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A LOCATING SCHEME OF THE BOOLEAN FUNCTIONS
FROM THE POST CLASSES

Valentin Bakoev

A locating scheme of the Boolean functions from the Post classes is proposed here.
It is deduced by solving a proper sequence of known problems and combining their
solutions, represented by Euler-Venn diagrams.

1. Introduction. The theory of Boolean functions takes an important place in
Discrete mathematics teaching. Several topics are devoted to studying of Post classes
and completeness, so they are included in each of the textbooks [11,7,12,5,8,10,4]. To
master these topics students must solve many problems like these, given in [6] and in
some of the textbooks. A big part of them concerns the enumeration of all functions in
the sections among the Post classes (the cardinalities of the classes are derived in most
of the textbooks). Our experience shows that solving similar problems without proper
illustrations of their solutions often yields to confusions among the students.

Here we propose a scheme (an Euler-Venn diagram), which represents the mutual
location of Post classes towards the set of all Boolean functions. We build this scheme
consecutively by solving a sequence of problems and combining their solutions. We
investigate functions of n variables, but we represent the results in general case, because
the corresponding schemes resemble each other for n > 1. "Resemble” means that the
scheme represents the cardinalities only for the classes Ty and T;, for each n. For the
rest classes this is possible only for a given (not large) n, as we shall see further. Their
actual cardinalities cannot be represented on the scheme in the general case, because the
ratio between each of them and the number of all Boolean functions exponentially tends
to zero when n grows to infinity.

2. Basic notions and assertions. We recall some necessary terms and assertions
in accordance with the most popular Bulgarian textbook [11].

Further, n will always be an integer greater than zero. Let JJ = {0,1}"™ be the
n-dimensional Boolean cube, i. e. the set of all n-dimensional binary vectors. We
assume that the vectors of JJ are in lexicographic order. A Boolean function (or simply
a function) of n variables z1,a,...,2, is a mapping f : J? — Jy. For a given n, the
set of all functions of n variables is denoted by F", i. e. F™ = {f|f : J& — J2}, and
F = UpZ, F" denotes the set of all Boolean functions. When f(a) = 0 (resp. = 1) for
each vector o € JI, then f is called a constant 0 (resp. 1) and it is denoted by 0 (resp.
1). If for some i,1 < i < n, f(a) = 2; Ya € J§ (the value of f always coincides with the
value of its i-th variable), we denote f(z1,...,2,) = 2; and f is called an i-th identity
function.
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Let f(z1,22,...,2,) € F" and g(y1,y2, - - -, Ym) € F™. The function

h(T1,. s i1, Y Y Tig 1 -+ Tn) = (@1, Tim1, 9V -+ Ym)s Tt - -+, Tn)
belongs to F™*™~1 and it is called a superposition of g in f in the place of the variable
x;. For a given set F' = {f1,..., fi} of Boolean functions, [F] denotes the set of all

possible superpositions of the functions from F. The set F' is said to be a closed set (or
simply a class) if [F] = F, i. e. all superpositions of the functions from F remain in F.
The next theorem states a sufficient condition for a given set of Boolean functions to be
a class.

Theorem 1. Let F' € F and: 1) f(x1,...,2) = 2; € F, i = 1,...,n; 2) for all
fsg1s---,gn € F it follows that h = f(g1,...,g9n) € F. Then F is a class.

The set F is said to be complete if [F] = F, i. e. if each Boolean function can be
represented as a superposition of functions in F'.

3. The Post classes and building up the scheme. The following five classes are
called Post classes in honour of Emil Post. Proofs that they are classes and calculations
of their cardinalities are given in [11, 7, 12, §].

3.1. The classes Tp and T;. We say that the function f € F preserves the zero
(resp. preserves the unit), if f(0,...,0) =0 (vesp. f(1,...,1) =1). Let Top = {f|f € F,
f(0,...,0) =0} (resp. Th = {f|f € F, f(1,...,1) = 1}) denotes the set of all functions
preserving the zero (resp. the unit). Let also T} (resp. T7") denotes the subset of Ty (resp.
of T1), which contains functions of n variables only. It is known that |Tg| = |T]*| = 22" 1.

All following problems, which we state and solve, are problems from [6], Chapter
II. So we refer to their numbers only. Problem 4.5 puts many questions, among them
T8 N TP =7 and |T{UTT| =?

To answer the first of them we note that f € T5 NI iff the vector of its values
has the form f(z1,...,z,) = (0,a1,...,a2n_2,1), a; € {0,1}, i = 1,...,2" — 2. So
IT¢ N TP = 22"72 i, e. a quarter of |F"|. By analogy we obtain |F"\(T§ U T})|
= [(T\T)| = [(TP\TF)| = 22" 72, Hence |(T§ UTY)| = 3.22" 2. Since F™ splits to
quarters for each n, F splits to quarters too, as it is shown on Figure 1.

