
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2004

MATHEMATICS AND EDUCATION IN MATHEMATICS, 2004

Proceedings of the Thirty Third Spring Conference of

the Union of Bulgarian Mathematicians

Borovets, April 1–4, 2004

EXACT SCALAR PRODUCT ON HIGH-PERFORMANCE

COMPUTING
*

Hassan El-Owny

Algorithms for summation and dot product of floating point numbers are presented
which are fast in terms of measured computing time. The algorithms are widely ap-
plicable because they require only addition, subtraction and multiplication of floating
point numbers in the same working precision as the given data, no other data format
(higher precision) is necessary. The computed results are shown to be as accurate as
if computed in doubled or k-fold working precision.

1. Introduction. In this paper fast algorithms presented to compute the dot
product of floating point numbers in a specified precision. This algorithms are based
on so called error-free transformations [10]. It is for long known that the approximation
error of a floating point operation is itself a floating point number. That means, a
pair of floating point numbers can be transformed into another pair of floating point
numbers, one being equal to the result of the floating point operation between the input
numbers and the other representing the (precise) approximation error. Fortunately, very
fast algorithms are known to compute such pairs for all operations we need, that is for
addition, subtraction and multiplication. Amazingly, those algorithms consist only of
the same basic floating point operations [2], [7], [9]. Throughout the paper assume a
floating point arithmetic adhering to IEEE 754 floating point standard [5], and that no
overflow occurs, but we allow underflow. We will use only one working precision for
floating point computations. If this working precision is IEEE 754 double precision, then
this corresponds to 53 bits precision including implicit one. The set of floating point
numbers in this working precision is denoted by F, the relative rounding error unit –
by eps, and the underflow unit — by eta. For IEEE 754 double it is eps = 2−53 and
eta = 2−1073. We denote by fl(.) the result of a floating point computation, where all
operations inside parentheses are executed (in floating point) in working precision. It
is well known that for each of the four basic operations the approximation error of the
floating point operation can be expressed by a floating point number:

x = fl(a± b) ⇒ a ± b = x + y for y ∈ F,

x = fl(a · b) ⇒ a · b = x + y for y ∈ F,(1)

x = fl(a/b) ⇒ a = x · b + y for y ∈ F,

*2000 Mathematics Subject Classification: 65G99, 65Y99, 68M99.
Key words: High-performance computing, exact scalar product, fast algorithms, verified error

bounds.

420

where in the case of multiplication and division it is assumed that no underflow occurs.
This is true for all floating point numbers a, b ∈ F. These are error-free transforma-
tions of the pair (a, b) into (x, y), where x is the result of the corresponding floating
point operation. Note that no information is lost; the equalities in (1) are mathematical
identities.

2. Error-free transformations. Our goal is to extend the error-free transforma-
tions for the sum and product of two floating point numbers to sums of vector elements
and to dot products, respectively. Therefore, the first two of the identities in (1) will
play a fundamental role in the following. Fortunately, the quantities x, y are effectively
computable, without any if-statements, only using ordinary floating point addition, sub-
traction and multiplication. For addition (and subtraction by adding −b) the following
algorithm by Knuth [6] can be used.

function[x, y] = TwoSum(a, b)

x = fl(a + b)

z = fl(x − a)

y = fl((a − (x − z) + (b − z))

ALGORITHM(1). Error-free transformation of the sum of two floating point numbers.

The multiplication routine needs to split the input arguments into two parts, respec-
tively. The number p is given by eps = 2−p, and we define s := ⌈p/2⌉; in IEEE 754 double
precision it is p = 53 and s = 27. The following algorithm by Dekker [3] splits a floating
point number a ∈ F into two parts x,y, where both parts have at most s − 1 nonzero
bits. In a practical implementation the variable “factor” can, of course, be replaced by
a constant.

function[x, y] = Split(a)
factor = 2s + 1
c = fl(factor.a)

x = fl(c− (c − a))
y = fl(a − x)

ALGORITHM(2): Error-free split of a floating point number into two parts.

The multiplication to calculate “c” in Algorithm 2 cannot cause underflow except
when the input “a” is deep in the gradual underflow range. Since addition and subtraction
is exact in case of underflow, the analysis [3] of Split is still valid and we obtain

a = x + y and x and y non-overlapping with |y| ≤ |x|

With this the following multiplication routine by G. W. Veltkamp (see [3]) can be for-
mulated.

421

function[x, y] = TwoProduct(a, b)
x = fl(a · b)

[a1, a2] = Split(a)
[b1, b2] = Split(b)

y = fl(a2 · b2 − (((x − a1 · b1) − a2 · b1) − a1 · b2))

ALGORITHM(3): Error-free transformation of the product of two floating point numbers.

