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We define strong regularity of a parametric interval matrix and give conditions that
characterize it. The new conditions give a better estimation for regularity of a para-
metric matrix than the conditions used so far. Verifiable sufficient regularity con-
ditions are also presented for parametric matrices. The new sufficient conditions
motivate a generalization of Rump’s parametric fixed-point iteration method.

1. Introduction. Regularity of interval matrices plays an important role in the
theory of linear interval equations. In practical computations we usually use verifiable
sufficient conditions for regularity of interval matrices. In order to cover a possibly wide
class of interval matrices, it is recommendable to have more such conditions, since some
conditions may be better suited for specific classes of interval matrices. In this paper
we consider strong regularity of a parameter-dependent interval matrix as a sufficient
condition for its regularity, which is important for the verification methods for solving
parametric interval linear systems.

Consider a parametric linear system

A(p) · x = b(p).

When p varies within a range [p] ∈ IR
k, the parametric solution set, is

Σ (A(p), b(p), [p]) := {x ∈ R
n | A(p) · x = b(p) for some p ∈ [p]} .

Denote by A([p]) := {A(p) ∈ R
n×n | p ∈ [p]}, b([p]) := {b(p) ∈ R

n | p ∈ [p]}

the non-parametric interval matrix, resp. interval vector, that correspond and are ob-
tained from the parametric ones. Hence, A([p]) ·x = b([p]) is the non-parametric interval
linear system corresponding to the parametric one. The non-parametric solution set

Σ (A([p]), b([p])) := {x ∈ R
n | A · x = b for some A ∈ A([p]), b ∈ b([p])}

corresponding to the parametric one usually has much bigger volume than the latter.
We shall use the following notations. For an interval matrix [A] = [A, A] = {A |

A ≤ A ≤ A}, denote the mid-point matrix by Ǎ = 1
2 (A + A) and the radius matrix

by rad([A]) = ∆ = 1
2 (A − A). Then an interval matrix can be written also as [A] =

[Ǎ − ∆, Ǎ + ∆]. The absolute value of a matrix A = (aij) is denoted by |A| = (|aij |).
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For two matrices of the same size matrix (vector) inequalities A ≤ B and the interval
subset relations [A] ⊆ [B] are understood componentwise. A < B if A ≤ B and A 6= B,
analogously [A] ⊂ [B] if [A] ⊆ [B] and [A] 6= [B]. The above matrix notations apply to
vectors, considered as one-column matrices, as well. For Σ ⊆ R

n, define � : R
n → IR

n

�(Σ) := [inf Σ, sup Σ] = ∩{[x] ∈ IR
n | Σ ⊆ [x]}.

̺(A) is the spectral radius of a matrix A. I denotes the unit matrix. An interval
matrix [A] is called regular if each A ∈ [A] is nonsingular. A parameter-dependent
matrix A(p) is called regular over a box [p] ∈ IR

k if A(p̃) is regular for all p̃ ∈ [p].
Since A(p) ∈ A([p]) for all p ∈ [p], regularity of A([p]) presents a sufficient condition for
regularity of A(p) over a given [p] ∈ IR

k. Regularity of A([p]) is only a sufficient condition
since a parametric matrix may be regular while the corresponding nonparametric matrix
may not, as it is shown by the following example.

Example 1. Consider the parametric linear
system defined by [3]

A(p) =

(

2p 1
−1 2p − 1

)

, b(p) =

(

2p

2

)

, p ∈ [0, 1].

The parametric solution set (dashed arch curve) is pre-
sented on Fig. 1. The corresponding non-parametric ma-

trix contains a singular matrix

(

1 1
−1 −1

)

and the non-

parametric solution set is unbounded and disconnected.

-8 -6 -4 -2 2 4 6
x1

-8

-6

-4

-2

2

4

6

x2

-8 -6 -4 -2 2 4 6
x1

-8

-6

-4

-2

2

4

6

x2

Fig. 1
A well-known sufficient condition for regularity of an interval matrix is its strong

regularity, introduced by Neumaier [5]. An interval matrix [A] is strongly regular if
Ǎ−1∆ is regular. Hence, strong regularity of the corresponding non-parametric matrix
is another sufficient condition for regularity of the parametric matrix. Moreover, all
verification methods for solving interval linear systems require strong regularity. In
particular, Rump’s parametric iteration method [7] requires strong regularity of A([p]).

2. Strongly regular parametric matrices. Following the motivation of A. Neu-
maier [5] for introduction of the class of strongly regular non-parametric interval matrices,
we define a class of strongly regular parametric matrices.

