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A LOCATING SCHEME OF THE BOOLEAN FUNCTIONS

FROM THE POST CLASSES

Valentin Bakoev

A locating scheme of the Boolean functions from the Post classes is proposed here.
It is deduced by solving a proper sequence of known problems and combining their
solutions, represented by Euler-Venn diagrams.

1. Introduction. The theory of Boolean functions takes an important place in
Discrete mathematics teaching. Several topics are devoted to studying of Post classes
and completeness, so they are included in each of the textbooks [11,7,12,5,8,10,4]. To
master these topics students must solve many problems like these, given in [6] and in
some of the textbooks. A big part of them concerns the enumeration of all functions in
the sections among the Post classes (the cardinalities of the classes are derived in most
of the textbooks). Our experience shows that solving similar problems without proper
illustrations of their solutions often yields to confusions among the students.

Here we propose a scheme (an Euler-Venn diagram), which represents the mutual
location of Post classes towards the set of all Boolean functions. We build this scheme
consecutively by solving a sequence of problems and combining their solutions. We
investigate functions of n variables, but we represent the results in general case, because
the corresponding schemes resemble each other for n > 1. ”Resemble” means that the
scheme represents the cardinalities only for the classes T0 and T1, for each n. For the
rest classes this is possible only for a given (not large) n, as we shall see further. Their
actual cardinalities cannot be represented on the scheme in the general case, because the
ratio between each of them and the number of all Boolean functions exponentially tends
to zero when n grows to infinity.

2. Basic notions and assertions. We recall some necessary terms and assertions
in accordance with the most popular Bulgarian textbook [11].

Further, n will always be an integer greater than zero. Let Jn
2 = {0, 1}n be the

n-dimensional Boolean cube, i. e. the set of all n-dimensional binary vectors. We
assume that the vectors of Jn

2 are in lexicographic order. A Boolean function (or simply
a function) of n variables x1, x2, . . . , xn is a mapping f : Jn

2 → J2. For a given n, the
set of all functions of n variables is denoted by Fn, i. e. Fn = {f |f : Jn

2 → J2}, and
F =

⋃
∞

n=1 F
n denotes the set of all Boolean functions. When f(α) = 0 (resp. = 1) for

each vector α ∈ Jn
2 , then f is called a constant 0 (resp. 1) and it is denoted by 0̃ (resp.

1̃). If for some i, 1 ≤ i ≤ n, f(α) = xi ∀α ∈ Jn
2 (the value of f always coincides with the

value of its i-th variable), we denote f(x1, . . . , xn) = xi and f is called an i-th identity

function.
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Let f(x1, x2, . . . , xn) ∈ Fn and g(y1, y2, . . . , ym) ∈ Fm. The function

h(x1, . . . , xi−1, y1, . . . , ym, xi+1, . . . , xn) = f(x1, . . . , xi−1, g(y1, . . . , ym), xi+1, . . . , xn)

belongs to Fn+m−1 and it is called a superposition of g in f in the place of the variable

xi. For a given set F = {f1, . . . , fk} of Boolean functions, [F ] denotes the set of all
possible superpositions of the functions from F . The set F is said to be a closed set (or
simply a class) if [F ] = F , i. e. all superpositions of the functions from F remain in F .
The next theorem states a sufficient condition for a given set of Boolean functions to be
a class.

Theorem 1. Let F ∈ F and: 1) f(x1, . . . , xn) = xi ∈ F, i = 1, . . . , n; 2) for all

f, g1, . . . , gn ∈ F it follows that h = f(g1, . . . , gn) ∈ F . Then F is a class.

The set F is said to be complete if [F ] = F , i. e. if each Boolean function can be
represented as a superposition of functions in F .

3. The Post classes and building up the scheme. The following five classes are
called Post classes in honour of Emil Post. Proofs that they are classes and calculations
of their cardinalities are given in [11, 7, 12, 8].

3.1. The classes T0 and T1. We say that the function f ∈ F preserves the zero

(resp. preserves the unit), if f(0, . . . , 0) = 0 (resp. f(1, . . . , 1) = 1). Let T0 = {f |f ∈ F ,
f(0, . . . , 0) = 0} (resp. T1 = {f |f ∈ F , f(1, . . . , 1) = 1}) denotes the set of all functions
preserving the zero (resp. the unit). Let also T n

0 (resp. T n
1 ) denotes the subset of T0 (resp.

of T1), which contains functions of n variables only. It is known that |T n
0 | = |T n

1 | = 22n
−1.

All following problems, which we state and solve, are problems from [6], Chapter
II. So we refer to their numbers only. Problem 4.5 puts many questions, among them
|T n

0 ∩ T n
1 | =? and |T n

0 ∪ T n
1 | =?

