МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2004 MATHEMATICS AND EDUCATION IN MATHEMATICS, 2004

Proceedings of the Thirty Third Spring Conference of the Union of Bulgarian Mathematicians Borovets, April 1-4, 2004

ASYMPTOTIC STABILIZATION OF A BIOTECHNOLOGICAL PROCESS WITH SUBSTRATE INHIBITION*

Neli Dimitrova, Mikhail Krastanov

A nonlinear model of methane fermentation involving substrate inhibition is studied. A continuous feedback is proposed, which stabilizes asymptotically the dynamic system towards an operating point, chosen according to a practical criterion. Numerical simulations in Maple demonstrate the theoretical results.

1. Introduction. We consider a model of methane fermentation based on two nonlinear ordinary differential equations and one algebraic nonlinear equation [2], [5],

(1)
$$\frac{ds}{dt} = -k_1 \mu x + u(s_{\rm in} - s)$$
(2)
$$\frac{dx}{dt} = (\mu - u)x$$

$$\frac{dx}{dt} = (\mu - u)x$$

$$Q = k_2 \mu x,$$

where x = x(t) and s = s(t) are the state variables and μ is the specific biomass growth rate. This model can also be considered as describing the final (methanogenic) path of the methane fermentation [1], [2], [4], in continuously stirred tank bioreactors.

The model (1)–(3) is studied under the following assumptions:

- (i) the influent substrate concentration $s_{\rm in}$ is constant and $s < s_{\rm in}$ holds true;
- (ii) the dilution rate u is the control input. We assume that $u \in \mathcal{U}$, where \mathcal{U} is a compact set of admissible *positive* values for the control;
 - (iii) the specific growth rate μ depends on the state variable s, that is $\mu = \mu(s)$.

We consider the growth rate function $\mu(s)$ to be described by the Haldane law (cf. [2])

$$\mu(s) = \frac{\mu_{\rm m} s}{k_{\rm s} + s + s^2/k_{\rm i}}.$$

The function $\mu(s)$ has a maximum at the point $\hat{s} = \sqrt{k_s k_i}$. This fact exhibits the so called substrate inhibition phenomenon representing a feedback in the model [2], [5].

The definition of the model variables and parameters is listed in Table 1.

2000 Mathematics Subject Classification: 92-99, 93D20

Key words: methane fermentation, substrate inhibition, asymptotic stability

^{*}This research has been partially supported by Swiss NSF No. 7 IP 65642 (Program SCOPES) and by the Ministry of Science and Education - Bulgarian National Science Fund under contracts MM-807/98 and MM-1104/01.

Table 1:

	Model variables and parameters	Values	Units
x	biomass concentration	_	$\rm g/dm^3$
s	substrate concentration	_	$\rm g/dm^3$
u	dilution rate	_	day^{-1}
$s_{ m in}$	influent substrate concentration	2	$\rm g/dm^3$
k_1	yield coefficient	3	_
k_2	coefficient	5.6	$({\rm dm}^3)^2/{\rm g}$
Q	methane gas flow rate	_	dm^3/day
$\mu_{ m m}$	maximum specific growth rate	0.35	day^{-1}
$k_{\rm s}$	saturation constant	0.7	$\rm g/dm^3$
$k_{ m i}$	inhibition coefficient	0.6	g/dm^3

The paper is organized as follows. In Section 2 we compute the optimal static point with respect to a given practical criterion. In Section 3 we propose a continuous feedback, which stabilizes asymptotically the dynamic process to the optimal static point. Section 4 reports on computer simulations in Maple.

2. The optimal static point. The steady states model of the process is obtained from (1)–(2) by setting ds/dt = 0 and dx/dt = 0. Excluding the trivial solutions s = 0 or $s = s_{\rm in}$ and x = 0 (which are called washout steady states and are not of practical interest) it is straightforward to check that for any u from the interval

$$U = \left(0, \frac{\mu_{\rm m}}{1 + 2\sqrt{k_{\rm s}/k_{\rm i}}}\right]$$

there exists an unique stable steady state (s(u), x(u)) (cf. [2]) with

$$s(u) = \frac{k_{\rm i}}{2} \left(\frac{\mu_{\rm m}}{u} - 1 - \sqrt{\left(\frac{\mu_{\rm m}}{u} - 1\right)^2 - 4\frac{k_{\rm s}}{k_{\rm i}}} \right), \quad x(u) = \frac{s_{\rm in} - s(u)}{k_{\rm 1}}.$$

Moreover, every steady state (s(u), x(u)) belongs to the line segment

$$H = \{(s, x) : s + k_1 x = s_{in}, 0 \le s \le s_{in} \},\$$

which is strongly invariant with respect to the trajectories of (1)–(2) (cf. [3], p. 198), i. e. every trajectory of (1)–(2) starting from a point of H remains in H.

