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The aim of this survey lecture is to present some research areas of the invariant
distances and metrics theory. We discuss the main invariant objects and their relations
to complex analysis.

1. Holomorphically contractible families of functions. An old method of
complex analysis is to study properties of holomorphic mappings F : G −→ D (F ∈
O(G, D)) using appropriate pseudodistances. More precisely, we endow G and D with
pseudodistances dG and dD, respectively, in such a way that every holomorphic mapping
F : G −→ D is a contraction, i.e.

dD(F (a), F (z)) ≤ dG(a, z), a, z ∈ G.(*)

We expect that, if the pseudodistances dG and dD are reasonably chosen, then they
describe some properties of O(G, D). This method, nowadays almost standard, has its
roots in papers of Carathéodory from the twenties of the last century (cf. [3]). It has
appeared that sometimes, instead of pseudodistances, one should consider more general
objects, e.g. pluricomplex Green functions. In this way we are led to the following concept
of holomorphically contractible families of functions:

Suppose that we are given a family d = (dG)G of functions dG : G×G −→ R+, where
G runs over all (non-empty) domains in all Cn’s (in fact, G can run over all connected
complex manifolds or even over all connected complex analytic spaces). We say that d
is holomorphically contractible if the following two conditions are satisfied:

(Normalization) for the unit disc D ⊂ C, the function dD coincides with the Möbius
distance mD, i.e.

dD(a, z) = mD(a, z) :=
∣∣∣

z − a

1 − az

∣∣∣, a, z ∈ D;

(Contractibility) for any domains G ⊂ Cn, D ⊂ Cm, every mapping F ∈ O(G, D)
satisfies (*).

In particular, if F : G −→ D is biholomorphic, then dD(F (a), F (z)) = dG(a, z),
a, z ∈ G.

The main contractible families of functions are the following ones:
• Möbius pseudodistance:

c∗G(a, z) := sup{mD(f(a), f(z)) : f ∈ O(G, D)} = sup{|f(z)| : f ∈ O(G, D), f(a) = 0};
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the function cG := tanh−1 c∗G is called the Carathéodory pseudodistance.

• Higher order Möbius function:

m
(k)
G (a, z) := sup{|f(z)|1/k : f ∈ O(G, D), ordaf ≥ k} (k ∈ N),

where ordaf denotes the order of zero of f at a.

• Pluricomplex Green function:

gG(a, z) := sup{u(z) : u : G −→ [0, 1), log u ∈ PSH(G), sup
w∈G\{a}

u(w)/‖w−a‖ < +∞},

where PSH(G) denotes the family of all functions plurisubharmonic on G.

• Lempert function:

k̃∗
G(a, z) := inf{mD(λ, µ) : λ, µ ∈ D : ∃ϕ∈O(D,G) : ϕ(λ) = a, ϕ(µ) = z}

= inf{µ ∈ [0, 1) : ∃ϕ∈O(D,G) : ϕ(0) = a, ϕ(µ) = z}.

It is well known that c∗G = m
(1)
G ≤ m

(k)
G ≤ gG ≤ k̃∗

G, and for any holomorphically

contractible family (dG)G we have c∗G ≤ dG ≤ k̃∗
G, i.e. the Möbius family is minimal and

the Lempert family is maximal. The pseudodistance

kG := sup{d : d : G × G −→ R+ is a pseudodistance with tanhd ≤ k̃∗
G}

is called the Kobayashi pseudodistance. Put k∗
G := tanh kG. The family (k∗

G)G is holo-
morphically contractible in the sense of our definition.

2. Holomorphically contractible families of pseudometrics. Parallel to the
category of holomorphically contractible families of functions one studies holomorphically
contractible families of pseudometrics. Suppose we are given a family δ = (δG)G of
pseudometrics δG : G × Cn −→ R+,

δG(a; λX) = |λ|δG(a; X), (a, X) ∈ G × C
n, λ ∈ C,

where G runs over all domains G ⊂ Cn. We say that δ is holomorphically contractible if
the following two conditions are satisfied:

(Normalization) δD(a; X) = γD(a; X) :=
|X |

1 − |a|2
, (a, X) ∈ D × C;

(Contractibility) for any domains G ⊂ Cn, D ⊂ Cm and every mapping F ∈ O(G, D),
we have δD(F (a); F ′(a)(X)) ≤ δG(a; X), (a, X) ∈ G × Cn.

In particular, if F : G −→ D is biholomorphic, then δD(F (a); F ′(a)(X)) = δG(a; X),
(a, X) ∈ G × Cn.

The following holomorphically contractible families of pseudometrics correspond to
the above holomorphically contractible families of functions.

• Carathéodory–Reiffen pseudometric:

γG(a; X) := sup{|f ′(a)(X)| : f ∈ O(G, D), f(a) = 0}.