To answer the first of them we note that f ∈ T n
0 ∩ T n

1 iff the vector of its values
has the form f(x1, . . . , xn) = (0, a1, . . . , a2n

−2, 1), ai ∈ {0, 1}, i = 1, . . . , 2n − 2. So
|T n

0 ∩ T n
1 | = 22n

−2, i. e. a quarter of |Fn|. By analogy we obtain |Fn\(T n
0 ∪ T n

1 )|
= |(T n

0 \T
n
1 )| = |(T n

1 \T
n
0 )| = 22n

−2. Hence |(T n
0 ∪ T n

1 )| = 3.22n
−2. Since Fn splits to

quarters for each n, F splits to quarters too, as it is shown on Figure 1.
3.2. Self-dual functions and the class S. If α = (a1, . . . , an) ∈ Jn

2 , then the
vector ᾱ = (ā1, . . . , ān) is called an inverse vector of α. Let f ∈ Fn. The function
f∗(x1, x2, . . . , xn) = f̄(x̄1, x̄2, . . . , x̄n) is called the dual function of f . The inverse vectors
in Jn

2 are symmetrical to each other with respect to the imaginary axis, which divides
the vectors beginning with 0 and the vectors beginning with 1 in Jn

2 . So, if f(x1, . . . , xn)
= (a1, a2, . . . , a2n

−1, a2n), then f∗(x1, . . . , xn) = (ā2n , ā2n
−1, . . . , ā2, ā1) (see Problem

2.2). When f and f∗ coincide (i. e. f = f∗), the function f is called self-dual. The set
of all self-dual functions of n variables is denoted by Sn, and S =

⋃
∞

n=1 Sn is the set of
all self-dual functions. So f is self-dual iff f takes inverse values on each pair of inverse
vectors, i. e. each f ∈ Sn has the form f(x1, . . . , xn) = (a1, . . . , a2n−1 , ā2n−1 , . . . , ā1).

Therefore Sn contains exactly 22n−1

functions (see problems 2.11 and Chapter I, 2.1).
Other questions, which the problem 4.5 sets are: |T n

1 ∩ Sn| =?, |T n
0 \S

n| =?, |Sn ∩ (T n
0

∪T n
1 )| =?, |Sn ∩ (T n

0 \T
n
1 )| =?, |Sn\(T n

0 ∪ T n
1 )| =? and |(Sn\T n

0 ) ∩ T n
1 )| =?

Let f ∈ T n
0 ∩ Sn, i. e. f(0, . . . , 0) = 0 and f = f∗. Then 0 = f(0, . . . , 0)

= f∗(0, . . . , 0) = f̄(0̄, . . . , 0̄) = f̄(1, . . . , 1). Therefore f(1, . . . , 1) = 1 and f ∈ T n
1 .

So f ∈ T n
0 ∩Sn implies f ∈ T n

1 , or (by analogy) f ∈ T n
1 ∩Sn ⇒ f ∈ T n

0 . And vice versa:
f ∈ Sn\T n

0 implies f /∈ T n
1 , or f ∈ Sn\T n

1 ⇒ f /∈ T n
0 . We partition the class Sn into two
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subclasses: Sn = Sn
+∪Sn

−
, Sn

+ = {f |f ∈ T n
0 ∩T n

1 ∩Sn} and Sn
−

= {f |f ∈ Sn\(T n
0 ∪T n

1 )}.

Hence |Sn
+| = |Sn

−
| = |Sn|/2 = 22n−1

−1 and also |Sn
+| < |T n

0 ∩T n
1 | for n > 1. The location

of the set(s) Sn = Sn
+ ∪ Sn

−
is illustrated on Figure 2.

Fig. 1. T0 and T1 into F Fig. 2. T0, T1 and S into F

3.3. Monotone functions and the class M . Let α, β ∈ Jn
2 and α = (a1, . . . , an),

β = (b1, . . . , bn). The relation ”�” is defined over Jn
2 × Jn

2 as follows: α � β iff ai ≤ bi

for i = 1, 2, . . . , n. If α, β ∈ Jn
2 and α � β always implies f(α) ≤ f(β), then the function

f is called monotone. Let Mn be the set of all monotone functions of n variables, and
M =

⋃
∞

n=1 Mn be the set of all monotone functions. The so called Dedekind’s problem

[3] is a problem of enumerating the set Mn. It is still open, there is no exact formula for
|Mn| in the general case, and the values of |Mn| are known only for 1 ≤ n ≤ 8. Precise
asymptotic estimations of |Mn| are given in [9].

