MATEMATUKA W MATEMATUHYECKO OBPA3OBAHWE, 2005
MATHEMATICS AND EDUCATION IN MATHEMATICS, 2005
Proceedings of the Thirty Fourth Spring Conference of
the Union of Bulgarian Mathematicians
Borovets, April 6-9, 2005

EXPLICITLY CLOSED SOLUTIONS OF DIOPHANTINE
EQUATIONS AND THE LATTICE STRUCTURE OF THEM"

M. Belger, H. Kaestner

By Euler’s ¢-theorem (on congruences) we establish the solutions (z,y) of the
Diophantine equations gr — py = k explicitly and in a closed form. For all
k=0,%+1,£2,... the total set L of all these solutions can be interpreted as a certain
(point-) lattice 72 with respect to an z — y-coordinate system. In this sense L is a
two-fold periodic structure modulo ¢® (:= p*+¢?). Therefore, in an appropriate place
choosen solutions in L can be considered as elementary or generating or in certain
sense also as smallest solutions.

1. General solution of Diophantine equations by Euler’s ¢p-function. For
p,q,k € Z, ged(p, q) = 1, we consider the equation

(1) qr —py =~k
as Diophantine equation. For k = 1, let (z0,%0) € Z? be a special solution. Then the set
(2) Ly = {(z,y) € 2% | (x,y) = k- (x0,%0) +1- (p,q) V1€ Z}

is the well-known general solution of (1). In Ly, only (g, yo) is unknown. Usually methods

for calculation of (xg,yo) are the Euclidean algorithm [2; p. 31] or the expansion into a

continued fraction. Different from these procedures, here we determine (zg, o) by Euler’s

@-theorem. Because the domain of definition for ¢(p) is N\{0}, we assume that p > 1.
To find (2o, yo) we start with Euler’s theorem [1; p. 113 ]

(3) ¢*") = 1(p), ged(p, q) = 1
That means, there is a number j € Z with the property

(4) q-¢?Wt —p-j=1
1
Such a number j is obviously j = j(p, q) = =(¢*® — 1) € Z. Therefore, the pair
p
41
(5) (0, 90) = (qw(p) Y Z_j(qw(p) - 1))

is a special solution of gx — py = 1.
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Proposition 1. The general solution Ly of the Diophantine equation (1) (w.lo.g.
p > 1) is given by (2), and in view of (5) it follows

©) ) =k (¢ 2@ - 1)) 1 ) V1€

2. The geometry of the solutions in L and their lattice structure. The
general solution (z,y) is spanned by the vectors

X0 := (Zo, Yo), c:=(p,q)
with &k, € Z as coefficients.
Lemma. xq and c are linear independent vectors over R.
So in respect to a Cartesian & — y-coordinate system the total set

L::ULk

k€EZ
of solutions of Diophantine equations gx — py = k for all k£ € Z can be interpreted as a
2-dimensional lattice I".
Instead of the linear combination (6) for the general solution (z,y) sometimes it is
advantageous to take the orthogonal linear combination

k 1
(@y) =3 (6-P+3 (Cl—h(k))-(p.q) V1€
where
() W) =S - PP €2 el

Now with respect to an orthonormal Cartesian  — y-coordinate system we consider
the lattice

I = {(z,y) € 2%}.
As far as we interprete the equation gz — py = k as the equation of a straight line in R?,
we have determined the rational lattice line G, which has the parametrisation

(8) Gk:{(%y)eRQ ‘ (%YJ):k’(wanO)‘i‘t(p7Q)at€R}
So the solutions (z,y) € Ly of the Diophantine equation gz — py = k correspond to the
lattice points on Gg:

L, =GynNnT.

(In Fig. 1 p=1, ¢ =2.) Two arbitrary neighbouring lattice points A, B € Gy, have the
distance

(9) d(A,B) = ¢ = p? + ¢°.
In other words, the lattic points on Gy are distributed modulo ¢2.
The rational lattice lines Gy form a parallel family with the distance
(10) d(Gg, Giy1) = % VkelZ.
The same is true for the parallel family of orthogonal rational lattice lines
(11) Gp :pr+qy=~Fk VkecZ
All the above facts about Gy are to carry over G¢. So we obtain an orthogonal net
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o i
Fig. 1.p—l,q:2,tgﬁ:—§,Gk:2m—1y=k

of coordinate lines of a new ' — y/-coordinate system. More detailed, (z,y) — (2/,y’) is
a coordinate transformation (z,y) — (*,y*) — (2/,3’). Obviously, this is a composition
consisting of the rotation

A cos(3 sinf T
y* )\ —sinf cosf y )’
and the stretching
2© N\ .. x*
y© y*
where sin 3 = —E, cos 3 = 4
c c
So we have
© _
x q -p x
12 =
(12) y© poa)\vy
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1
The unit measure on the z’-axis is the same as that on 3’, namely —, and & (—, 0)
c q
1
respectively k <0, —) is the intersection point of Gy and the z-axis respectively the
p

1 1
y-axis. Analogically, k <—, 0) resp. k <0, —> is the intersection point of GkJ- and the
p q

z-axis resp. the y-axis. The Figure shows that the lattice I" in the new x’ — 3’-coordinate
system leads to a lattice constellation IV which reflect the lattice structure of the total

set L = |J Ly of solutions for Diophant equations gx —py = k or px+qy = k' accurately
kEZ
and applicably. For fixed k, kK’ € Z the solutions of gz — py = k as well as of pz + qy = k’

are distributed on G, and G modulo ¢?. So it is clear that it is sufficient, instead of L
only to look for all solutions from the square

(13) Qz{(x©,y©)€Z2 | OSx’,y’ﬁcQ—l}

(or also for 1 < a’,y’ < ¢?). The Figur shows the situation for p = 1, ¢ = 2, also ¢? = 5.
The solution situation on Q has a two-fold periodic continuation on all squares in the z’-
and y’-direction (in the direction (—g,p) and (p, q)). So the solution structur of L has a
quadratic partition on R? and we have to ask only for solutions in Q, which with respect
to the ' — y’-coordinate system are the smallest non-negative solutions (z’,3" > 0).