Definition 1. An n × n parametric matrix A(p) with p ∈ [p] ∈ IR
k is called strongly

regular if either of the following two matrices is regular

[B] := �
{

A−1(p̌)A(p) | p ∈ [p]
}

, [B′] := �
{

A(p)A−1(p̌) | p ∈ [p]
}

.(1)

Theorem 1. Let A(p) be an n × n parametric matrix with p ∈ [p] ∈ IR
k. Suppose

that A(p̌) is regular and [B], [B′] are defined by (1). Then the following conditions are
equivalent:

(i) A(p) is strongly regular for p ∈ [p];
(ii) [B] is regular or [B′] is regular;
(iii) ̺ (rad([B])) < 1 or ̺ (rad([B′])) < 1;
(iv) ||I − [B]||u < 1 for some u > 0 or ||I − [B′]||v < 1 for some v > 0;
(v) [B] is a H-matrix or [B′] is a H-matrix.

Proof. The proof follows from [5], Proposition 4.1.1. with [B] instead of Ǎ−1[A].
Here we give the proof for [B′]. The conditions for both [B] and [B′] hold true if A(p) is
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symmetric, that is A(p) = A⊤(p) for all p ∈ [p].
(i) and (ii) are equivalent by Definition 1.
(ii) ⇒ (iii) Let us assume to the contrary that ̺(rad([B′])) ≥ 1. According to [5,

Cor.3.2.3, (6)] if 0 ≤ A ∈ R
n×n and 0 < α ∈ R, then ̺(A) ≥ α ⇔ ∃u > 0 : Au ≥ αu 6= 0.

Hence, ∃ 0 6= u ≥ 0 with rad([B′])u ≥ u 6= 0. By [5, Cor.3.4.5, (iii)] [A] = [Ǎ ± rad([A])]
is regular ⇔ x̃ ∈ R

n, |Ǎx̃| ≤ rad([A])|x̃| ⇒ x̃ = 0. With x̃ = u, due to B̌′ = I, it follows
that Iu ≤ rad([B′])u ⇒ u = 0 which contradicts to u 6= 0. Hence, if [B′] is regular, we
must have ̺(rad([B′])) < 1.

(iii) ⇒ (iv) Since ̺(rad([B′])) < 1, by [5, 3.2.3 (5)] (if 0 ≤ A ∈ R
n×n and 0 < α ∈ R,

then ̺(A) < α ⇔ ∃u > 0 : Au < αu) we have rad([B′])u < u for some u > 0. However,
rad([B′])u = |B̌′ − [B′]|u = |I − [B′]|u, which gives (iv).

(iv) ⇒ (v) by [5, Proposition 3.7.2];
(v) ⇒ (ii) by [5, Proposition 3.7.5]. �

Next Theorem follows from some well-known results for nonnegative matrices [1].

Theorem 2. Let A(p) with p ∈ [p] be a parametric matrix. Suppose that [B] is
defined by (1) and Ǎ := A(p̌) is regular. Then (i) ̺(rad([B])) ≤ ̺(rad(Ǎ−1A([p])));
(ii) if [B] ⊂ Ǎ−1A([p]) and rad([B])+rad(Ǎ−1A([p])) is irreducible then ̺(rad([B])) <

̺(rad(Ǎ−1A([p]))).

The relations specified by Theorem 2 hold also for [B′] and A([p])Ǎ−1. Theorem 2
says that the conditions for strong regularity of a parametric interval matrix give better
estimations for the regularity of a parametric interval matrix than the conditions based
on the corresponding non-parametric matrix.

3. Affine-linear dependencies. The results from the previous section are valid
for matrices involving arbitrary affine-linear or nonlinear dependencies of the parameters.
In what follows we give some details for parametric matrices whose elements are affine-
linear functions of some parameters and present some examples. An n × n parametric
matrix A(p) involving affine-linear dependencies of a parameter vector p ∈ R

k can be
represented as

(2) A(p) = A(0) + p1A
(1) + · · · + pkA(k), where A(i) ∈ R

n×n, i = 0, 1, . . . , k.

Proposition 1. Let A(p) be an n×n parametric matrix involving affine-linear depen-
dencies of the parameter vector p ∈ [p] ∈ IR

k. Suppose that A(p̌) is regular, then for [B]

defined by (1) we have: (i) [B] = A−1(p̌)A(0) +
k
∑

ν=1
[pν ]

(

A−1(p̌)A(ν)
)

(ii) mid([B]) = I and rad(B) =
k
∑

ν=1
rad([pν ])

∣

∣A−1(p̌)A(ν)
∣

∣.

