts condition $x \in E$ then we obtain $\{x\}=\rho(x)$.

Conversely, let $\{x\}=\rho(x)$ and assume that $x \notin E$. From condition $x \notin E$ it follows that there exists $y \in X$ such that $u_{i}(y) \geq u_{i}(x)$ for all $i \in[1 ; n]$ and $u_{k}(y)>u_{k}(x)$ for some $k \in[1 ; n]$. Thus we have that $y \in \rho(x)$ and $x \neq y$, which contradicts condition $\{x\}=\rho(x)$, therefore we obtain $x \in E$. The corollary is proved.

Let denote a function $\varphi: X \rightarrow E$ such that $\varphi(x) \in \operatorname{Arg} \max (f, \rho(x))$ for all $x \in X$.
Corollary 2. $\varphi(X)=E$.
Proof. Clearly, from $E \subset X$ and Corollary 1 it follows that $\varphi(E)=E$. Then we obtain $\varphi(X)=E$. The corollary is proved.

Let first consider the point-to-set mapping ρ. It is easy to show that it is compactvalued mapping.

Lemma 1. If $\left\{x_{k}\right\}_{k=1}^{\infty},\left\{y_{k}\right\}_{k=1}^{\infty} \subset X$ are pair of sequences such that $\lim _{k \rightarrow \infty} x_{k}=x_{0} \in$ X and $y_{k} \in \rho\left(x_{k}\right)$ for all $k \in N$, then there exists a convergent subsequence of $\left\{y_{k}\right\}_{k=1}^{\infty}$ whose limit belongs to $\rho\left(x_{0}\right)$.

Proof. Since $y_{k} \in \rho\left(x_{k}\right)$ for all $k \in N$ implies $u_{i}\left(y_{k}\right) \geq u_{i}\left(x_{k}\right)$ for all $k \in N$ and all $i \in[1 ; n]$. From $\left\{y_{k}\right\}_{k=1}^{\infty} \subset X$ it follows that there exists a convergent sequence $\left\{y_{k}^{\prime}\right\}_{k=1}^{\infty} \subset\left\{y_{k}\right\}_{k=1}^{\infty}$ such that $\lim _{k \rightarrow \infty} y_{k}^{\prime}=y_{0} \in X,\left\{x_{k}^{\prime}\right\}_{k=1}^{\infty} \subset\left\{x_{k}\right\}_{k=1}^{\infty}, \lim _{k \rightarrow \infty} x_{k}^{\prime}=x_{0}$ and $y_{k}^{\prime} \in \rho\left(x_{k}^{\prime}\right)$. Thus we have that $u_{i}\left(y_{k}^{\prime}\right) \geq u_{i}\left(x_{k}^{\prime}\right)$ for all $k \in N$ and for all $i \in[1 ; n]$. Taking 248
the limit as $k \rightarrow \infty$ we obtain $u_{i}\left(y_{0}\right) \geq u_{i}\left(x_{0}\right)$ for all $i \in[1 ; n]$. As a result there is $y_{o} \in \rho\left(x_{0}\right)$. The lemma is proved.

Lemma 2. If $\left\{x_{k}\right\}_{k=1}^{\infty} \subset X$ is a convergent sequence to $x_{0} \in X$ and $y_{0} \in \rho\left(x_{0}\right)$, then there exists a sequence $\left\{y_{k}\right\}_{k=1}^{\infty} \subset X$ such that $y_{k} \in \rho\left(x_{k}\right)$ for all $k \in N$ and $\lim _{k \rightarrow \infty} y_{k}=y_{0}$.

Proof. Let denote the distance between y_{0} and $\rho\left(x_{k}\right)$ by $d_{k}=\inf \left\{d\left(y_{0}, x\right): x \in\right.$ $\left.\rho\left(x_{k}\right)\right\}$. Since $\rho\left(x_{k}\right)$ is a nonempty, convex and compact set, it follows that:
if $y_{0} \in \rho\left(x_{k}\right)$, then $d_{k}=0$ and let $y_{k}=y_{0}$;
if $y_{0} \notin \rho\left(x_{k}\right)$, then $d_{k}>0$ and there exists a unique $y_{k} \in \rho\left(x_{k}\right)$ such that $d_{k}=d\left(y_{0}, y_{k}\right)$.
Thus we obtain a sequence $\left\{y_{k}\right\}_{k=1}^{\infty} \subset X$ such that $y_{k} \in \rho\left(x_{k}\right)$ for all $k \in N$. Clearly, since $\lim _{k \rightarrow \infty} x_{k}=x_{0}$ implies that the sequence $\left\{d_{k}\right\}_{k=1}^{\infty}$ is convergent and $\lim _{k \rightarrow \infty} d_{k}=0$. Thus we obtain $\lim _{k \rightarrow \infty} y_{k}=y_{0}$. The lemma is proved.