3.2. Self-dual functions and the class S. If a = (a1,...,a,) € J¥, then the
vector & = (aq,...,a,) is called an inverse vector of a. Let f € F™. The function
(@1, 22,...,20) = f(Z1,Za,...,%,) is called the dual function of f. The inverse vectors
in JJ are symmetrical to each other with respect to the imaginary axis, which divides
the vectors beginning with 0 and the vectors beginning with 1 in J§. So, if f(z1,...,2x)
= (a1,a2,...,a9n_1,a9n), then f*(xy,...,2,) = (G2n,d2n_1,...,d2,d1) (see Problem
2.2). When f and f* coincide (i. e. f = f*), the function f is called self-dual. The set
of all self-dual functions of n variables is denoted by S™, and S = Uzo:1 S™ is the set of
all self-dual functions. So f is self-dual iff f takes inverse values on each pair of inverse
vectors, i. e. each f € S™ has the form f(x1,...,2,) = (a1,...,G90-1,809n-1,...,81).
Therefore S™ contains exactly 22""" functions (see problems 2.11 and Chapter I, 2.1).
Other questions, which the problem 4.5 sets are: |T7* N S™| =7, |[TF\S™| =7, |S™ N (T§
UTP)| =7, S A (TE\TP)| =2, |S™\(Tg UTP)| =7 and |(S™\T3) N T7)| =?

Let f € T} nS™ i e f(0,...,0) = 0 and f = f*. Then 0 = f(0,...,0)
= f*(0,...,0) = f(0,...,0) = f(1,...,1). Therefore f(1,...,1) = 1 and f € TP
So f € T N S™ implies f € T, or (by analogy) f € T{* NS™ = f € T{'. And vice versa:
f € S™\T§ implies f ¢ T7*, or f € S"\T]* = f ¢ T'. We partition the class S™ into two
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subclasses: S™ = ST US", ST = {f|f € Ty NTNS™} and S = {f|f € S"\(T§UTT)}.
Hence |S7| = |S™| = [S"]/2 = 22" =1 and also |S%| < |Tg'NTY| for n > 1. The location

of the set(s) S™ = ST U S™ is illustrated on Figure 2.

£

F F

Fig. 1. Ty and Ti into F Fig. 2. Ty, Th and S into F

3.3. Monotone functions and the class M. Let o, 5 € J and a = (a1, ..., a,),
B = (b1,...,bn). The relation ”=<” is defined over JI' x J§ as follows: a < g iff a; < b;
fori=1,2,...,n. If o, 8 € J and o < 3 always implies f(a) < f(f), then the function
f is called monotone. Let M™ be the set of all monotone functions of n variables, and
M = J;—; M™ be the set of all monotone functions. The so called Dedekind’s problem
[3] is a problem of enumerating the set M™. It is still open, there is no exact formula for
|M™| in the general case, and the values of |M™| are known only for 1 < n < 8. Precise
asymptotic estimations of |M™| are given in [9].

Problem 5.22 sets the questions |M™\ (T N 17")| =? and |[M"\(T§ U TT)| =7 Let
fe M™"\Tp. So f(0,...,0) = 1. Since the vector (0,...,0) <= a Va € J3 and f is
monotone, it follows that f(a) = 1 Va € J¥, i. e. f = 1. By analogy, f € M™\T]
implies f = 0. So, each f € M™\{0, 1} satisfies f(0,...,0) =0 and f(1,...,1) =1, and
therefore (M™\{0,1}) C (T3 NTY), M™ C (T UTY).

The intersection between the classes S™ and M™ (see problems 5.23 and 5.26) is well
studied ([1,2] etc.). For our goals it is enough to note:

)S"NM"=(STuSH)NM™= (ST NM")U(SPNM™) =St nM".

2) If f € M™ then f* € M"™. This assertion follows directly from Problems 5.4
and 2.4. It also can be proved in this way: f € M™ means that Vo, € JJ, a 2 3
= f(a) < f(B). If @ < B then B < @ and so f(B) < f(a). Therefore f(3) > f(a), also
() = F(a) < F(B) = £*(8) and hence f* € M™.

So some of the functions f € M™ satisfy f = f* and they are in M™ N S%, the rest
of them (such that f # f*) are in M™\S". The location of the class M" (towards the
considered classes) is outlined by dash-line on the Figure 3. So we mark the unknown
cardinality of M™ in the general case.

3.4. Linear functions and the class L. The completeness of the set of functions
{xy,2 @ y,1} is proved in the textbooks and so each function f € F™ can be expressed
as a superposition over this set. After that f can be reduced to the form f(x1,...,x,)
=FE1® - @ E), where E; # E; for 1 < i < j <k and each monomial is of the type
Ei=uxy... .2, %, #2, 1 <r<s<m,or E; = 1. Such a formula is called a
Zhegalkin polynomial of f. The Zhegalkin’s theorem states that for each f € F there
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Fig. 3. Ty, T1 and S into F All the classes into F

exists a unique Zhegalkin polynomial. A function f € F™, which Zhegalkin polynomial
consists of linear terms only

(1) f(xla"'axn) :ao@xil @@xzk; ap € {Oal}a nggna
is called a linear function. The set of all linear functions of n variables is denoted by
L" and L = UZO=1 L™ is the set of all linear functions. Each function f € L™ has the
general form f(z1,...,2,) = a0 ® a121 ® -+ B anZy, a; € {0,1}, 0 < i < n, and hence
|L"| = 2"+t

The last questions in Problem 4.5 are: |[T{NL™| =7, [T UL™| =2, |[L™"\(T§NTT")| =7,
[L"\(Tg U Ty =7, [L" 0 S" NI =7, [L"\(Tg" U (T N.S™))[ =7 and |(L"US™)\ (T U
| =?

