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ON THE STRUCTURE OF THE EFFICIENT SET
*

Zdravko D. Slavov, Christina S. Evans

The paper presents an efficient set of decision-making system with convex and com-
pact set of alternatives and finite set of multiple criteria. It is proved that the efficient
set is nonempty, path-connected and compact, if the objective functions are continu-
ous, concave and strictly quasi-concave.

1. Introduction. Let a decision-making system (X, C) be given. In this system,
X ⊂ Rm is a set of alternatives, m ≥ 1, |X | > 1 and C is a finite set of multiple criteria,
|C| = n ≥ 2. Let each criterion ci ∈ C be defined by the continuous preference ≻

i
,

which is a binary relation on X . It is known that each continuous preference ≻
i

can be
represented by a continuous objective (or utility) function ui : X → R [2].

In this paper, let the utility functions {ui}
n

i=1
be continuous on the convex and com-

pact set X . For each x ∈ X and i ∈ [1; n] let denote Ri(x) = {y ∈ X : ui(y) ≥ ui(x)}. It
is easy to prove that the sets {Ri(x)}n

i=1
are compact subset of X .

Definition of an efficient set: an alternative x ∈ X is called efficient alternative iff
there does not exist an alternative y ∈ X such that ui(y) ≥ ui(x) for all i ∈ [1; n] and
uk(y) > uk(x) for some k ∈ [1; n]. We denote the set of the efficient alternatives by E
and it is called an efficient set.

A function ui is concave iff x, y ∈ X and t ∈ [0; 1], then ui(tx + (1 − t)y) ≥ tui(x)
+(1 − t)ui(y) and a function ui is strictly quasi-concave iff x, y ∈ X and t ∈ (0; 1), then
ui(tx + (1 − t)y) > min(ui(x), ui(y)).

In this paper, let the functions {ui}
n

i=1
be concave and strictly quasi-concave on X .

2. Main results. Let denote a function f : X → R, f(x) =
∑

n

i=1
ui(x) for all

x ∈ X . It is easy to show that the function f is continuous and concave on X . It is
known that E ⊂ Argmax(f, X) and |E| ≥ 1 [5].

Let denote a function U : X → Rn, U(x) = (u1(x), u2(x), ..., un(x)) for all x ∈ X . It
is easy to show that the function U is continuous and concave on X .

Let analyze the convex sets
⋂n

i=1
Argmax(ui, X). There are two cases:

If the set
⋂

n

i=1
Argmax(ui, X) is nonempty, then a function U has a maximum on

X at x0 ∈
⋂n

i=1
Argmax(ui, X). In this case, there are E =

⋂n

i=1
Arg max(ui, X) and

|E| ≥ 1.
If the set

⋂
n

i=1
Argmax(ui, X) is empty, then a function U has not a maximum on X .

In this case, we must only search for the efficient alternatives. It is easy to prove that if
|E| = 1, then

⋂
n

i=1
Argmax(ui, X) is nonempty. As a result, we obtain |E| ≥ 2.
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Let denote a point-to-set mapping ρ : X → 2X such that ρ(x) = {y ∈ X : y ∈⋂n

i=1
Ri(x)} for all x ∈ X . It is easy to show that the set ρ(x) is a nonempty, convex

and compact set for all x ∈ X and there is x ∈ ρ(x).

Theorem 1. If x ∈ X, then |Argmax(f, ρ(x))| = 1 and Argmax(f, ρ(x)) ⊂ E.

Proof. Clearly, there is |Argmax(f, ρ(x))| ≥ 1. Let choose y1, y2 ∈ Argmax(f, ρ(x)),
y1 6= y2, t ∈ [0; 1] and z = ty1 + (1 − t)y2. It is known that the set Argmax(f, ρ(x)) is
convex, therefore there is z ∈ Arg max(f, ρ(x)). Thus, we obtain f(z) = f(y1) = f(y2).