Theorem 2. The point-to-set mapping ρ is continuos on X.
Proof. From Lemma 1 it follows that the point-to-set mapping ρ is upper semicontinuous of X. From Lemma 2 it follows that the point-to-set mapping ρ is lower semi-continuous of $X[1,4]$. Thus we obtain that the point-to-set mapping ρ is continuous of X. The theorem is proved.

Maximum Theorem [1] [3, Theorem 6.5]. "Let X be a topological space. If F is a continuous, real-valued function of X and B is a continuos compact-valued point-to-set mapping from Y to subsets of X, then the point-to-set mapping γ defined by $\gamma(y)=\{x \in$ $B(y): F(x) \geq F\left(x^{\prime}\right)$ for all $\left.x^{\prime} \in B(y)\right\}$ is upper semi-continuous and compact-valued, and the functions f defined by $f(y)=F(\gamma(y))$ is a continuous function".

Next, let us consider the function φ.
Theorem 3. The function φ is continuos on X.
Proof. From Theorem 2 and the Maximum Theorem it follows that the function φ is continuos on X, see also [4]. The theorem is proved.

Theorem 4. The set E is nonempty, path-connected and compact.
Proof. It is known that every continuous image of a nonempty, path-connected and compact set is a nonempty, path-connected and compact set $[1,4]$. From Theorem 3 and Corollary 2 it follows that the set E is nonempty, path-connected and compact. The theorem is proved.

Remark 1. It is known that path-connectedness implies connectedness [4], therefore the set E is connected. In [4, Example 1.28 and Remark 1.74], there is an example where it is seen that there exists a connected set that is not path-connected.

Remark 2. If the set $\bigcap_{i=1}^{n} \operatorname{Arg} \max \left(u_{i}, X\right)$ is nonempty, then $E=\bigcap_{i=1}^{n} \operatorname{Arg} \max$ $\left(u_{i}, X\right)$ and $|E| \geq 1$. From Theorem 1 it follows that $|E|=1$.

Remark 3. If the set $\bigcap_{i=1}^{n} \operatorname{Arg} \max \left(u_{i}, X\right)$ is empty, then $|E| \geq 2$. From Theorem 4 it follows that the set E is infinite and uncountable.

REFERENCES

[1] J. Green, W. Heller. Mathematical analysis and convexity with applications to economics, Handbook of mathematical economics, I, North-Holland Publishing Company, 1981.
[2] G. Debreu. Theory of Value, John Wiley and Sons, 1959.
[3] E. Klein. Mathematical methods in theoretical economics, Academic Press, 1973.
[4] A. Mukherjea, K. Pothoven. Real and Functional Analysis, Plenum Press, 1978.
[5] Z. Slavov. Weak and strong optimality and increasing concave functions, Applied Mathematics and Computation, 135, (2003), 517-529.

Zdravko Slavov
Department of Mathematics
Varna Free University
Varna, Bulgaria
e-mail: slavovibz@yahoo.com

Christina Evans
Department of Mathematics
Norwich University, VT USA
e-mail: mrsevansc@yahoo.com

ВЪРХУ СТРУКТУРАТА НА ЕФЕКТИВНОТО МНОЖЕСТВО

Здравко Д. Славов, Христина С. Еванс

В статията се представя ефективно множество в система вземаща решение при изпъкнало и компактно множество от алтернативи и крайно множество от критерии. Доказва се, че ефективното множество е непразно, линейно свързано и компактно, ако целевите функции са непрекъснати, вдлъбнати и строго квазивдлъбнати.

[^0]: *2000 Mathematics Subject Classification: 90C29, 90C25
 Key words: efficient set, concave function, quasi-concave function, path-connected