After substituting $\mu(s) = u$ and x = x(u) in (3), the output Q is obtained as function of the control input u, that is

$$Q(u) = k_2 u x(u).$$

Q(u) is called input-output static characteristic of the dynamic process. There exists a unique point u^* where Q(u) takes its maximum, i. e. $Q(u^*) = \max_{u \in U} Q(u)$. It can be directly verified that

$$u^* = \frac{\mu_{\rm m}}{1 - 4k_{\rm s}/k_{\rm i}} \left(1 - \frac{1 + 2s_{\rm in}/k_{\rm i}}{\sqrt{1 + (s_{\rm in}/k_{\rm s})(1 + s_{\rm in}/k_{\rm i})}} \right).$$

Denote

$$s^* = s(u^*), \quad x^* = x(u^*).$$

The point (s^*, x^*) is called optimal static point and obviously it belongs to the invariant set H.

Figure 1: The input-output static characteristic Q(u) (left) and the invariant set H with the optimal static point N (right)

Figure 1 presents the input-output static characteristic Q(u) with the maximum point $M = (u^*, Q(u^*))$ (left plot) and the invariant segment H with the point $N = (s^*, x^*)$ (right plot).

3. The stabilizing feedback. We shall construct a continuous feedback, stabilizing asymptotically the dynamic system (1)–(2) to the optimal static point (s^*, x^*) .

The smooth change of the state variables

(4)
$$\xi = \frac{x - x^* - k_1(s - s^*)}{1 + k_1^2}, \quad \eta = \frac{s - s^* + k_1(x - x^*)}{1 + k_1^2}$$

transforms the system (1)–(2) into a simpler and more convenient one,

(5)
$$\frac{d\xi}{dt} = f(\xi, \eta; u)$$

$$\frac{d\eta}{dt} = -u\eta$$

with

(6)
$$f(\xi, \eta; u) = \frac{\mu_{\rm m}(s^* - k_1 \xi + \eta)(x^* + \xi + k_1 \eta)}{k_{\rm s} + s^* - k_1 \xi + \eta + 1/k_{\rm i}(s^* - k_1 \xi + \eta)^2} - u \cdot (x^* + \xi).$$

Obviously, the point (s^*, x^*) is mapped into the origin O = (0, 0) by the coordinate change (4).

Denote by B_r the closed disc in R^2 with radius r > 0 and center O. Remind that by \mathcal{U} we have denoted the set of admissible *positive* values for the control.

Definition 1. Every continuous function $k: B_r \to \mathcal{U}$ is called a continuous feedback. The feedback $k: B_r \to \mathcal{U}$ is said to stabilize asymptotically the system (5) to the origin if

- (a) for every point $(\xi_0, \eta_0) \in B_r$ the solution $(\xi(t), \eta(t))$ of (5), starting from (ξ_0, η_0) and corresponding to the feedback k, is defined on $[0, +\infty)$ and remains in B_r ;
 - (b) $(\xi(t), \eta(t))$ tends to the origin as $t \to +\infty$.

Definition 2. The control system (5) is said to be locally asymptotic stabilizable to the origin if there exists a radius r > 0 and a continuous feedback $k : B_r \to \mathcal{U}$, such that k stabilizes asymptotically the system to the origin.

The property asymptotic stabilizability does not depend on the choice of the coordinate axes, thus we shall look for a feedback, stabilizing asymptotically the control system (5) to the origin.

We set

(7)
$$\hat{u}(\xi,\eta) := \frac{\mu_{\rm m}(s^* - k_1 \xi + \eta)(x^* + \xi + k_1 \eta)}{(k_{\rm s} + s^* - k_1 \xi + \eta + 1/k_{\rm i}(s^* - k_1 \xi + \eta)^2)(x^* + \xi)}.$$

Since \hat{u} is a continuous function and $\hat{u}(0,0) > 0$, there exists r > 0 such that the values of \hat{u} on the disc B_r are positive. Let be $\delta > 0$. Define further

$$u_{\min}(\delta, r) = \min_{(\xi, \eta) \in B_r} \hat{u}(\xi, \eta) + \delta \xi, \quad u_{\max}(\delta, r) = \max_{(\xi, \eta) \in B_r} \hat{u}(\xi, \eta) + \delta \xi.$$

Now we can formulate the main result.

