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ASYMPTOTIC STABILIZATION OF A
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INHIBITION
*

Neli Dimitrova, Mikhail Krastanov

A nonlinear model of methane fermentation involving substrate inhibition is studied.
A continuous feedback is proposed, which stabilizes asymptotically the dynamic sys-
tem towards an operating point, chosen according to a practical criterion. Numerical
simulations in Maple demonstrate the theoretical results.

1. Introduction. We consider a model of methane fermentation based on two
nonlinear ordinary differential equations and one algebraic nonlinear equation [2], [5],

ds

dt
= −k1µx + u(sin − s)(1)

dx

dt
= (µ − u)x(2)

Q = k2µx,(3)

where x = x(t) and s = s(t) are the state variables and µ is the specific biomass growth
rate. This model can also be considered as describing the final (methanogenic) path of
the methane fermentation [1], [2], [4], in continuously stirred tank bioreactors.

The model (1)–(3) is studied under the following assumptions:
(i) the influent substrate concentration sin is constant and s < sin holds true;
(ii) the dilution rate u is the control input. We assume that u ∈ U , where U is a

compact set of admissible positive values for the control;
(iii) the specific growth rate µ depends on the state variable s, that is µ = µ(s).
We consider the growth rate function µ(s) to be described by the Haldane law (cf. [2])

µ(s) =
µms

ks + s + s2/ki
.

The function µ(s) has a maximum at the point ŝ =
√

kski. This fact exhibits the so
called substrate inhibition phenomenon representing a feedback in the model [2], [5].

The definition of the model variables and parameters is listed in Table 1.

*This research has been partially supported by Swiss NSF No. 7 IP 65642 (Program SCOPES) and by
the Ministry of Science and Education – Bulgarian National Science Fund under contracts MM-807/98
and MM-1104/01.

2000 Mathematics Subject Classification: 92–99, 93D20
Key words: methane fermentation, substrate inhibition, asymptotic stability

407



Table 1:

Model variables and parameters Values Units

x biomass concentration – g/dm3

s substrate concentration – g/dm3

u dilution rate – day−1

sin influent substrate concentration 2 g/dm3

k1 yield coefficient 3 –
k2 coefficient 5.6 (dm3)2/g
Q methane gas flow rate – dm3/day
µm maximum specific growth rate 0.35 day−1

ks saturation constant 0.7 g/dm3

ki inhibition coefficient 0.6 g/dm3

The paper is organized as follows. In Section 2 we compute the optimal static point
with respect to a given practical criterion. In Section 3 we propose a continuous feedback,
which stabilizes asymptotically the dynamic process to the optimal static point. Section
4 reports on computer simulations in Maple.

2. The optimal static point. The steady states model of the process is obtained
from (1)–(2) by setting ds/dt = 0 and dx/dt = 0. Excluding the trivial solutions s = 0
or s = sin and x = 0 (which are called washout steady states and are not of practical
interest) it is straightforward to check that for any u from the interval

U =

(

0,
µm

1 + 2
√

ks/ki

]

there exists an unique stable steady state (s(u), x(u)) (cf. [2]) with

s(u) =
ki

2

(

µm

u
− 1 −

√

(µm

u
− 1
)2

− 4
ks

ki

)

, x(u) =
sin − s(u)

k1
.

Moreover, every steady state (s(u), x(u)) belongs to the line segment

H = {(s, x) : s + k1x = sin, 0 ≤ s ≤ sin} ,

which is strongly invariant with respect to the trajectories of (1)–(2) (cf. [3], p. 198),
i. e. every trajectory of (1)–(2) starting from a point of H remains in H .

After substituting µ(s) = u and x = x(u) in (3), the output Q is obtained as function
of the control input u, that is

Q(u) = k2ux(u).

Q(u) is called input-output static characteristic of the dynamic process. There exists a
unique point u∗ where Q(u) takes its maximum, i. e. Q(u∗) = maxu∈U Q(u). It can be
directly verified that

u∗ =
µm

1 − 4ks/ki

(

1 − 1 + 2sin/ki
√

1 + (sin/ks)(1 + sin/ki)

)

.

408



Denote

s∗ = s(u∗), x∗ = x(u∗).

The point (s∗, x∗) is called optimal static point and obviously it belongs to the invariant
set H .

u

M
Q

x

s

N

Figure 1: The input-output static characteristic Q(u) (left) and the invariant set H with
the optimal static point N (right)

Figure 1 presents the input-output static characteristic Q(u) with the maximum point
M = (u∗, Q(u∗)) (left plot) and the invariant segment H with the point N = (s∗, x∗)
(right plot).

3. The stabilizing feedback. We shall construct a continuous feedback, stabilizing
asymptotically the dynamic system (1)–(2) to the optimal static point (s∗, x∗).

