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ON THE STRUCTURE OF THE EFFICIENT SET"

Zdravko D. Slavov, Christina S. Evans

The paper presents an efficient set of decision-making system with convex and com-
pact set of alternatives and finite set of multiple criteria. It is proved that the efficient
set is nonempty, path-connected and compact, if the objective functions are continu-
ous, concave and strictly quasi-concave.

1. Introduction. Let a decision-making system (X, C) be given. In this system,
X C R™ is a set of alternatives, m > 1, | X| > 1 and C is a finite set of multiple criteria,
|C] = n > 2. Let each criterion ¢; € C be defined by the continuous preference >,
which is a binary relation on X. It is known that each continuous preference >, can be
represented by a continuous objective (or utility) function u; : X — R [2].

In this paper, let the utility functions {u;}}_; be continuous on the convex and com-
pact set X. For each x € X and 7 € [1;n] let denote R;(z) = {y € X : u;(y) > u;(x)}. Tt
is easy to prove that the sets {R;(x)}?_; are compact subset of X.

Definition of an efficient set: an alternative z € X is called efficient alternative iff
there does not exist an alternative y € X such that u;(y) > w;(z) for all ¢ € [1;n] and
ug(y) > uk(x) for some k € [1;n]. We denote the set of the efficient alternatives by E
and it is called an efficient set.

A function w; is concave iff x,y € X and ¢t € [0;1], then w;(tx + (1 — t)y) > tu;(x)
+(1 — t)u;(y) and a function w; is strictly quasi-concave iff x,y € X and ¢ € (0;1), then
ui(te + (1 — t)y) > min(u;(z), ui(y)).

In this paper, let the functions {u;}}; be concave and strictly quasi-concave on X.

2. Main results. Let denote a function f : X — R, f(z) = 2.1, u;(x) for all
xz € X. It is easy to show that the function f is continuous and concave on X. It is
known that £ C Argmax(f, X) and |E| > 1 [5].

Let denote a function U : X — R™, U(z) = (u1(x),u2(x), ..., un(z)) for all z € X. Tt
is easy to show that the function U is continuous and concave on X.

Let analyze the convex sets (), Argmax(u;, X). There are two cases:

If the set (), Argmax(u;, X) is nonempty, then a function U has a maximum on
X at zp € (i, Argmax(u;, X). In this case, there are E = (,_, Argmax(u;, X) and
|E| > 1.

If the set (), Argmax(u;, X) is empty, then a function U has not a maximum on X.
In this case, we must only search for the efficient alternatives. It is easy to prove that if
|E| =1, then ;_; Argmax(u;, X) is nonempty. As a result, we obtain |E| > 2.
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Let denote a point-to-set mapping p : X — 2% such that p(z) = {y € X : y €
N, Ri(z)} for all z € X. It is easy to show that the set p(z) is a nonempty, convex
and compact set for all z € X and there is z € p(z).

Theorem 1. If x € X, then |Argmax(f, p(z))| =1 and Argmax(f, p(x)) C E.

Proof. Clearly, there is |Argmax(f, p(x))| > 1. Let choose y1, y2 € Argmax(f, p(x)),
1 # Yo, t € [0;1] and z = ty1 + (1 — ¢)y2. It is known that the set Argmax(f, p(z)) is
convex, therefore there is z € Argmax(f, p(x)). Thus, we obtain f(z) = f(y1) = f(y2).

For each i € [1;n] we have u;(z) > tu;(y1) + (1 — t)u;(y2). By using this result we
derive that f(z) > ¢f(y1) + (1 — t)f(y2) = f(y1). Since f(z) = f(y1) implies wu;(2)
= tu;(y1) + (1 — t)u;(y2) for all i € [1;n] and for all ¢ € [0;1]. As a result, we have that
ui(2) = ui(y2) + t(u;(y1) —u;(y2)) for all ¢t € [0;1], therefore we find that u;(y1) = wi(y2)
for all i € [1;n].

Let choose ¢t € (0;1) and ¢ € [1;n]. It is known that the function w; is strictly quasi-
concave, therefore we obtain wu;(z) > min(u,;(y1), wi(y2)) = wi(y1). But u;(z) > tu;(y1)
+(1—t)u;(y2) and by using this result we have that f(z) > ¢f(y1)+ (1 —1¢) f(y2) = f(y1)-
This lead to a contradiction, and thus we derive |Argmax(f, p(x))| = 1.

Let choose y € Argmax(f, p(x)) and assume that y ¢ E. From condition y ¢ E it
follows that there exists z € X such that u;(2z) > u;(y) for all i € [1;n] and ug(2) > ur(y)
for some k € [1;n]. As a result we have that z € p(x) and f(z) > f(y). This lead to
a contradiction, therefore we derive y € E| see also [5, Theorem 5]. The theorem is
proved. [

Corollary 1. Ifx € X, then x € E is equivalent to {z} = p(z).

Proof. Let z € E and assume that {2} # p(z). From z € p(z) and {a} # p(z) it
follows that there exists y € p(z)\{z} such that u;(y) > u;(z) for all i € [1;n]. Let choose
t € (0;1) and z = tx + (1 — 1)y, therefore z € p(z). Since x # y implies u;(z) > u;(x) for
all ¢ € [1;n], which contradicts condition z € E then we obtain {z} = p(x).

