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EXPLICITLY CLOSED SOLUTIONS OF DIOPHANTINE

EQUATIONS AND THE LATTICE STRUCTURE OF THEM*

M. Belger, H. Kaestner

By Euler’s ϕ-theorem (on congruences) we establish the solutions (x, y) of the
Diophantine equations qx − py = k explicitly and in a closed form. For all
k = 0,±1,±2, . . . the total set L of all these solutions can be interpreted as a certain
(point-) lattice Z2 with respect to an x − y-coordinate system. In this sense L is a
two-fold periodic structure modulo c2 (:= p2+q2). Therefore, in an appropriate place
choosen solutions in L can be considered as elementary or generating or in certain
sense also as smallest solutions.

1. General solution of Diophantine equations by Euler’s ϕ-function. For
p, q, k ∈ Z, gcd(p, q) = 1, we consider the equation

(1) qx − py = k

as Diophantine equation. For k = 1, let (x0, y0) ∈ Z2 be a special solution. Then the set

(2) Lk =
{

(x, y) ∈ Z2
∣

∣ (x, y) = k · (x0, y0) + l · (p, q) ∀ l ∈ Z
}

is the well-known general solution of (1). In Lk only (x0, y0) is unknown. Usually methods
for calculation of (x0, y0) are the Euclidean algorithm [2; p. 31] or the expansion into a
continued fraction. Different from these procedures, here we determine (x0, y0) by Euler’s
ϕ-theorem. Because the domain of definition for ϕ(p) is N\{0}, we assume that p ≥ 1.

To find (x0, y0) we start with Euler’s theorem [1; p. 113 f.]

(3) qϕ(p) ≡ 1(p), gcd(p, q) = 1

That means, there is a number j ∈ Z with the property

(4) q · qϕ(p)−1 − p · j = 1

Such a number j is obviously j = j(p, q) =
1

p
(qϕ(p) − 1) ∈ Z. Therefore, the pair

(5) (x0, y0) =

(

qϕ(p)−1,
1

p
(qϕ(p) − 1)

)

is a special solution of qx − py = 1.

*Key words: Diophantine equations, Euler’s ϕ-theorem, Euler’s function, lattice structure.
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Proposition 1. The general solution Lk of the Diophantine equation (1) (w.l.o.g.
p ≥ 1) is given by (2), and in view of (5) it follows

(6) (x, y) = k ·

(

qϕ(p)−1,
1

p
(qϕ(p) − 1)

)

+ l · (p, q) ∀ l ∈ Z

2. The geometry of the solutions in L and their lattice structure. The
general solution (x, y) is spanned by the vectors

x0 := (x0, y0), c := (p, q)

with k, l ∈ Z as coefficients.

Lemma. x0 and c are linear independent vectors over R.

So in respect to a Cartesian x − y-coordinate system the total set

L :=
⋃

k∈Z

Lk

of solutions of Diophantine equations qx − py = k for all k ∈ Z can be interpreted as a
2-dimensional lattice Γ′.

Instead of the linear combination (6) for the general solution (x, y) sometimes it is
advantageous to take the orthogonal linear combination

(x, y) =
k

c2
· (q,−p) +

1

c2

(

c2l − h(k)
)

· (p, q) ∀ l ∈ Z,

where

(7) h(k) :=
k

p
(q − c2qϕ(p)−1) ∈ Z; c := |c| .

Now with respect to an orthonormal Cartesian x − y-coordinate system we consider
the lattice

Γ = {(x, y) ∈ Z2}.

As far as we interprete the equation qx− py = k as the equation of a straight line in R2,
we have determined the rational lattice line Gk, which has the parametrisation

(8) Gk =
{

(x, y) ∈ R2
∣

∣ (x, y) = k · (x0, y0) + t · (p, q), t ∈ R
}

.

So the solutions (x, y) ∈ Lk of the Diophantine equation qx − py = k correspond to the
lattice points on Gk:

Lk = Gk ∩ Γ.