Proposition. Let there exist $\delta > 0$ and r > 0 such that

$$U \cup \mathcal{I} \subseteq \mathcal{U}$$
.

where $\mathcal{I} = [u_{\min}(\delta, r), u_{\max}(\delta, r)]$. Then the feedback

(8)
$$k(\xi, \eta) = \hat{u}(\xi, \eta) + \delta \xi$$

is a continuous admissible control function defined on B_r which stabilizes asymptotically the control system (5) to the origin (0,0).

Proof. By substituting $u = k(\xi, \eta)$ in (5) we obtain the system

(9)
$$\frac{d\xi}{dt} = -\delta\xi \\ \frac{d\eta}{dt} = -k(\xi, \eta)\eta.$$

Since $k(\xi, \eta) \ge u_{\min}(\delta, r) > 0$ for every point $(\xi, \eta) \in B_r$, one can easily check that $w(\xi, \eta) = \xi^2 + \eta^2$ is a Lyapounov function for the system (9). Indeed,

$$\frac{dw}{dt} = 2\xi \frac{d\xi}{dt} + 2\eta \frac{d\eta}{dt} = -2\delta \xi^2 - 2\eta^2 \cdot k(\xi, \eta)$$

$$\leq -2\delta \xi^2 - 2u_{\min}(\delta, r)\eta^2 \begin{cases} < 0 & \text{for } (\xi, \eta) \neq 0, \\ = 0 & \text{for } (\xi, \eta) = 0. \end{cases}$$

Applying Theorem 5.5 from [3], it follows that the control system (5) is asymptotically stabilizable to the origin. \Box

Remark. In (s, x)-coordinates the feedback (8) takes the form

(10)
$$k(s,x) = (1+k_1^2)\frac{\mu(s)\cdot x}{k_1(s_{\rm in}-s)+x} + \delta \frac{x-x^*-k_1(s-s^*)}{1+k_1^2}$$

and stabilizes asymptotically the control system (1)–(2) in a suitable neigbourhood of the optimal static point (s^*, x^*) .

4. Numerical experiments. The numerical simulations are carried out in the computer algebra system Maple 7. Using the numerical values in Table 1, one gets

$$u^* = 0.1046051865, Q(u^*) = Q_{\text{max}} = 0.3066861492,$$

 $s^* = 0.4293689739, x^* = 0.5235436753.$

Starting with

$$s(0) = 0.39, \quad x(0) = 0.49$$

the control system is solved numerically using the feedback (10) with $\delta = 0.8$. The left part of Figure 2 visualizes the trajectory in the (s, x) phase plane; the starting point is denoted by circle and N denotes the optimal static point on the invariant segment. The right part of Figure 2 shows the corresponding time profile of Q from (3); the horizontal line goes through the point $(u^*, Q(u^*))$.

Figure 2: The trajectory in the (s, x) phase plane (left) and Q(t) (right)

REFERENCES

- [1] I. Angelidaki et al. A comprehensive model of anaerobic bioconversion of complex substrates to biogas. *Biotechnology and Bioengineering*, vol. **63**, No. 3 (1999), 363–372.
- [2] G. Bastin, D. Dochain. On-line estimation and adaptive control of bioreactors. New York, Elsevier, 1991.
- [3] F. CLARKE, YU. LEDYAEV, R. STERN, P. WOLENSKI. Nonsmooth analysis and control theory. Graduate Text in Mathematics, vol. 178, New York, Springer, 1998.
- [4] I. SIMEONOV, V. MOMCHEV, D. GRANCHAROV. Dynamic Modeling of Mesophilic Anaerobic Digestion of Animal Waste. *Water Res.*, vol. **30**, No. 5 (1996), 1087–1094.
- [5] I. SIMEONOV. Mathematical Modelling and Parameter estimation of Anaerobic Fermentation Processes. *Bioprocess Engineering*, vol. **21**, No. 4 (1999), 377–381.

Institute of Mathematics and Informatics Section "Biomathematics"

Acad. G. Bonchev Str. Bl. 8

1113 Sofia, Bulgaria

e-mail: nelid@bio.bas.bg, krast@bas.bg

АСИМПТОТИЧНА СТАБИЛИЗАЦИЯ НА БИОТЕХНОЛОГИЧЕН ПРОЦЕС СЪС СУБСТРАТНО ИНХИБИРАНЕ

Нели Димитрова, Михаил Кръстанов

Изследван е нелинеен динамичен модел на метанова ферментация, в който моделната функция на растеж на микроорганизмите отразява ефекта на субратно инхибиране. Предложена е непрекъсната обратна връзка, която стабилизира асимптотично процеса към оптимална точка, пресметната съгласно практически критерий. Представени са резултати от числови експерименти в системата за компютърна алгебра Maple.