• Higher order Reiffen pseudometric:

γ
(k)
G (a; X) := sup

{∣∣∣
1

k!
f (k)(a)(X)

∣∣∣
1/k

: f ∈ O(G, D), ordaf ≥ k
}

(k ∈ N).

• Azukawa pseudometric:

AG(a; X) := lim sup
C∗∋λ→0

1

|λ|
gG(a, a + λX).
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• Kobayashi–Royden pseudometric:

κG(a; X) := inf{α ≥ 0 : ∃ϕ∈O(D,G) : ϕ(0) = a, αϕ′(0) = X}.

It is well known that γG = γ
(1)
G ≤ γ

(k)
G ≤ AG ≤ κG, and for any holomorphically con-

tractible family of pseudometrics (δG)G we have γG ≤ δG ≤ κG, i.e. the Carathéodory–
Reiffen pseudometric is minimal and the Kobayashi–Royden pseudometric is maximal.

3. Problems. Let us mention a few research areas which are important from the
point of view of the theory.

• Effective formulas. The theory suffers from the lack of effective examples, i.e. ex-
amples of domains G ⊂ Cn, for which all/some of basic contractible functions or pseudo-
metrics can be effectively determined. In fact, even in the case n = 1, besides the unit
disc and annuli, there are no examples. The only general class of domains for which
effective formulas are known, are so-called elementary Reinhardt domains of the form

{(z1, . . . , zn) : |z1|
α1 · · · |zn|

αn < 1}

where α1, . . . , αn ∈ R.

• Hyperbolicity. Given a holomorphically contractible family of functions d (resp.
pseudometrics δ) and a domain G ⊂ Cn, find conditions under which dG(a, z) > 0 for all
a, z ∈ G, a 6= z (resp. δG(a; X) > 0 for all (a, X) ∈ G × Cn, X 6= 0). The question is
essential only for unbounded domains because all bounded domains are hyperbolic with
respect to all contractible families.

• Completeness. Given a holomorphically contractible family of distances d and a
domain G ⊂ Cn, find conditions under which the metric space (G, dG) is (in certain
sense) complete. Completeness is strictly connected with other holomorphic properties
of G, e.g. with tautness.

• Boundary behavior and localization. Here we have a large variety of problems re-
lated to the asymptotic behavior of dG(a, z) when z −→ b ∈ ∂G, or a, z −→ b ∈ ∂G
(resp. of δG(a; X) when a −→ b ∈ ∂G). It has appeared that there are strong links
between asymptotic behavior of certain contractible functions and boundary regularities
of G (like strong pseudoconvexity or hyperconvexity).

• Geodesics. Given a holomorphically contractible family of functions d (resp. pseudo-
metrics δ), a domain G ⊂ Cn, and two points a, b ∈ G (resp. a point a ∈ G and a vector
X ∈ Cn), decide whether there exist a holomorphic mapping ϕ : D −→ G and points
λ, µ ∈ D such that ϕ(λ) = a, ϕ(µ) = b, and dG(a, b) = mD(λ, µ) (resp. a holomor-
phic mapping ϕ : D −→ G, a point λ ∈ D, and a number α ∈ C such that ϕ(λ) = a,
αϕ′(λ) = X , and δG(a; X) = γD(λ; α). The answer is always positive in the class of
convex domains. Many other cases are still open.

• Product property. Given a holomorphically contractible family of functions d (resp.
pseudometrics δ), we ask whether for all domains G ⊂ Cn, D ⊂ Cm we have

dG×D((a, b), (z, w)) = max{dG(a, z), dD(b, w)}, (a, b), (z, w) ∈ G × D

(resp.

δG×D((a, b); (X, Y )) = max{δG(a; X), δD(b; Y )}, (a, b) ∈ G × D, (X, Y ) ∈ C
n × C

m).

It has been proved that the families c∗, g, k∗, γ, A, κ have the product property. It is

also known that for k ≥ 2 the families m(k), γ(k) have no product property.

• Different contractibility conditions. Our contractibility condition deals with all
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holomorphic mappings F : G −→ D. One can consider weaker conditions which re-
quire the contractibility only for some subclasses of holomorphic mappings, e.g. injective
holomorphic mappings or even only biholomorphic mappings. The latter case allows, for
instance, to consider Bergman pseudodistance and pseudometric as contractible objects.

• Lempert theorem. Let Ln be the class of all domains G ⊂ Cn for which c∗G ≡ k̃∗
G

and γG ≡ κG. In particular, if G ∈ Ln, then all holomorphically contractible functions
(reps. pseudometrics) coincide on G. It is clear that Ln is invariant under biholomorphic
mappings. Moreover, if a domain G ⊂ Cn may be exhausted by domains from Ln, then
G ∈ Ln.