For each i ∈ [1; n] we have ui(z) ≥ tui(y1) + (1 − t)ui(y2). By using this result we
derive that f(z) ≥ tf(y1) + (1 − t)f(y2) = f(y1). Since f(z) = f(y1) implies ui(z)
= tui(y1) + (1 − t)ui(y2) for all i ∈ [1; n] and for all t ∈ [0; 1]. As a result, we have that
ui(z) = ui(y2)+ t(ui(y1)−ui(y2)) for all t ∈ [0; 1], therefore we find that ui(y1) = ui(y2)
for all i ∈ [1; n].

Let choose t ∈ (0; 1) and i ∈ [1; n]. It is known that the function ui is strictly quasi-
concave, therefore we obtain ui(z) > min(ui(y1), ui(y2)) = ui(y1). But ui(z) ≥ tui(y1)
+(1− t)ui(y2) and by using this result we have that f(z) > tf(y1)+(1− t)f(y2) = f(y1).
This lead to a contradiction, and thus we derive |Argmax(f, ρ(x))| = 1.

Let choose y ∈ Argmax(f, ρ(x)) and assume that y /∈ E. From condition y /∈ E it
follows that there exists z ∈ X such that ui(z) ≥ ui(y) for all i ∈ [1; n] and uk(z) > uk(y)
for some k ∈ [1; n]. As a result we have that z ∈ ρ(x) and f(z) > f(y). This lead to
a contradiction, therefore we derive y ∈ E, see also [5, Theorem 5]. The theorem is
proved. �

Corollary 1. If x ∈ X, then x ∈ E is equivalent to {x} = ρ(x).

Proof. Let x ∈ E and assume that {x} 6= ρ(x). From x ∈ ρ(x) and {x} 6= ρ(x) it
follows that there exists y ∈ ρ(x)\{x} such that ui(y) ≥ ui(x) for all i ∈ [1; n]. Let choose
t ∈ (0; 1) and z = tx + (1− t)y, therefore z ∈ ρ(x). Since x 6= y implies ui(z) > ui(x) for
all i ∈ [1; n], which contradicts condition x ∈ E then we obtain {x} = ρ(x).

Conversely, let {x} = ρ(x) and assume that x /∈ E. From condition x /∈ E it follows
that there exists y ∈ X such that ui(y) ≥ ui(x) for all i ∈ [1; n] and uk(y) > uk(x) for
some k ∈ [1; n]. Thus we have that y ∈ ρ(x) and x 6= y, which contradicts condition
{x} = ρ(x), therefore we obtain x ∈ E. The corollary is proved. �

Let denote a function ϕ : X → E such that ϕ(x) ∈ Argmax(f, ρ(x)) for all x ∈ X .

Corollary 2. ϕ(X) = E.

Proof. Clearly, from E ⊂ X and Corollary 1 it follows that ϕ(E) = E. Then we
obtain ϕ(X) = E. The corollary is proved. �

Let first consider the point-to-set mapping ρ. It is easy to show that it is compact-
valued mapping.

Lemma 1. If {xk}
∞

k=1
,{yk}

∞

k=1
⊂ X are pair of sequences such that lim

k→∞

xk = x0 ∈

X and yk ∈ ρ(xk) for all k ∈ N , then there exists a convergent subsequence of {yk}
∞

k=1

whose limit belongs to ρ(x0).