(In Fig. 1 p = 1, q = 2.) Two arbitrary neighbouring lattice points A, B ∈ Gk have the
distance

(9) d(A, B) = c2 = p2 + q2.

In other words, the lattic points on Gk are distributed modulo c2.
The rational lattice lines Gk form a parallel family with the distance

(10) d(Gk,Gk+1) =
1

c
∀ k ∈ Z.

The same is true for the parallel family of orthogonal rational lattice lines

(11) G⊥
k : px + qy = k ∀ k ∈ Z.

All the above facts about Gk are to carry over G⊥
k . So we obtain an orthogonal net
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Fig. 1. p − 1, q = 2, tg β = −
1

2
, Gk : 2x − 1y = k

of coordinate lines of a new x′ − y′-coordinate system. More detailed, (x, y) → (x′, y′) is
a coordinate transformation (x, y) → (x∗, y∗) → (x′, y′). Obviously, this is a composition
consisting of the rotation

(

x∗

y∗

)

=

(

cosβ sin β

− sinβ cosβ

)(

x

y

)

,

and the stretching

(

x c©

y c©

)

= c ·

(

x∗

y∗

)

where sin β = −
p

c
, cosβ =

q

c
.

So we have

(12)

(

x c©

y c©

)

=

(

q −p

p q

) (

x

y

)
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The unit measure on the x′-axis is the same as that on y′, namely
1

c
, and k

(

1

q
, 0

)

respectively k

(

0,−
1

p

)

is the intersection point of Gk and the x-axis respectively the

y-axis. Analogically, k

(

1

p
, 0

)

resp. k

(

0,
1

q

)

is the intersection point of G⊥
k and the

x-axis resp. the y-axis. The Figure shows that the lattice Γ in the new x′−y′-coordinate
system leads to a lattice constellation Γ′ which reflect the lattice structure of the total
set L =

⋃

k∈Z

Lk of solutions for Diophant equations qx−py = k or px+qy = k′ accurately

and applicably. For fixed k, k′ ∈ Z the solutions of qx− py = k as well as of px + qy = k′

are distributed on Gk and G⊥
k′ modulo c2. So it is clear that it is sufficient, instead of L

only to look for all solutions from the square

(13) Q =
{

(x c©, y c©) ∈ Z2
∣

∣ 0 ≤ x′, y′ ≤ c2 − 1
}

(or also for 1 ≤ x′, y′ ≤ c2). The Figur shows the situation for p = 1, q = 2, also c2 = 5.
The solution situation on Q has a two-fold periodic continuation on all squares in the x′-
and y′-direction (in the direction (−q, p) and (p, q)). So the solution structur of L has a
quadratic partition on R2 and we have to ask only for solutions in Q, which with respect
to the x′ − y′-coordinate system are the smallest non-negative solutions (x′, y′ ≥ 0).

3. Smallest or generating solutions in L. There are problems for which are
seeked such solutions.

Definition. Solutions (x, y) ∈ L, which are located in the square Q, are said to be
smallest solutions with respect to the x′ − y′-coordinate system.

Because the knowledge of such solutions already has as a consequence the knowledge
of the total set L of solutions, we can call them also generating solutions. How to find
them analytically?

At first by (12) we transform the solutions (x, y) ∈ Lk of qx −−py = k from (6) and
(7) in the new coordinate representation (x′, y′):

(14) (x c©, y c©) =
(

k, c2l − h(k)
)

Now we have to seek solutions (x′, y′) ∈ Q, that means, we have to evaluate the
conditions

(15)
0 ≤ x′ = k ≤ c2 − 1
0 ≤ y′ ≤ c2 − 1

Because y′ modulo c2 is uniquly determined, from (15) it follows that y′ = y′(k) with
respect to Q is a well-defined integer-valued function of integer variables*. By (14) the
same is true for l = l(k). According to (15) for k = 0, 1, . . . , for c2 − 1 we have

0 ≤ c2l(k) − h(k) ≤ c2 − 1 or 0 ≤ l(k) −
h(k)

c2
≤ 1 −

1

c2
.