Note that no branches, only basic and good optimizable floating point operations are
necessary. In case no underflow occurs, we know [3] that

a · b = x + y and x = fl(a · b).
We summarize the properties of the algorithms TwoSum and twoProduct as follows

(flops denotes the number of floating point operations counting additions, subtractions
and multiplications separately).

Theorem 1. Let a, b ∈ F and denote the results of Algorithm 1 (TwoSum) by x, y.
Then, also in the presence of underflow,

a + b = x + y, x = fl(a + b), |y| ≤ eps|x|, |y| ≤ eps|a + b|.

The algorithm TwoSum requires 6 flops.
Let a, b ∈ F and denote the results of Algorithm 3 (TwoProduct) by x, y. Then, if no
underflow occurs,

a · b = x + y, x = fl(a · b), |y| ≤ eps|x|, |y| ≤ eps|a · b|.

and in the presence of underflow,

a · b = x + y + 5η, x = fl(a · b), |y| ≤ eps|x|+ 5eta, |y| ≤ eps|a · b|+ 5eta with |η| ≤ eta.

The algorithm TwoProduct requires 17 flops.

3. Summation. Let floating point numbers pi ∈ F, 0 ≤ i ≤ n, be given. In this
section we aim to compute a good approximation of the sum s =

∑

pi. With Algorithm
1 we have a possibility to add two floating point numbers with exact error term. So we
may try to cascade Algorithm 1 and sum up the error in order to improve on the result
of the ordinary floating point summation fl(

∑

pi).

function res = SumK(p, K)
for k = 1 : K

p = VecSum(p)

res = fl((
∑n−2

i=0
pi) + pn−1)

ALGORITHM(4): K-fold error-free vector transformation for summation and approximate sum.

Where VecSum(p) is transforms Algorithm for the vector p without changing the sum
and replace pn by fl(

∑

pi).

function p = VecSum(p)
for i = 1 : n

[pi, pi−1] = TwoSum(pi, pi−1)

ALGORITHM(5): Error-free vector transformation for summation.

422

Proposition 1. Let floating point numbers pi ∈ F, 0 ≤ i ≤ n, be given and K ≥ 1.
Then, also in the presence of underflow, the result “res” of Algorithm 4 (SumK) satisfies

|res − s| ≤ (eps + γn−1γ4n−4)|s| + γK+1

2n−2S;

≤ (eps + γ2
2n)|s| + γK+1

2n S;

where s :=
∑

pi and S :=
∑

|pi|. Algorithm 4 requires (6K + 1)(n − 1) flops.

4. Dot product. With Algorithm 3 we already have an error-free transformation
of the product of two floating point numbers into the sum of two floating point numbers.
The algorithm for K = 1 corresponding to doubled working precision is as follows.

function res = Dot1(x, y)
[p, s] = TwoProduct(x0, y0)

for i = 1 : n
[h, r] = TwoProduct(xi, yi)

[p, q] = TwoSum(p, h)
s = fl(s + (q + r))

res = fl(p + s)

ALGORITHM(6): Dot product in doubled working precision.

Proposition 2. Let xi, yi ∈ F, 0 ≤ i ≤ n, be given and denote by res ∈ F the result
computed by Algorithm 6 (Dot1). Then, if no underflow occurs,

|res − xT y| ≤ eps|xT y| + γ2
n|x

T ||y|,

and in the presence of underflow,

|res − xT y| ≤ eps|xT y| + γ2
n|x

T ||y| + 5neta.

Algorithm 6 requires 25n − 7 flops.

function res = DotK(x, y, K)
[p, r0] = TwoProduct(x0, y0)

for i = 1 : n
[hi, ri] = TwoProduct(xi, yi)
[p, rn+i−1] = TwoSum(p, h)

r2n = p
res = SumK(r, K − 1)

ALGORITHM(7): Dot product with K-fold summation, K ≥ 2 .

Proposition 3. Let xi, yi ∈ F, 0 ≤ i ≤ n, be given and denote by res ∈ F the result
computed by Algorithm 7 (DotK). Then, if no underflow occurs,

|res − xT y| ≤ (eps + 2γ2
4n−1)|x

T y| + γK+1

4n−2|x
T ||y|,

423

and in the presence of underflow,

|res − xT y| ≤ (eps + 2γ2
4n−1)|x

T y| + γK+1
4n−2|x

T ||y| + 5neta.

Algorithm 7 requires 13n + 6K(2n− 1) − 1 flops.

4. Numerical results. In this section we present computational results for the
dot product in doubled working precision (Algorithm 6, Dot1) and for the dot product
in K-fold working precision (Algorithm 7, DotK). This also tests the summation algo-
rithms presented in Section 3. We will not say about the many practical applications of
algorithms because i) this is widely known, and ii) there are excellent treatment in the
recent literature [4], [8].