The smooth change of the state variables

(4) ξ =
x − x∗ − k1(s − s∗)

1 + k2
1

, η =
s − s∗ + k1(x − x∗)

1 + k2
1

transforms the system (1)–(2) into a simpler and more convenient one,

dξ

dt
= f(ξ, η; u)

dη

dt
= −uη

(5)

with

(6) f(ξ, η; u) =
µm(s∗ − k1ξ + η)(x∗ + ξ + k1η)

ks + s∗ − k1ξ + η + 1/ki(s∗ − k1ξ + η)2
− u · (x∗ + ξ).

Obviously, the point (s∗, x∗) is mapped into the origin O = (0, 0) by the coordinate
change (4).

Denote by Br the closed disc in R2 with radius r > 0 and center O. Remind that by
U we have denoted the set of admissible positive values for the control.

Definition 1. Every continuous function k : Br → U is called a continuous feedback.
The feedback k : Br → U is said to stabilize asymptotically the system (5) to the origin if

(a) for every point (ξ0, η0) ∈ Br the solution (ξ(t), η(t)) of (5), starting from (ξ0, η0)
and corresponding to the feedback k, is defined on [0, +∞) and remains in Br;

(b) (ξ(t), η(t)) tends to the origin as t → +∞.
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Definition 2. The control system (5) is said to be locally asymptotic stabilizable to
the origin if there exists a radius r > 0 and a continuous feedback k : Br → U , such that
k stabilizes asymptotically the system to the origin.

The property asymptotic stabilizability does not depend on the choice of the coordi-
nate axes, thus we shall look for a feedback, stabilizing asymptotically the control system
(5) to the origin.

We set

(7) û(ξ, η) :=
µm(s∗ − k1ξ + η)(x∗ + ξ + k1η)

(ks + s∗ − k1ξ + η + 1/ki(s∗ − k1ξ + η)2)(x∗ + ξ)
.

Since û is a continuous function and û(0, 0) > 0, there exists r > 0 such that the values
of û on the disc Br are positive. Let be δ > 0. Define further

umin(δ, r) = min
(ξ,η)∈Br

û(ξ, η) + δξ, umax(δ, r) = max
(ξ,η)∈Br

û(ξ, η) + δξ.

Now we can formulate the main result.

Proposition.Let there exist δ > 0 and r > 0 such that

U ∪ I ⊆ U ,

where I = [umin(δ, r), umax(δ, r)]. Then the feedback

(8) k(ξ, η) = û(ξ, η) + δξ

is a continuous admissible control function defined on Br which stabilizes asymptotically
the control system (5) to the origin (0, 0).

Proof. By substituting u = k(ξ, η) in (5) we obtain the system

dξ

dt
= −δξ

dη

dt
= −k(ξ, η)η.

(9)

Since k(ξ, η) ≥ umin(δ, r) > 0 for every point (ξ, η) ∈ Br, one can easily check that
w(ξ, η) = ξ2 + η2 is a Lyapounov function for the system (9). Indeed,

dw

dt
= 2ξ

dξ

dt
+ 2η

dη

dt
= −2δξ2 − 2η2 · k(ξ, η)

≤ −2δξ2 − 2umin(δ, r)η
2

{

< 0 for (ξ, η) 6= 0,
= 0 for (ξ, η) = 0.

Applying Theorem 5.5 from [3], it follows that the control system (5) is asymptotically
stabilizable to the origin. �

Remark. In (s, x)-coordinates the feedback (8) takes the form

(10) k(s, x) = (1 + k2
1)

µ(s) · x
k1(sin − s) + x

+ δ
x − x∗ − k1(s − s∗)

1 + k2
1

and stabilizes asymptotically the control system (1)–(2) in a suitable neigbourhood of
the optimal static point (s∗, x∗).

4. Numerical experiments. The numerical simulations are carried out in the
computer algebra system Maple 7. Using the numerical values in Table 1, one gets

u∗ = 0.1046051865, Q(u∗) = Qmax = 0.3066861492,
s∗ = 0.4293689739, x∗ = 0.5235436753.
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Starting with

s(0) = 0.39, x(0) = 0.49

the control system is solved numerically using the feedback (10) with δ = 0.8. The left
part of Figure 2 visualizes the trajectory in the (s, x) phase plane; the starting point is
denoted by circle and N denotes the optimal static point on the invariant segment. The
right part of Figure 2 shows the corresponding time profile of Q from (3); the horizontal
line goes through the point (u∗, Q(u∗)).
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Figure 2: The trajectory in the (s, x) phase plane (left) and Q(t) (right)
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АСИМПТОТИЧНА СТАБИЛИЗАЦИЯ НА БИОТЕХНОЛОГИЧЕН

ПРОЦЕС СЪС СУБСТРАТНО ИНХИБИРАНЕ

Нели Димитрова, Михаил Кръстанов

Изследван е нелинеен динамичен модел на метанова ферментация, в който мо-

делната функция на растеж на микроорганизмите отразява ефекта на субрат-

но инхибиране. Предложена е непрекъсната обратна връзка, която стабилизира

асимптотично процеса към оптимална точка, пресметната съгласно практичес-

ки критерий. Представени са резултати от числови експерименти в системата за

компютърна алгебра Maple.
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