Problem 5.22 sets the questions |Mn\(T n
0 ∩ T n

1 )| =? and |Mn\(T n
0 ∪ T n

1 )| =? Let
f ∈ Mn\T n

0 . So f(0, . . . , 0) = 1. Since the vector (0, . . . , 0) � α ∀α ∈ Jn
2 and f is

monotone, it follows that f(α) = 1 ∀α ∈ Jn
2 , i. e. f ≡ 1̃. By analogy, f ∈ Mn\T n

1

implies f ≡ 0̃. So, each f ∈ Mn\{0̃, 1̃} satisfies f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1, and
therefore (Mn\{0̃, 1̃}) ⊂ (T n

0 ∩ T n
1 ), Mn ⊂ (T n

0 ∪ T n
1 ).

The intersection between the classes Sn and Mn (see problems 5.23 and 5.26) is well
studied ([1,2] etc.). For our goals it is enough to note:

1) Sn ∩ Mn = (Sn
+ ∪ Sn

−
) ∩ Mn = (Sn

+ ∩ Mn) ∪ (Sn
−
∩ Mn) = Sn

+ ∩ Mn.
2) If f ∈ Mn then f∗ ∈ Mn. This assertion follows directly from Problems 5.4

and 2.4. It also can be proved in this way: f ∈ Mn means that ∀α, β ∈ Jn
2 , α � β

⇒ f(α) ≤ f(β). If α � β then β̄ � ᾱ and so f(β̄) ≤ f(ᾱ). Therefore f̄(β̄) ≥ f̄(ᾱ), also
f∗(α) = f̄(ᾱ) ≤ f̄(β̄) = f∗(β) and hence f∗ ∈ Mn.

So some of the functions f ∈ Mn satisfy f = f∗ and they are in Mn ∩ Sn
+, the rest

of them (such that f 6= f∗) are in Mn\Sn
+. The location of the class Mn (towards the

considered classes) is outlined by dash-line on the Figure 3. So we mark the unknown
cardinality of Mn in the general case.

3.4. Linear functions and the class L. The completeness of the set of functions
{xy, x ⊕ y, 1̃} is proved in the textbooks and so each function f ∈ Fn can be expressed
as a superposition over this set. After that f can be reduced to the form f(x1, . . . , xn)
= E1 ⊕ · · · ⊕ Ek, where Ei 6= Ej for 1 ≤ i < j ≤ k and each monomial is of the type
Ei = xi1 . . . xim

, xir
6= xis

, 1 ≤ r < s ≤ m, or Ei = 1̃. Such a formula is called a
Zhegalkin polynomial of f . The Zhegalkin’s theorem states that for each f ∈ F there
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Fig. 3. T0, T1 and S into F All the classes into F

exists a unique Zhegalkin polynomial. A function f ∈ Fn, which Zhegalkin polynomial
consists of linear terms only

(1) f(x1, . . . , xn) = a0 ⊕ xi1 ⊕ · · · ⊕ xik
, a0 ∈ {0, 1}, 0 ≤ k ≤ n,

is called a linear function. The set of all linear functions of n variables is denoted by
Ln, and L =

⋃
∞

n=1 Ln is the set of all linear functions. Each function f ∈ Ln has the
general form f(x1, . . . , xn) = a0 ⊕ a1x1 ⊕ · · · ⊕ anxn, ai ∈ {0, 1}, 0 ≤ i ≤ n, and hence
|Ln| = 2n+1.

The last questions in Problem 4.5 are: |T n
0 ∩Ln| =?, |T n

1 ∪Ln| =?, |Ln\(T n
0 ∩T n

1 )| =?,
|Ln\(T n

0 ∪ T n
1 )| =?, |Ln ∩Sn ∩ T n

1 )| =?, |Ln\(T n
0 ∪ (T n

1 ∩Sn))| =? and |(Ln ∪Sn)\(T n
0 ∪

T n
1 )| =?

Firstly, we consider the location of the class Ln towards the classes T n
0 and T n

1 . Let
f ∈ Ln be of the form (1). There are two cases: (i) a0 = 0 and (ii) a0 = 1, which split
Ln into two subclasses with equal cardinalities. In case (i) f(0, . . . , 0) = 0 and therefore
f ∈ Ln ∩ T n

0 , |Ln ∩ T n
0 | = 2n. In the same case the number k of variables in f can

be odd or even. When k is odd f(1, . . . , 1) = 0 ⊕ 1 ⊕ · · · ⊕ 1
︸ ︷︷ ︸

k

=
⊕k

i=1 1 = 1 and so

f ∈ Ln ∩ T n
0 ∩ T n

1 . When k is even f(1, . . . , 1) = 0 and so f ∈ Ln ∩ T n
0 \T

n
1 . About the

ways of choosing k variables we recall that
[n/2]
∑

k=0

(
n

2k

)

=

[n/2]
∑

k=1

(
n

2k − 1

)

=
1

2

n∑

k=0

(
n

k

)

= 2n−1.