For the measurement of the actual computing time compared to BLAS, the algorithms
were implemented in C++ and tested on the following high-Performance computing
environment (ALiCE) [1]:

• Nodes: 128 Compaq DS10

• Processors: 616MHz Alpha 21264 EV6/7

• Cache: 2Mbyte(2nd), 64k/64k(1st)

• Memory: 256MB/node → 32 Gbytes

• Disks: 10GB/node → 1.3 TB

• Connectivity: 64bit/33MHz Myrinet.

• Power: 15 kW

We used Compaq C++ compiler and GNU g++ compiler, and BLAS routines were taken
from Compaq Extended Math Library.

We tested Algorithm 6 (Dot1, corresponding to quadruple precision), and Algorithm
7 (DotK) for the dot product in K-fold working precision for dimension 100 to 5000 in
steps of 100. This also tests summation algorithms.

A more practical application are programs or higher-level operations involving dot
products. A typical such operation is matrix-vector multiplication. Therefore we wrote
a rather straightforward code for the computation of A ∗ y − b for a given n × n matrix
A and n-vectors y and b using Dot1 and tested against the corresponding BLAS routine
DGEMV. For dimensions 100, 200, . . . , 3000. We display the ratio of the measured
computing time of this routine compared to the measured computing time of the BLAS
routine DGEMV.

424

Example: Suppose

X =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
w
−w
w
−w
· · ·
· · ·
w
−w
n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, Y =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1
1
1
1
1
· · ·
· · ·
· · ·
· · ·
1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 w −w · · · · · · · · · n
2 w −w · · · · · · · · · n − 1
. .
. .
n w −w · · · · · · · · · 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

where w = e20 and n is even. We obtained the exact result by using Dot1 and DotK
algorithms.

minimum median maximum

9.654 7.98204 19.5484
Table 1. Measured ratio of computing time for matrix-vector residual

K minimum median maximum

1 0.33 0.5 1
2 16 22.43 38
3 23 38.33 47.15
4 29 45.2 54.81
5 34 47 69.36
6 39.5 59.2 79.36
7 44 67.5 87.94

Table 2. Measured ratio of computing time for dot products

5. Conclusion. The algorithms use only basic floating point operations addition,
subtraction and multiplication, and they use only the same working precision as the data
are given in. This offers the possibility to put them into numerical library algorithms
since no special computer architecture is required. We stress again that the algorithms
are based on the error-free transformations TwoSum and twoProduct. If those would be
available directly from the processor, precise dot product evaluation in double working
precision by Dot1 would cost only twice as much as the ordinary dot product.

REFERENCES

[1] ALiCE: http://alice.iai.uni-wuppertal.de/

[2] J. H. Davenport, Y. Siret, G. Tournier. Computer algebra: Systems and algorithms
for algebraic computation. Academic Press, London, 2nd edition, 1993. Transl. from the French
by A. Davenport a. J. H. Davenport (eds. English).

[3] T. J. Dekker. A Floating-Point Technique for Extending the Available Precision. Nu-

merische Mathematik, 18 (1971), 224–242.

425

[4] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM Publications,
Philadelphia, 2nd edition, 2002.
[5] ANSI/IEEE 754-1985, Standard for Binary Floating-Point Arithmetic, 1985.
[6] D. E. Knuth. The Art of Computer programming: Seminumerical Algorithms, volume 2.
Addison Wesley, Reading, Massachusetts, second edition 1981.
[7] H. Leuprecht, W. Oberaigner. Parallel algorithms for the rounding exact summation of
floating point numbers. Computing, 28 (1982), 89–104.
[8] X. Li. et al. Implementation and Testing of Extended and Mixed Precision BLAS. ACM

Trans. Math. softw., 28(2) (2002), 152–205.
[9] M. Malcolm. On accurate floating-point summation. Comm. ACM, 14(11) (1971), 731–
736.
[10] Takeshi Ogita, Siegfried M. Rump, Shin’ichi Oishi. Accutare Sum and Dot Product,
submitted for publication, 2003.

University of Wuppertal
Faculty of Mathematics and Natural Sciences (Faculty C)
Scientific Computing / Software Engineering
Gaustrae 20
42097 Wuppertal
Germany

ТОЧНО СКАЛАРНО ПРОИЗВЕДЕНИЕ ЗА

ВИСОКО-ПРОИЗВОДИТЕЛНИ ИЗЧИСЛЕНИЯ

Хасан Ел-Оуни

Представени са алгоритми за сумиране и скаларно произведение на числа с пла-

ваща точка, които са бързи в термините на машинно време. Алгоритмите са

широко приложими защото изискват само събиране, изваждани е умножение на

числа с плаваща точка във формата на входните данни. Демонстрира се, че полу-

чените резултати имат същата точност, както изчисления в двоен или четворен

формат.

426

