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The phase-field method is used to investigate numerically the evolution of spherical
grains into supercooled melt in the two-dimensional case. The interaction of different
configurations of multiple grains is examined. The evolution of the grain shapes and
the propagation speed of the primary dendritic tips are analyzed.

1. Introduction. Dendritic growth have been the subject of many theoretical, nu-
merical and experimental investigations [1]–[7]. The isothermal dendritic growth experi-
ment of Glicksman, Koss and Winsa [1], conducted under microgravity conditions, have
clearly demonstrated that naturally growing dendrites are characterized by steady-state
propagation of the primary tips and nonlinear time-dependant evolution of secondary
and tertiary side-branches on a microscopic scale (from 10−6 to 10−5m). Accurate mod-
eling of dendritic processes on the mesoscopic scale, defined from 10−4 to 10−3 m, is not
only important for the prediction of the final structure of a solidified material, but also
for feeding local information back to the macroscopic model (10−1 m).

The phase-field formulation of solidification problems is a computational tool for
modeling complicated solid-liquid interfaces. The advantage is that the interface between
phases is not explicitly tracked. It is given implicitly by the so-called phase-field, i.e., the
level set of a scalar function φ of space and time, called phase-field function. It varies
smoothly from −1 in the liquid to +1 in the solid phase. An evolution equation for
the phase-field function is solved instead and the solid-liquid interface is defined by the
level set φ = 0. Another advantage of this approach is that the accurate computation of
interface normals and curvatures is completely avoided.

The goal of this paper is to apply the method described in [2] to the problem for
modeling the growth of an assemblage of equiaxed dendritic grains on a mesoscopic
scale. A mesoscopic unit cell typically contains of the order of 10 equiaxed dendritic
grains. Of primary interest are the predictions of the evolution of the grain shapes and
the growth interactions between multiple grains.

2. The problem. The phase-field model of the dendritic growth, used in [2], [3],
[4], [5], is given by the system of nonlinear equations:

(1)
∂ u

∂ t
= D△u +

1

2

∂ φ

∂ t
,
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(2) τ
∂φ

∂ t
=∇(W 2∇φ)+∂x[|∇φ|2W∂φx

W ]+∂y[|∇φ|2W∂φy
W ]+φ(1−φ2)−λu(1−φ2)2

for the dimensionless temperature u(x, y, t) and for the phase field function φ(x, y, t),
(x, y) ∈ Ω, 0 < t ≤ tk. Here:

• u = (T − Tm)/(L/cp) is the dimensionless temperature;

• T and Tm are the temperature and the melting temperature respectively;

• L is the latent heat of fusion;

• cp is the specific heat at constant pressure;

• D is the thermal diffusivity;

• λ is a dimensionless parameter that controls the coupling between u and φ;

• W = δ As, As = (1 − 3ǫ) + 4ǫ
φ4

x + φ4
y

|∇φ|4
and ǫ is the anisotropy strength;

• δ is the characteristic length;

• τ = τ0A
2
s and τ0 is the characteristic time.

We investigate Neumann boundary conditions:

(3)
∂ u

∂ n
= 0,

∂φ

∂ n
= 0, ∀ t > 0, ∀(x, y) ∈ ∂Ω

and Dirichlet boundary conditions:

(4) u = u0, φ = −1, ∀ t > 0, ∀(x, y) ∈ ∂Ω ,

where u0 is the dimensionless undercooling.
To close the problem, we pose appropriate initial conditions, which correspond to the

number of the interacting seeds. In the case of a single spherical seed, K0 = {(x, y) :
(x − l)2 + (y − l)2 ≤ r2}, posed at time t = 0 in the center of the square Ω0 = {[0, 2l]×
[0, 2l]}, the initial conditions are:

(5) u(x, y, 0) = 0, ∀(x, y) ∈ K0, u(x, y, 0) = u0, ∀(x, y) ∈ Ω0 \ K0 ,

(6) φ(x, y, 0) = 1, ∀(x, y) ∈ K0, φ(x, y, 0) = −1, ∀(x, y) ∈ Ω0 \ K0.

3. Numerical method. To solve the systems (1)-(3) and (1), (2), (4) with the
appropriate initial conditions of type (5), (6), we use the method of lines – we make finite
difference discretization in space and solve the resulting ODE system in time.

3.1. Semidiscretization in space. Because of the symmetry, the computational
domain is

Ω = {0 ≤ x ≤ l, 0 ≤ y ≤ x}, K = Ω
⋂

K0.

We use the finite difference method on regular mesh ωh = {(ih, jh) : i = 0, n, j = 0, i}.
in both directions. The discretization error is O(h2) for the case of Dirichle boundary
conditions and O(h) for the case of Neumann boundary conditions. The resulting system
of ODE is:

dU

dt
= Θ1(U(t)) +

1

2

dΦ

dt
, U(0) = U (0),
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dΦ

dt
= Θ2(Φ(t)), Φ(0) = Φ(0),

U(t) = (U t
0,0, U

t
1,0, .., U

t
n,0, U

t
1,1, U

t
2,1, .., U

t
n,1, .., U

t
n,n)T

Φ(t) = (Φt
0,0, Φ

t
1,0, .., Φ

t
n,0, Φ

t
1,1, Φ

t
2,1, .., Φ

t
n,1, .., Φ

t
n,n)T

3.2. Discretization in time. To solve the ODE system we use a second order
explicit modification of the Runge-Kutta method [8] with extended region of stability.
The time step is chosen automatically so as to guarantee stability and a given desired
accuracy at the end of the time interval. Applied to the system:

y′ = f(y), y(0) = y0

it reads:

yj+1 = yj + p1k
j
1 + p2k

j
2 + p3k

j
3,

where

p1 = 1/4, kj
1 = τjf(yj),

p2 = 15/32, kj
2 = τjf(yj + 2kj

1/3),

p3 = 9/32, kj
3 = τjf(yj + kj

1/3 + kj
2/3).

