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ASYMPTOTIC STABILIZATION OF A
BIOTECHNOLOGICAL PROCESS WITH SUBSTRATE
INHIBITION"

Neli Dimitrova, Mikhail Krastanov

A nonlinear model of methane fermentation involving substrate inhibition is studied.
A continuous feedback is proposed, which stabilizes asymptotically the dynamic sys-
tem towards an operating point, chosen according to a practical criterion. Numerical
simulations in Maple demonstrate the theoretical results.

1. Introduction. We consider a model of methane fermentation based on two
nonlinear ordinary differential equations and one algebraic nonlinear equation [2], [5],

ds

(1) = = —k1px + u(sin — 8)
@ B o upe
(3) Q = kgﬂl',

where z = z(t) and s = s(t) are the state variables and p is the specific biomass growth
rate. This model can also be considered as describing the final (methanogenic) path of
the methane fermentation [1], [2], [4], in continuously stirred tank bioreactors.

The model (1)—(3) is studied under the following assumptions:

() the influent substrate concentration s;, is constant and s < s;, holds true;

(#4) the dilution rate u is the control input. We assume that u € U, where U is a
compact set of admissible positive values for the control;

(¢it) the specific growth rate p depends on the state variable s, that is p = u(s).

We consider the growth rate function p(s) to be described by the Haldane law (cf. [2])
— Hm$
kst s+ sk
The function p(s) has a maximum at the point § = v/ksk;. This fact exhibits the so
called substrate inhibition phenomenon representing a feedback in the model [2], [5].

The definition of the model variables and parameters is listed in Table 1.
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Table 1:

| Model variables and parameters | Values | Units |

T biomass concentration - g/dm3

s substrate concentration - g/dm?

u  dilution rate - day—!

sin  influent substrate concentration | 2 g/ dm?

k1 yield coefficient 3 -

ke  coefficient 5.6 (dm?)? /g
@  methane gas flow rate - dm? /day
Um maximum specific growth rate 0.35 day!

ks  saturation constant 0.7 g/dm3

ki inhibition coefficient 0.6 g/dm3

The paper is organized as follows. In Section 2 we compute the optimal static point
with respect to a given practical criterion. In Section 3 we propose a continuous feedback,
which stabilizes asymptotically the dynamic process to the optimal static point. Section
4 reports on computer simulations in Maple.

2. The optimal static point. The steady states model of the process is obtained
from (1)—(2) by setting ds/dt = 0 and dz/dt = 0. Excluding the trivial solutions s = 0
or s = sip and & = 0 (which are called washout steady states and are not of practical
interest) it is straightforward to check that for any u from the interval

U=|0, _ Hm
142/ ks/ki

there exists an unique stable steady state (s(u), z(u)) (cf. [2]) with

() = & (%ﬂl JE oy ) oty = 220

Moreover, every steady state (s(u),2(u)) belongs to the line segment
H={(s,x): s+ kix =8, 0<5<5sn},

which is strongly invariant with respect to the trajectories of (1)—(2) (cf. [3], p. 198),
i. e. every trajectory of (1)—(2) starting from a point of H remains in H.

After substituting p(s) = u and x = z(u) in (3), the output @ is obtained as function
of the control input u, that is

Q(u) = kouzx(u).
Q(u) is called input-output static characteristic of the dynamic process. There exists a
unique point u* where Q(u) takes its maximum, i. e. Q(u*) = max,ecy Q(u). It can be
directly verified that

U* _ Hm 1 _ 1 + 2Sin/ki
1-— 4ks/kl \/1 + (Sin/ks)(l + Sin/ki) .
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Denote

s* =s(u*), a* =z(u").
The point (s*, 2*) is called optimal static point and obviously it belongs to the invariant
set H.

u 5

Figure 1: The input-output static characteristic Q(u) (left) and the invariant set H with
the optimal static point N (right)

Figure 1 presents the input-output static characteristic Q(u) with the maximum point
M = (u*,Q(u*)) (left plot) and the invariant segment H with the point N = (s*,z*)
(right plot).

3. The stabilizing feedback. We shall construct a continuous feedback, stabilizing
asymptotically the dynamic system (1)—(2) to the optimal static point (s*,z*).

The smooth change of the state variables

x—ax* —ki(s —s%) s— 8+ ki(x —x*)

4 = =
) ¢ 1+ k3 ’ 1+k?
transforms the system (1)—(2) into a simpler and more convenient one,

dg

o = JE&mu
®) g

e

dt
with

(" — ke )z +E+k .

6 femu) = LmT e W @ 46,

ks + 5% — kil + 0+ 1/ki(s* — k1§ + 1)
Obviously, the point (s*,2*) is mapped into the origin O = (0,0) by the coordinate
change (4).