The fundamental Lempert theorem ([10, 11]) says that all convex domains belong to
Ln. For more than 20 years the following conjecture was open. Any bounded pseudo-
convex domain G ∈ Ln may be exhausted by domains biholomorphic to convex domains.
The first counterexample was recently constructed in a series of papers by J. Agler,
C. Costara, and N. J. Young [1–6] This is the so-called symmetrized bidisc

G2 := {(λ1 + λ2, λ1λ2) : λ1, λ2 ∈ D}.

One should mention that for n ≥ 3 the holomorphic geometry of the symmetrized n–disc

Gn := {(σ1(λ), . . . , σn(λ)) : λ ∈ D
n},

where σ1, . . . , σn are standard fundamental symmetric polynomials, remains still unclear.

4. Generalized holomorphically contractible families. The Möbius and Lem-
pert functions are symmetric. The higher Möbius functions and the Green function are
not symmetric in general. Their definitions distinguish one point (pole) at which we im-
pose growth conditions. From that point of view it is natural to investigate objects with
more general growth conditions. For instance, the Green function gG may be generalized
as follows. Let G ⊂ C

n be a domain and let p : G −→ R+ be an arbitrary function. Put
|p| := {z ∈ G : p(z) > 0} and define

gG(p, z) := sup{u(z) : u : G −→ [0, 1), log u ∈ PSH(G),

∀a∈|p| : sup
w∈G\{a}

u(w)/‖w − a‖p(a) < +∞}, z ∈ G.

The function gG(p, ·) is called the generalized pluricomplex Green function with poles
(weights, pole function) p.

In the case where p = χA = the characteristic function of a set A ⊂ G, we put
gG(A, ·) := gG(χA, ·). Obviously, gG({a}, ·) = gG(a, ·). In the case where the set |p|
is finite, the function gG(p, ·) was first introduced by P. Lelong in [9]. The generalized
pluricomplex Green function was recently intensively studied by many authors.

Using similar ideas, one can generalize the Möbius function. Let G ⊂ Cn be a domain
and let p : G −→ Z+ be an arbitrary function. Define

mG(p, z) := sup{|f(z)| : f ∈ O(G, D), ∀a∈|p| : ordaf ≥ p(a)}, z ∈ G.

The function mG(p, ·) is called the generalized Möbius function with weights p. Simi-
larly as in the case of the generalized Green function, we put mG(A, ·) := mG(χA, ·)
and mG(a, ·) := mG({a}, ·). Obviously, mG(a, ·) = c∗G(a, ·), a ∈ G. More generally,

mG(kχ{a}, ·) = [m
(k)
G (a, ·)]k. It is clear that mG(p, ·) ≤ gG(p, ·).

The above two generalizations lead us to the following definition. A family d = (dG)G

of functions dG : RG
+ × G −→ R+ is said to be a generalized holomorphically contractible

50



family if the following three conditions are satisfied:
(Normalization)

∏
a∈D

[mD(a, z)]p(a) ≤ dD(p, z) ≤ infa∈D[mD(a, z)]p(a), (p, z) ∈ RD
+ ×D;

(Contractibility) for any domains G ⊂ Cn, D ⊂ Cm, F ∈ O(G, D), and q : D −→ R+,
we have dD(q, F (z)) ≤ dG(q ◦ F, z), z ∈ G;

(Monotonicity) for any domain D and p, q : G −→ R+, if p ≤ q, then dG(q, ·)
≤ dG(p, ·).

If in the above definition one considers only integer-valued weights (like in the case
of the generalized Möbius function), then we get the definition of a generalized holomor-
phically contractible family with integer-valued weights. As usually, we put dG(A, ·) :=
dG(χA, ·) and dG(a, ·) := dG({a}, ·).

One can prove that the generalized Green and Möbius functions are generalized holo-
morphically contractible families in the sense of the above definition. Moreover, one can
prove that there exist minimal and maximal generalized holomorphically contractible
families.

More details related to the above sketched theory may be found in our monograph
[7] (Invariant Distances and Metrics in Complex Analysis, de Gruyter Expositions in
Mathematics 9, Walter de Gruyter 1993) and recent survey article [8] (Invariant Distances
and Metrics in Complex Analysis — revisited, Diss. Math. 430 (2005), 1–192).
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ИНВАРИАНТНИ РАЗСТОЯНИЯ И МЕТРИКИ В КОМПЛЕКСНИЯ

АНАЛИЗ

Марек Ярницки, Петер Пфлуг

Тази обзорна лекция е посветена на някои направления в теорията на инвариан-

тните разстояния и метрики. В нея се дискутират основните инвариантни обекти

и техните връзки с комплексния анализ.
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