Because of c2 = p2 + q2 ≥ 2, it follows now that
1

2
≤ 1 −

1

c2
< 1 and, therefore,

*For 0 ≤ y′ ≤ c2 − 1, k ∈ Z is y′ = y′(k) a integer-valued number-theoretical function of the period
c2.
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h(k)

c2
≤ l(k) ≤ 1 +

h(k)

c2
.

That means

a) l(k) =

[

1 +
h(k)

c2

]

= 1 +

[

h(k)

c2

]

if c2
∣

∣h(k) b) l(k) = 0 if c2
∣

∣h(k).

Whereas a) is clear, b) follows from (7) and
h(k)

k
=

q − c2qϕ(p)−1

p
∈ Z.

This leads to
k

c2
∈ Z, respectively k = ν · c2, ν ∈ Z. So the first inequality (15) in

case b) is:

0 ≤ k = ν · c2 ≤ c2 − 1, ν ∈ Z.

This is possible only for ν = 0, i.e. only for k = 0 and because of (8) for h(k) =
h(0) = 0.

Proposition 2. With respect to the x′ − y′-coordinate system the smallest solutions
(x′, y′) ∈ Q of qx − py = k will be obtained by (14) for

(16) l = l(k) =







1 +

[

h(k)

c2

]

for 1 ≤ k ≤ c2 − 1

0 for k = 0

Theorem. The vectors (q,−p) and (p, q) of the Diophantine equation qx − py = k

span the square Q. Then the smallest or also generating solutions (x, y) ∈ Q of this
Diopahntine equation are given by

(17) (x, y) =
k

c2
· (q,−p) +

(

1 −

{

h(k)

c2

})

· (p, q) for k = 1, 2, . . . , c2 − 1

(x, y) = (0, 0) for k = 0, where h(k) is given by (7) and {a} := a − [a].

Remark 1. Because of the periodic behaviour of the solutions in L in the directions
(q,−p) and (p, q), we need only that part of Q which is defined by (13). Formula (17)
would give for k = 0 resp. k = c2 the solution points (p, q) resp. (p + q, q − p) on the
boundary of Q. But we need only k = 0 and, therefore, (x, y) = (0, 0).

Remark 2. The Diophantine equation px + qy = k′ behaves in a way “orthogonal”
to qx − py = k as we can observe geometrically also by G⊥

k′ ⊥Gk. So our results for
qx−py = k are applicable also for px+ qy = k′ as far as we rotate the coordinate system
by 90◦.

Concluding remark. The general solution and the generating solutions of a Dio-
phant equation we have found on Eulers ϕ-function. Then, the advantage is an explicitely
established and closed form of the solutions, different from the well-known recursive form,
if we use the Euclidean algorithm or the expansion into a continued fraction.

REFERENCES

[1] T. M. Apostol. Introduction to Analytic Number Theory. New York, Springer, 1976.
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ЕКСПЛИЦИТНИ ЗАТВОРЕНИ РЕШЕНИЯ НА ДИОФАНТОВИ

УРАВНЕНИЯ И РЕШЕТЪЧНИ СТРУКТУРИ ЗА ТЯХ

Мартин Белгер, Херберт Кестнер

Посредством Ойлеровата ϕ-теорема намираме експлицитно и в затворена форма

решенията (x, y) на Диофантовите уравнения qx − py = k. За k = 0,±1,±2, . . .

множеството L от тези решения може да се интерпретира като определена точкова

решетка Z2. В този смисъл L е една двукратна периодична структура по модул

c2 = p2+q2. Следователно, в подходящо място решенията в L могат да се разглеждат

като елементарни или породени в определен смисъл от най-малки решения.
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