Denote by B, the closed disc in R? with radius » > 0 and center O. Remind that by
U we have denoted the set of admissible positive values for the control.

Definition 1. Every continuous function k : B, — U s called a continuous feedback.
The feedback k : B, — U is said to stabilize asymptotically the system (5) to the origin if

(a) for every point (§,m0) € By the solution (£(t),n(t)) of (5), starting from (&o,m0)
and corresponding to the feedback k, is defined on [0,400) and remains in B,;
(b) (&(t),n(t)) tends to the origin as t — +o00.
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Definition 2. The control system (5) is said to be locally asymptotic stabilizable to
the origin if there exists a radius r > 0 and a continuous feedback k : B, — U, such that
k stabilizes asymptotically the system to the origin.

The property asymptotic stabilizability does not depend on the choice of the coordi-
nate axes, thus we shall look for a feedback, stabilizing asymptotically the control system
(5) to the origin.

We set
. (8™ — k1§ +n)(z* + &+ kin
@ e = A e D e )
(ks + 5% — kal + 0+ 1/ki(s* — k1§ +n)?) (2" + €)
Since @ is a continuous function and 4(0,0) > 0, there exists r > 0 such that the values
of 4 on the disc B, are positive. Let be § > 0. Define further

(U6, n) + 06, umax(d,7) = max a(E,n) + 0.

(&m)€B-

umin((sv T) = min
,n)EB

ks

Now we can formulate the main result.

Proposition. Let there exist § > 0 and r > 0 such that

vuzcu,
where T = [tumin(0,7), Umax (9, 7)]. Then the feedback
(8) k(&,n) =a(&n) + ¢

is a continuous admissible control function defined on B, which stabilizes asymptotically
the control system (5) to the origin (0,0).

Proof. By substituting u = k(£,n) in (5) we obtain the system

dg
e

?) —% = —k(&n)n.
dt ’

Since k(£,m) > umin(d,r) > 0 for every point (£,n) € B,, one can easily check that
w(&,n) = €2 +n? is a Lyapounov function for the system (9). Indeed,

dw d d

o 2% % = 95 2 kem)

t dt
B - . 9 <0 for (5777)7&07
< 25€ 2Um1n(67 7“)77 { =0 for (ga 77) =0.

Applying Theorem 5.5 from [3], it follows that the control system (5) is asymptotically
stabilizable to the origin. [

Remark. In (s, z)-coordinates the feedback (8) takes the form

u(s)-x x—a* —ki(s—s)
ki1(sin—8) + 1+ k?
and stabilizes asymptotically the control system (1)—(2) in a suitable neigbourhood of
the optimal static point (s*,z*).

(10) k(s,x) = (1 + k)

4. Numerical experiments. The numerical simulations are carried out in the
computer algebra system Maple 7. Using the numerical values in Table 1, one gets

u* = 0.1046051865, Q*) = Qmax = 0.3066861492,
s* = 0.4293689739, x* = 0.5235436753.

410



Starting with

s(0) =0.39, x(0) =0.49
the control system is solved numerically using the feedback (10) with § = 0.8. The left
part of Figure 2 visualizes the trajectory in the (s, x) phase plane; the starting point is
denoted by circle and N denotes the optimal static point on the invariant segment. The
right part of Figure 2 shows the corresponding time profile of @ from (3); the horizontal
line goes through the point (u*, Q(u*)).
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Figure 2: The trajectory in the (s,z) phase plane (left) and Q(t) (right)
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ACUMIITOTUYHA CTABMJIN3AIINA HA BUOTEXHOJIOTNYEH
IMPOLEC C'bC CYBCTPATHO MHXVBUPAHE

Heau dumurpoBa, Muxaun Kpbcranos

Wscnensan e HeMHEEeH NUHAMWYEH MOJIEST HA METaHOBa (pepMeHTalMs, B KONTO MO-
JenHaTa (QYHKIMS Ha pacTeXX Ha MUKDPOOPraHM3MHUTE OTpa3saBa edekTa Ha cybpar-
Ho naxudbupane. [Ipepmoxkena e HelpekbcHaTa 00OpaTHa BPb3Ka, KOATO CTAOUIU3UPA
ACUMIITOTUYHO TPOIECa K'bM ONTHUMAJIHA TOYKA, IPECMETHATA CHIJIACHO MPAKTUIEC-
ku Kpurepuii. [IpescraBenu ca pe3yJsiTaTd OT YUCIOBH €KCIIEPUMEHTH B CHCTEMAaTa 3a
KOMITIOTbPHA ajirebpa Maple.
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