The step τj satisfies the criteria for accuracy and stability respectively:

(7) max
0≤i≤s

|(kj
2 − kj

1)i|/(|(yj)i + E|) ≤ 6.2α,

(8) max
0≤i≤s

|(3kj
3 − 2kj

2 − kj
1)i| ≤ 5 max

0≤i≤s
|(kj

2 − kj
1)i|.

Here α is the desired accuracy, E is a positive parameter (E = 10−2 in our computations).

4. Numerical experiments. The first set of numerical experiments was devoted
to find a strategy for increasing the computational efficiency of the modified Runge-Kutta
method. The common strategy is to find the optimal time step (to decrease or to increase
the previous one by a factor of q, usually q = 1.1) while the two conditions (7) and (8)
are fulfilled. It is good, when it is applied to one equation of the kind (1) or (2). For the
system (1), (2) it must be changed.

The new strategy must be consistent with the specific peculiarities of the mathe-
matical model and of the evolution process. They are : the very different nature and
structure of the equations (1) and (2); the discontinuity of the initial conditions (5), (6);
the imposed (in equation (2)) steady-state profile of the phase-field function along the
axes of the tip growth.

Regarding these peculiarities it is predictable (and the numerical experiments confirm
this) that in the beginning of the process the time step τj varies significantly, but it
becomes and remains constant when the steady-state profile of φ is attained. That’s
why we begin with small initial time step (about 10−4) and keep it small by permitting
only one increase of it per iteration, in order to avoid the big variations of it. When τj

becomes constant we do not examine the conditions (7) and (8) at every time step. This
strategy increases significantly the efficiency of the method.

In the second set of experiments the influence of the boundary conditions (3) and (4)
on the solution was investigated. It was done in the case of one spherical seed posed
in the center of the domain. The computations were made until the tip reached the
boundary. We obtaine identical shapes and dimensionless tip velocities in both cases.
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Figure 1: Evolution (left) and the tip velocity (right) of one seed

In the last set of experiments we examine the interaction of multiple grains. Every-
where in the experiments below the computational domain is: Ω = {(x, y) : 0 ≤ x ≤ 240,
0 ≤ y ≤ x}. The radius of the seeds is r = 4, the spatial step is h = 0.4. The under-
cooling is u0 = −0.55, the thermal diffusivity is D = 4, the anisotropy is ǫ = 0.05 and
δ = 1.

Fig. 1 shows the evolution of one spherical seed and its corresponding dimensionless
tip velocity. It is done for comparison with the case of multiple interacting grains.

Fig. 2 shows the evolution of 5 interacting seeds (only a quarter of the real picture)
and the dimensionless tip velocity of the free, non-interacting tips. The initial conditions
in this case are:

u(x, y, 0) = 0, ∀(x, y) ∈ K, u(x, y, 0) = u0, ∀(x, y) ∈ Ω \ K
φ(x, y, 0) = 1, ∀(x, y) ∈ K, φ(x, y, 0) = −1, ∀(x, y) ∈ Ω \ K,

where

K = {(x, y) : (x − 240)2 + (y − 240)2 ≤ r2 ∪ (x − 160)2 + (y − 160)2 ≤ r2}

Fig. 3 shows the evolution of 9 interacting seeds (a quarter of the picture) and the
dimensionless tip velocity of the free, non-interacting tips. In this case

K={(x, y):(x−240)2+(y−240)2≤r2∪(x−200)2+(y−200)2≤r2∪(x−240)2+(y−200)2≤r2}

5. Conclusions. The last set of experiments shows:

– the velocities of the dendrite tips which, because of their geometry position, do not
interact with the other dendrite tips, comes to the same stationary state as in the case
of one free dendrite (compare the speeds in the Fig. 1-3);

– propagation of primary tips only is observed in all our experiments. This confirm
the observation of all known for us investigations, that in the frame of the phase-field
model (1)-(2) secondary and tertiary side-branching is possible only if some noise is added
in the model. This is the next aim of our investigations.
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Figure 2: Evolution of 5 seeds (left) and the tip velocity (right)
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Figure 3: Evolution of 9 seeds (left) and the tip velocity (wright)
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МЕТОД НА ФАЗОВОТО ПОЛЕ ЗА МОДЕЛИРАНЕ
ВЗАИМОДЕЙСТВИЕТО НА ДЕНДРИТИ В ДВУМЕРНИЯ СЛУЧАЙ

В. Славов, Ст. Димова

Методът на фазовото поле е използван за числено изследване на еволюцията на

сферични зародиши в преохладен разплав. Изследвано е взаимодействието на

различни конфигурации от зародиши и скоростта на нарастване на първичните

им разклонения.
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