3. Smallest or generating solutions in L. There are problems for which are
seeked such solutions.

Definition. Solutions (z,y) € L, which are located in the square Q, are said to be
smallest solutions with respect to the x' — y'-coordinate system.

Because the knowledge of such solutions already has as a consequence the knowledge
of the total set L of solutions, we can call them also generating solutions. How to find
them analytically?

At first by (12) we transform the solutions (z,y) € Ly of gz — —py = k from (6) and
(7) in the new coordinate representation (z’,y’):

(14) (2©,y©) = (k, 1 = h(k))
Now we have to seek solutions (z/,3") € Q, that means, we have to evaluate the
conditions

0<z'=k<c-1

(15) 0<y <1

Because 3’ modulo ¢? is uniquly determined, from (15) it follows that v/ = y/(k) with
respect to Q is a well-defined integer-valued function of integer variables™. By (14) the
same is true for [ = [(k). According to (15) for k = 0,1,..., for ¢ — 1 we have
h(k) 1

<1l1-—.

0<c?l(k)—h(k) <=1 or 0<i(k) - =3~ <1-—

1 1
Because of ¢ = p? + ¢® > 2, it follows now that 3 < 1- = < 1 and, therefore,
c

For0<y <c2—1,keZisy = y'(k) a integer-valued number-theoretical function of the period

2.

88



@ <IU(k) <1+ hE)

That means

a) (k)= [1+ h(k)] =1+ [@] if |h(k)  b) U(k) =0if |h(k).

c2

2
h(k:) q- c2q<p(p)—1
koo P
k
This leads to — € Z, respectively k = v - ¢, v € Z. So the first inequality (15) in
c

Whereas a) is clear, b) follows from (7) and ez

case b) is:
ng:Ichgchl,l/GZ.
This is possible only for ¥ = 0, i.e. only for ¥ = 0 and because of (8) for h(k) =
h(0) = 0.
Proposition 2. With respect to the ¥’ — y'-coordinate system the smallest solutions
(«',y') € Q of gz — py = k will be obtained by (14) for
h(k)

1+[—2} forl<k<c®-—1
c
0 fork=0

(16) I =1(k) =

Theorem. The vectors (q,—p) and (p,q) of the Diophantine equation qr — py = k
span the square Q. Then the smallest or also generating solutions (x,y) € Q of this
Diopahntine equation are given by

(17) (x,y) = C% ' (Q77p)+ (1 - {@}) ! (paQ) fOT’k': 1a27"'a02 -1
(x,y) = (0,0) for k =0, where h(k) is given by (7) and {a} :=a — [a].

Remark 1. Because of the periodic behaviour of the solutions in L in the directions
(g, —p) and (p,q), we need only that part of Q which is defined by (13). Formula (17)
would give for k = 0 resp. k = ¢? the solution points (p,q) resp. (p + ¢,q — p) on the
boundary of Q. But we need only k = 0 and, therefore, (z,y) = (0,0).

Remark 2. The Diophantine equation px + qy = k' behaves in a way “orthogonal”
to qr — py = k as we can observe geometrically also by Gﬁ/ 1 Gg. So our results for
gx — py = k are applicable also for px + qy = k' as far as we rotate the coordinate system
by 90°.

Concluding remark. The general solution and the generating solutions of a Dio-
phant equation we have found on Eulers ¢-function. Then, the advantage is an explicitely
established and closed form of the solutions, different from the well-known recursive form,
if we use the Euclidean algorithm or the expansion into a continued fraction.
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EKCIIJINIINTHU 3ATBOPEHU PEINTEHNA HA INOPAHTOBU
YPABHEHUSA N PEINIETBYHU CTPYKTVYPU 3A TAX

Maptun Bearep, Xepbept KecTHep

TTocpencreom OifitepoBaTta (p-TeopeMa HaAMUPaMe €KCITMIIUTHO U B 3aTBOpeHa (hopMa
pemenusTa (z,y) Ha duodanrosure ypasuenus qr —py = k. 3a k = 0,+1,£2,...
MHOKeCTBOTO L OT Te3u pemienust MoxKe Jia ce MHTepIpeTHpa KaTo OlpeJlesieHa TOIKOBa,
pemerka Z2. B To3u cmuchy L e efHa IBYKpaTHA HEPUOIMYHA CTPYKTYPA IO MOJLYII
c? = p?+q%. CresoBaresHo, B IOIXOIAIIO MSACTO pelnenusTa B L MoraT ja ce pasriesiar
KATO eJIEMEHTAPHY WJIN TTOPOJIEHN B ONPEJIEIEH CMUCHJ OT Hafi-MAJIKH PENICHUSI.
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