Conversely, let {x} = p(z) and assume that = ¢ E. From condition z ¢ E it follows
that there exists y € X such that w;(y) > w;(x) for all i € [1;n] and uk(y) > ug(x) for
some k € [1;n]. Thus we have that y € p(x) and = # y, which contradicts condition
{z} = p(z), therefore we obtain z € E. The corollary is proved. O

Let denote a function ¢ : X — FE such that ¢(z) € Argmax(f, p(z)) for all z € X.

Corollary 2. ¢(X)=F.

Proof. Clearly, from E C X and Corollary 1 it follows that ¢(E) = E. Then we
obtain ¢(X) = E. The corollary is proved. O

Let first consider the point-to-set mapping p. It is easy to show that it is compact-
valued mapping.

Lemma 1. If {xx}72, {yx}32, C X are pair of sequences such that klim Ty =T €

—00
X and yi € p(xy) for all k € N, then there exists a convergent subsequence of {yr}52,
whose limit belongs to p(xo).

Proof. Since yr € p(zi) for all k € N implies u;(yr) > ui(zg) for all k € N and
all i € [1;n]. From {yx}32, C X it follows that there exists a convergent sequence
{11521 C {yr}2, such that klirlgo v, =y € X, {z}. 172, C {2y, klirrgo x) = xo and
Y, € p(xr,). Thus we have that u;(y;,) > u;(x},) for all k € N and for all ¢ € [1;n]. Taking
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the limit as k — oo we obtain w;(yo) > u;(xo) for all i € [1;n]. As a result there is
Yo € p(x0). The lemma is proved. O

Lemma 2. If{z;}32, C X is a convergent sequence to xg € X and yo € p(xo), then
there exists a sequence {yr}3>, C X such that y, € p(xy) for allk € N and klim YE = Yo-
— 00

Proof. Let denote the distance between yo and p(zy) by di = inf{d(yo,z) : = €
p(xk)}. Since p(zy) is a nonempty, convex and compact set, it follows that:
if yo € p(zk), then dr, = 0 and let yr = yo;
if yo ¢ p(xk), then di, > 0 and there exists a unique yi € p(zx) such that dr = d(yo, yx)-
Thus we obtain a sequence {y}7>, C X such that y, € p(zy) for all k € N. Clearly,

since khm x = xo implies that the sequence {d;}72, is convergent and hm dr = 0.
k—oo

Thus we obtain hm Yr = Yo. The lemma is proved. [

Theorem 2. The point-to-set mapping p is continuos on X.

Proof. From Lemma 1 it follows that the point-to-set mapping p is upper semi-
continuous of X. From Lemma 2 it follows that the point-to-set mapping p is lower
semi-continuous of X [1, 4]. Thus we obtain that the point-to-set mapping p is continuous
of X. The theorem is proved.

Maximum Theorem [1] [3, Theorem 6.5]. “Let X be a topological space. If F is a
continuous, real-valued function of X and B is a continuos compact-valued point-to-set
mapping from'Y to subsets of X, then the point-to-set mapping v defined by y(y) = {x €
B(y) : F(x) > F(2') for all ' € B(y)} is upper semi-continuous and compact-valued,
and the functions f defined by f(y) = F(~(y)) is a continuous function”.

Next, let us consider the function ¢.
Theorem 3. The function ¢ is continuos on X.

Proof. From Theorem 2 and the Maximum Theorem it follows that the function ¢
is continuos on X, see also [4]. The theorem is proved. O

Theorem 4. The set E is nonempty, path-connected and compact.

Proof. It is known that every continuous image of a nonempty, path-connected and
compact set is a nonempty, path-connected and compact set [1, 4]. From Theorem 3 and
Corollary 2 it follows that the set F is nonempty, path-connected and compact. The
theorem is proved. [

Remark 1. Tt is known that path-connectedness implies connectedness [4], therefore
the set F is connected. In [4, Example 1.28 and Remark 1.74], there is an example where
it is seen that there exists a connected set that is not path-connected.

Remark 2. If the set ();_, Argmax(u;, X) is nonempty, then £ = (\_, Argmax
(us, X) and |E| > 1. From Theorem 1 it follows that |E| = 1.

Remark 3. If the set (), Argmax(u;, X) is empty, then |E| > 2. From Theorem 4
it follows that the set F is infinite and uncountable.
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BBPXY CTPYKTYPATA HA EOEKTNUBHOTO MHO>XKECTBO

3apasko . CiaaBoB, Xpuctuua C. EBanc

B crartusita ce mpeacrabst e(peKTUBHO MHOXKECTBO B CHCTEMa, B3eMallla PeIleHrue Mpu
U3M'bKHAJIO ¥ KOMIIAKTHO MHOYKECTBO OT AJITEDHATUBHU U KPAWHO MHOXKECTBO OT KPHU-
tepuu. Jloka3Ba ce, 4e epEeKTUBHOTO MHOXKECTBO € HENPA3HO, JIMHEHHO CBbP3aHO U
KOMIIAKTHO, aKO IeJieBuTe (PYHKIIUU Ca HEPEK'bCHATH, BIIILOHATH M CTPOrO KBA3UB-

JJILOHATH.
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