Proof. (i) Denote Ǎ = A(p̌).

[B] := �{Ǎ−1A(p) | p ∈ [p]} = �{Ǎ−1A(0) +

k
∑

ν=1

Ǎ−1
(

pνA(ν)
)

| p ∈ [p]}

= �{Ǎ−1A(0) +

k
∑

ν=1

pν

(

Ǎ−1A(ν)
)

| p ∈ [p]} = Ǎ−1A(0) +

k
∑

ν=1

[pν ]
(

Ǎ−1A(ν)
)

.

The last equality holds since every interval parameter pν occurs at most once (and to
the first power) in the previous matrix expression [4, page 23].
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(ii) For ν = 1, . . . , k, there exist 0 < δν ∈ R such that [pν ] = [p̌ − δν , p̌ + δν ]. Then,
denoting Ǎ = A(p̌), we have

[B] = Ǎ−1A(0) +
k
∑

ν=1

p̌ν

(

Ǎ−1A(ν)
)

+
k
∑

ν=1

[−δν , δν ]
(

Ǎ−1A(ν)
)

= Ǎ−1

(

A(0) +

k
∑

ν=1

p̌νA(ν)

)

+

k
∑

ν=1

[−δν , δν ]
(

Ǎ−1A(ν)
)

.

Hence mid([B]) = I and rad(B) =
k
∑

ν=1
rad([pν ])

∣

∣A−1(p̌)A(ν)
∣

∣. �

Next Proposition establishes a relation between a preconditioned non-parametric in-
terval matrix Ǎ−1A([p]) and the interval hull of the preconditioned parametric matrix.

Proposition 2. Let A(p) be an n×n parametric matrix with p ∈ [p] ∈ IR
k and A([p])

be the corresponding non-parametric interval matrix. Suppose that A(p̌) is regular and
[B] is defined by (1). Then [B] ⊆ A−1(p̌) · A([p]).

Proof. Denote [A] := A([p]) and Ǎ =mid(A([p])). It is obvious that Ǎ = A(p̌).

Ǎ−1[A] = Ǎ−1A(0) + Ǎ−1
k
∑

ν=1

[pν ]A(ν) = Ǎ−1A(0) +

k
∑

ν=1

[pν ]
(

Ǎ−1A(ν)
)

.

For every ν = 1, . . . , k, Ǎ−1
(

[pν ]A(ν)
)

is an inclusion monotonic interval extension of

g(pν) := Ǎ−1
(

pνA(ν)
)

and �{Ǎ−1
(

pνA(ν)
)

| pν ∈ [pν ]} = [pν ]
(

Ǎ−1A(ν)
)

. Then by
Proposition 1, (i) and a Theorem by Moore [4, Th.3.1], we have [B] ⊆ A−1(p̌)A([p]). �

From Proposition 2 it follows that rad([B]) ≤rad
(

A−1(p̌)A([p])
)

.

Premultiplying A(p) by Ǎ−1 ∈ R
n×n introduces linear transformations on the columns

of A(p). Next we define a class of parametric matrices for which the preconditioning is
effective in the sense of Theorem 2.

Definition 2. A parametric matrix A(p) ∈ R
n×n, defined by (2), with a parameter

vector p ∈ [p] ∈ IR
k, is called column-dependent parametric matrix if for some m ∈

{1, . . . , k} and some j ∈ {1, . . . , n} Card(I) ≥ 2, where I := {i | 1 ≤ i ≤ n, a
(m)
ij 6= 0}.

Example 2. Consider Milnes matrix M(p), defined by [2]

mij(p) =

{

pj if i > j,

1 otherwise,
with pi ∈ [i + 1 ± 10%], i, j = 1, . . . , n.

Denote the corresponding non-parametric matrix by [M ] and by [B] := �{M̌−1M(p) |
p ∈ [p]}. Although rad([B]) < rad(M̌−1[M ]), rad([B])+ rad(M̌−1[M ]) is not irreducible
and ̺ (rad([B])) = ̺

(

rad(M̌−1[M ])
)

= 0.2.