Firstly, we consider the location of the class L™ towards the classes 7' and 17*. Let
f € L™ be of the form (1). There are two cases: (i) ap = 0 and (ii) ap = 1, which split
L™ into two subclasses with equal cardinalities. In case (i) f(0,...,0) = 0 and therefore
feL"nTy, |[L"NTF| = 2™ In the same case the number k of variables in f can

be odd or even. When k is odd f(1,...,1) =09 1& ---®1 = @lel = 1 and so
—_——

k
feL™NTyNTy. When k is even f(1,...,1) =0 and so f € L" NTF\T{*. About the
ways of choosing k variables we recall that

2, [n/2] n 13 /n o
2 <2k> =2 <2k:—1> §Z(k> =2
k=0 k=1 k=0

Hence [L" NTH NTY| = |[L" NTP\TT| = 2"~ 1. In case (ii) f € L™\T{. By analogy we
obtain: if k is odd, then f € L™\(TJ* UTT"), and if k is even, then f € L™ NTP\T{. And
also |[L"\(TFUTH)| = |L"NTP\T2)| = 27~ 1. Therefore L™ splits to quarters, which are
subsets of T N1, TP\TT, TP\T and F\(T§ U TY") correspondently — see Figure 4.

Now we answer the questions, which include the class S™ (Problems 2.9, 3.6, 3.23,
3.24,4.17 etc. also concern L™NS™). Let f(x1,...,2Tn) = ao®xi ®. .. B T4y, ao € {0,1},
0 <k < n. To express f* we use the property » © 1 = 7 and we obtain f*(z1,...,7,)

= f(@1,. %) = (ST, & 0Fy) = (a0 ® (2, ®1) & & (2, 1)) &1
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=ay DTy DTy D @f:ll 1, which means that L™ = (L™)*. When the sum

@fill 1 =0then f = f* i e f € L™NS™ and it holds for every odd k. Hence
|L™ N S™ =|L™|/2 =2". There are two subcases: if ag = 0 then f € T} NIy NL"NS”
(or f e L™ NTH NI implies f € S™), and if ag = 1 then f € (L™ N S™"N\(TF U TT)
(or f € L"\(T{ U T implies f € S™). Analogously, the sum @fill 1 =1 for every
even k and then f # f* f € L™\S™. Also f € (L™ NnT{)\TT* implies f ¢ S™ and
fe (L"NTM\TE implies f ¢ S™. These conclusions can be seen on Figure 4.

Finally we consider L"NM™ in relation to Problems 5.22, 5.42 and 5.43. We take again
ferL” flxr,...,xn) =a0 B xi; ®---Dx;,. When k =0, we obtain f(z1,...,z,) = ao,
i. e f=0or f =1, which are monotone. If £ > 0 and ap = 1 then f ¢ T3, hence
f ¢ M™ and so we consider only the functions in which ag = 0. When k = 1 we obtain
the i-th identity function f(z1,...,2,) = x; fori =1,...,n, i. e. n identity functions,
which are in M™ (Theorem 1). When k& > 1, without loss of generality, we accept that
x1 and xo are the first two of the variables of f. For the vectors a = (1,0,0,...,0) and
B =1(1,1,0,...,0) we have o < 3, but f(a) =1 > 0= f(8) and so f ¢ M"™. Therefore
L" N M"={0,1}uU {f|f(z1,...,2,) = x4,i = 1,...,n}, or n + 2 function generally. The
scheme on Figure 4 represents all obtained results about the mutual location of all Post
classes.

4. Conclusions. For several years we have deduced the scheme in the exercises on
the way, which was proposed here. The students understand and remember this scheme
quickly and always use it. So, many of the problems, which they solve, become easier
or even trivial. The scheme can be useful to everyone, whose work is related to Boolean
functions and Post classes.
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CXEMA HA PAS3IIOJIOZKEHUVETO HA BYJIEBUTE ®YHKIINN OT
KJIACOBETE HA ITIOCT

Baneunrun Il. Bakoes

B paborara ce mpenjiara egHa cxeMa Ha B3aMHOTO Pa3IoJIOXKeHne Ha OyJieBuTe yH-
knun ot KiacoBere Ha lloct. Ta ce mocTposiBa Upe3 pernnaBaHe Ha IOAXOMAIIA ITOC-
JIEJIOBATE/IHOCT OT M3BECTHU 33/1a91 U KOMOMHUpAaHe Ha PEIIeHUsATa UM, IPeJCTaBeHN
upe3 texuure auarpamu Ha Oiiep-Ben.
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