Hence |Ln ∩ T n
0 ∩ T n

1 | = |Ln ∩ T n
0 \T

n
1 | = 2n−1. In case (ii) f ∈ Ln\T n

0 . By analogy we
obtain: if k is odd, then f ∈ Ln\(T n

0 ∪ T n
1 ), and if k is even, then f ∈ Ln ∩ T n

1 \T
n
0 . And

also |Ln\(T n
0 ∪T n

1 )| = |Ln ∩T n
1 \T

n
0 )| = 2n−1. Therefore Ln splits to quarters, which are

subsets of T n
0 ∩ T n

1 , T n
0 \T

n
1 , T n

1 \T
n
0 and Fn\(T n

0 ∪ T n
1 ) correspondently – see Figure 4.

Now we answer the questions, which include the class Sn (Problems 2.9, 3.6, 3.23,
3.24, 4.17 etc. also concern Ln∩Sn). Let f(x1, . . . , xn) = a0⊕xi1⊕. . . ⊕ xik

, a0 ∈ {0, 1},
0 ≤ k ≤ n. To express f∗ we use the property x ⊕ 1 = x̄ and we obtain f∗(x1, . . . , xn)
= f̄(x̄1, . . . , x̄n) = (a0 ⊕ x̄i1 ⊕ · · · ⊕ x̄ik

) = (a0 ⊕ (xi1 ⊕ 1) ⊕ · · · ⊕ (xik
⊕ 1)) ⊕ 1
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= a0 ⊕ xi1 ⊕ · · · ⊕ xik
⊕

⊕k+1
i=1 1, which means that Ln ≡ (Ln)∗. When the sum

⊕k+1
i=1 1 = 0 then f = f∗, i. e. f ∈ Ln ∩ Sn, and it holds for every odd k. Hence

|Ln ∩ Sn| = |Ln|/2 = 2n. There are two subcases: if a0 = 0 then f ∈ T n
0 ∩ T n

1 ∩Ln ∩ Sn

(or f ∈ Ln ∩ T n
0 ∩ T n

1 implies f ∈ Sn), and if a0 = 1 then f ∈ (Ln ∩ Sn)\(T n
0 ∪ T n

1 )

(or f ∈ Ln\(T n
0 ∪ T n

1 ) implies f ∈ Sn). Analogously, the sum
⊕k+1

i=1 1 = 1 for every
even k and then f 6= f∗, f ∈ Ln\Sn. Also f ∈ (Ln ∩ T n

0 )\T n
1 implies f /∈ Sn and

f ∈ (Ln ∩ T n
1 )\T n

0 implies f /∈ Sn. These conclusions can be seen on Figure 4.
Finally we consider Ln∩Mn in relation to Problems 5.22, 5.42 and 5.43. We take again

f ∈ Ln, f(x1, . . . , xn) = a0 ⊕ xi1 ⊕ · · · ⊕ xik
. When k = 0, we obtain f(x1, . . . , xn) = a0,

i. e. f ≡ 0̃ or f ≡ 1̃, which are monotone. If k > 0 and a0 = 1 then f /∈ T n
0 , hence

f /∈ Mn and so we consider only the functions in which a0 = 0. When k = 1 we obtain
the i-th identity function f(x1, . . . , xn) = xi for i = 1, . . . , n, i. e. n identity functions,
which are in Mn (Theorem 1). When k > 1, without loss of generality, we accept that
x1 and x2 are the first two of the variables of f . For the vectors α = (1, 0, 0, . . . , 0) and
β = (1, 1, 0, . . . , 0) we have α � β, but f(α) = 1 > 0 = f(β) and so f /∈ Mn. Therefore
Ln ∩ Mn={0̃, 1̃}∪ {f |f(x1, . . . , xn) = xi, i = 1, . . . , n}, or n + 2 function generally. The
scheme on Figure 4 represents all obtained results about the mutual location of all Post
classes.

4. Conclusions. For several years we have deduced the scheme in the exercises on
the way, which was proposed here. The students understand and remember this scheme
quickly and always use it. So, many of the problems, which they solve, become easier
or even trivial. The scheme can be useful to everyone, whose work is related to Boolean
functions and Post classes.
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СХЕМА НА РАЗПОЛОЖЕНИЕТО НА БУЛЕВИТЕ ФУНКЦИИ ОТ

КЛАСОВЕТЕ НА ПОСТ

Валентин П. Бакоев

В работата се предлага една схема на взаимното разположение на булевите фун-
кции от класовете на Пост. Тя се построява чрез решаване на подходяща пос-
ледователност от известни задачи и комбиниране на решенията им, представени
чрез техните диаграми на Ойлер-Вен.
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