Proof. Since yk ∈ ρ(xk) for all k ∈ N implies ui(yk) ≥ ui(xk) for all k ∈ N and
all i ∈ [1; n]. From {yk}

∞

k=1
⊂ X it follows that there exists a convergent sequence

{y′

k
}∞

k=1
⊂ {yk}

∞

k=1
such that lim

k→∞

y′

k
= y0 ∈ X , {x′

k
}∞

k=1
⊂ {xk}

∞

k=1
, lim

k→∞

x′

k
= x0 and

y′

k
∈ ρ(x′

k
). Thus we have that ui(y

′

k
) ≥ ui(x

′

k
) for all k ∈ N and for all i ∈ [1; n]. Taking
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the limit as k → ∞ we obtain ui(y0) ≥ ui(x0) for all i ∈ [1; n]. As a result there is
yo ∈ ρ(x0). The lemma is proved. �

Lemma 2. If {xk}
∞

k=1
⊂ X is a convergent sequence to x0 ∈ X and y0 ∈ ρ(x0), then

there exists a sequence {yk}
∞

k=1
⊂ X such that yk ∈ ρ(xk) for all k ∈ N and lim

k→∞

yk = y0.

Proof. Let denote the distance between y0 and ρ(xk) by dk = inf{d(y0, x) : x ∈
ρ(xk)}. Since ρ(xk) is a nonempty, convex and compact set, it follows that:
if y0 ∈ ρ(xk), then dk = 0 and let yk = y0;
if y0 /∈ ρ(xk), then dk > 0 and there exists a unique yk ∈ ρ(xk) such that dk = d(y0, yk).

Thus we obtain a sequence {yk}
∞

k=1
⊂ X such that yk ∈ ρ(xk) for all k ∈ N . Clearly,

since lim
k→∞

xk = x0 implies that the sequence {dk}
∞

k=1
is convergent and lim

k→∞

dk = 0.

Thus we obtain lim
k→∞

yk = y0. The lemma is proved. �

Theorem 2. The point-to-set mapping ρ is continuos on X.

Proof. From Lemma 1 it follows that the point-to-set mapping ρ is upper semi-
continuous of X . From Lemma 2 it follows that the point-to-set mapping ρ is lower
semi-continuous of X [1, 4]. Thus we obtain that the point-to-set mapping ρ is continuous
of X . The theorem is proved.

Maximum Theorem [1] [3, Theorem 6.5]. “Let X be a topological space. If F is a

continuous, real-valued function of X and B is a continuos compact-valued point-to-set

mapping from Y to subsets of X, then the point-to-set mapping γ defined by γ(y) = {x ∈
B(y) : F (x) ≥ F (x′) for all x′ ∈ B(y)} is upper semi-continuous and compact-valued,

and the functions f defined by f(y) = F (γ(y)) is a continuous function”.

Next, let us consider the function ϕ.

Theorem 3. The function ϕ is continuos on X.

Proof. From Theorem 2 and the Maximum Theorem it follows that the function ϕ
is continuos on X , see also [4]. The theorem is proved. �

Theorem 4. The set E is nonempty, path-connected and compact.

Proof. It is known that every continuous image of a nonempty, path-connected and
compact set is a nonempty, path-connected and compact set [1, 4]. From Theorem 3 and
Corollary 2 it follows that the set E is nonempty, path-connected and compact. The
theorem is proved. �

Remark 1. It is known that path-connectedness implies connectedness [4], therefore
the set E is connected. In [4, Example 1.28 and Remark 1.74], there is an example where
it is seen that there exists a connected set that is not path-connected.

Remark 2. If the set
⋂n

i=1
Argmax(ui, X) is nonempty, then E =

⋂n

i=1
Argmax

(ui, X) and |E| ≥ 1. From Theorem 1 it follows that |E| = 1.
Remark 3. If the set

⋂
n

i=1
Argmax(ui, X) is empty, then |E| ≥ 2. From Theorem 4

it follows that the set E is infinite and uncountable.
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ВЪРХУ СТРУКТУРАТА НА ЕФЕКТИВНОТО МНОЖЕСТВО

Здравко Д. Славов, Христина С. Еванс

В статията се представя ефективно множество в система вземаща решение при

изпъкнало и компактно множество от алтернативи и крайно множество от кри-

терии. Доказва се, че ефективното множество е непразно, линейно свързано и

компактно, ако целевите функции са непрекъснати, вдлъбнати и строго квазив-

длъбнати.
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