Example 3. In [5], Example 3.4.6, non-parametric interval matrices A(t, p) defined
by aii = t, aij = p, 1 ≤ i, j ≤ n are proven to be regular for p = [0, 2] and 0 ≤ t ∈ R such
that t > n for n even, and t > (n2−1)1/2 for n odd. It can be easily verified that for n = 3
e.g., A(3, [0, 2]) is not strongly regular (see [4, Ex.4.1.8]) with ̺

(

rad(Ǎ−1A(3, [0, 2]))
)

=
1.2, while A(3, p) with p ∈ [0, 2] is strongly regular with rad([B]) = 0.8.
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Example 4. Define n × n parametric matrices Q(p) by

qij(p) =











pj if j ≥ i,

0 if j = i − 2,

1 otherwise.

with pj ∈ [j + 1 ± 10%], 1 ≤ i, j ≤ n.

Since Q(p) is column-dependent matrix, with [B] = �{Q̌−1Q(p) | p ∈ [p]}, rad([B]) <

rad(Q̌−1Q([p])). It happens that rad([B])+ rad(Q̌−1Q([p])) is irreducible and for 3 <

n ≤ 50, 1 < ̺(rad(Q̌−1Q([p])) increases with n, while ̺(rad([B])) remains equal to 0.2.

4. Verifiable sufficient conditions. Since using the inverse matrix computed in a
finite precision arithmetic may affect validity of the above conditions, it is advantageous
to formulate them in terms of an approximate inverse R instead of the exact inverse
Ǎ−1. The first such formulation for nonparametric linear systems (matrices) is due to
S. M. Rump. Next Theorems can be used for the computational verification of the
regularity of a parametric interval matrix.

Theorem 3. Let A(p) be an n×n parametric matrix with p ∈ [p] ∈ IR
k. Let R ∈ R

n×n

be given and let

[C] :=

{

I − �{A(p) · R | p ∈ [p]} if A⊤(p) is column-dependent,

I − �{R · A(p) | p ∈ [p]} otherwise.

For [x0] ∈ IR
n define the iteration [xl+1] := [C]♦· [xl]♦+ [el] for l ∈ N, where [el] ∈ IR

n,
[el] → [e] ∈ IR

n with* 0 ∈ int([e]) and all operations ♦+ , ♦· are outwardly-rounded
computer interval operations. If [C]♦· [xl] ⊆ int([xl]) for some l ∈ N, then R and every
A(p) with p ∈ [p] are regular.

In practical applications, especially for large matrices, it may be superior to go from
intervals to an absolute value iteration.

Theorem 4. Let A(p) be an n×n parametric matrix with p ∈ [p] ∈ IR
k. Let R ∈ R

n×n

be given and 0 < x ∈ R
n. Let C(p) ∈ R

n×n with C(p) := |I−�{R·A(p) | p ∈ [p]}| and de-

fine x(l), y(l) ∈ R
n for l ≥ 0 by y

(l)
i := {C(p) ·u}i with u := (y

(l)
1 , . . . , y

(l)
i−1, x

(l)
i , . . . , x

(l)
n )⊤

and x(l+1) := y(l) + ε for 1 ≤ i ≤ n and some 0 < ε ∈ R
n. If y(l) < x(l) for some l ∈ N,

then R and every A(p) with p ∈ [p] are regular.

Proof. Lemma 1.6 from [7] implies that ̺(C(p)) < 1. Therefore for every p ∈ [p],
̺(I −R ·A(p)) ≤ ̺(|I −R ·A(p)|) < 1. Hence R and every A(p), p ∈ [p] are regular. �

The verification of the assumptions of Theorem 4 needs only upward rounding. In
fact, Theorems 3 and 4 verify strong regularity of A(p) over a box [p] ∈ IR

k.

5. Conclusion. To our knowledge by now all verification methods for solving
parametric interval linear systems require strong regularity of the corresponding non-
parametric matrix. In view of Theorem 2, illustrated by the Examples 2 and 3, the new
strong regularity conditions give a better regularity estimation for parametric matrices.

We have used the above results to generalize Rump’s parametric fixed-point iteration
method [7], expanding thus its scope of applicability over the class of column-dependent
parametric matrices. The implementation of the generalized method is described in [6].

*int([x]) denotes the topological interior.
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СИЛНА РЕГУЛЯРНОСТ НА ПАРАМЕТРИЧНИ ИНТЕРВАЛНИ

МАТРИЦИ

Евгения Д. Попова

Дефинирана е силна регулярност за параметрични интервални матрици и са да-

дени условия, които я характеризират. Новите условия за силна регулярност да-

ват по-добра оценка за регулярност на параметрични матрици отколкото използ-

ваните досега. Представени са проверяеми достатъчни условия за регулярност на

параметрични матрици, които мотивират обобщаване на верификацинния метод

за решаване на параметрични линейни системи.
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