EXPLICITLY CLOSED SOLUTIONS OF DIOPHANTINE EQUATIONS AND THE LATTICE STRUCTURE OF THEM*

M. Belger, H. Kaestner

By Euler's φ-theorem (on congruences) we establish the solutions (x, y) of the Diophantine equations $q x-p y=k$ explicitly and in a closed form. For all $k=0, \pm 1, \pm 2, \ldots$ the total set \mathbf{L} of all these solutions can be interpreted as a certain (point-) lattice Z^{2} with respect to an $x-y$-coordinate system. In this sense \mathbf{L} is a two-fold periodic structure modulo $c^{2}\left(:=p^{2}+q^{2}\right)$. Therefore, in an appropriate place choosen solutions in \mathbf{L} can be considered as elementary or generating or in certain sense also as smallest solutions.

1. General solution of Diophantine equations by Euler's φ-function. For $p, q, k \in \mathrm{Z}, \operatorname{gcd}(p, q)=1$, we consider the equation

$$
\begin{equation*}
q x-p y=k \tag{1}
\end{equation*}
$$

as Diophantine equation. For $k=1$, let $\left(x_{0}, y_{0}\right) \in \mathrm{Z}^{2}$ be a special solution. Then the set

$$
\begin{equation*}
\mathbf{L}_{k}=\left\{(x, y) \in \mathrm{Z}^{2} \mid(x, y)=k \cdot\left(x_{0}, y_{0}\right)+l \cdot(p, q) \forall l \in \mathrm{Z}\right\} \tag{2}
\end{equation*}
$$

is the well-known general solution of (1). In \mathbf{L}_{k} only $\left(x_{0}, y_{0}\right)$ is unknown. Usually methods for calculation of $\left(x_{0}, y_{0}\right)$ are the Euclidean algorithm [2; p. 31] or the expansion into a continued fraction. Different from these procedures, here we determine (x_{0}, y_{0}) by Euler's φ-theorem. Because the domain of definition for $\varphi(p)$ is $\mathrm{N} \backslash\{0\}$, we assume that $p \geq 1$.

To find $\left(x_{0}, y_{0}\right)$ we start with Euler's theorem [1; p. 113 f .]

$$
\begin{equation*}
q^{\varphi(p)} \equiv 1(p), \operatorname{gcd}(p, q)=1 \tag{3}
\end{equation*}
$$

That means, there is a number $j \in \mathrm{Z}$ with the property

$$
\begin{equation*}
q \cdot q^{\varphi(p)-1}-p \cdot j=1 \tag{4}
\end{equation*}
$$

Such a number j is obviously $j=j(p, q)=\frac{1}{p}\left(q^{\varphi(p)}-1\right) \in \mathrm{Z}$. Therefore, the pair

$$
\begin{equation*}
\left(x_{0}, y_{0}\right)=\left(q^{\varphi(p)-1}, \frac{1}{p}\left(q^{\varphi(p)}-1\right)\right) \tag{5}
\end{equation*}
$$

is a special solution of $q x-p y=1$.

[^0]Proposition 1. The general solution \mathbf{L}_{k} of the Diophantine equation (1) (w.l.o.g. $p \geq 1$) is given by (2), and in view of (5) it follows

$$
\begin{equation*}
(x, y)=k \cdot\left(q^{\varphi(p)-1}, \frac{1}{p}\left(q^{\varphi(p)}-1\right)\right)+l \cdot(p, q) \quad \forall l \in \mathrm{Z} \tag{6}
\end{equation*}
$$

2. The geometry of the solutions in L and their lattice structure. The general solution (x, y) is spanned by the vectors

$$
\mathbf{x}_{\mathbf{0}}:=\left(x_{0}, y_{0}\right), \quad \mathbf{c}:=(p, q)
$$

with $k, l \in \mathrm{Z}$ as coefficients.
Lemma. $\mathbf{x}_{\mathbf{0}}$ and \mathbf{c} are linear independent vectors over R .
So in respect to a Cartesian $x-y$-coordinate system the total set

$$
\mathbf{L}:=\bigcup_{k \in \mathrm{Z}} \mathbf{L}_{k}
$$

of solutions of Diophantine equations $q x-p y=k$ for all $k \in \mathrm{Z}$ can be interpreted as a 2-dimensional lattice Γ^{\prime}.

Instead of the linear combination (6) for the general solution (x, y) sometimes it is advantageous to take the orthogonal linear combination

$$
(x, y)=\frac{k}{c^{2}} \cdot(q,-p)+\frac{1}{c^{2}}\left(c^{2} l-h(k)\right) \cdot(p, q) \quad \forall l \in \mathrm{Z}
$$

where

$$
\begin{equation*}
h(k):=\frac{k}{p}\left(q-c^{2} q^{\varphi(p)-1}\right) \in \mathrm{Z} ; \quad c:=|\mathbf{c}| \tag{7}
\end{equation*}
$$

Now with respect to an orthonormal Cartesian $x-y$-coordinate system we consider the lattice

$$
\Gamma=\left\{(x, y) \in \mathrm{Z}^{2}\right\}
$$

As far as we interprete the equation $q x-p y=k$ as the equation of a straight line in R^{2}, we have determined the rational lattice line \mathbf{G}_{k}, which has the parametrisation

$$
\begin{equation*}
\mathbf{G}_{k}=\left\{(x, y) \in \mathrm{R}^{2} \mid(x, y)=k \cdot\left(x_{0}, y_{0}\right)+t \cdot(p, q), t \in \mathrm{R}\right\} . \tag{8}
\end{equation*}
$$

So the solutions $(x, y) \in \mathbf{L}_{k}$ of the Diophantine equation $q x-p y=k$ correspond to the lattice points on \mathbf{G}_{k} :

$$
\mathbf{L}_{k}=\mathbf{G}_{k} \cap \Gamma
$$

(In Fig. $1 p=1, q=2$.) Two arbitrary neighbouring lattice points $A, B \in \mathbf{G}_{k}$ have the distance

$$
\begin{equation*}
d(A, B)=c^{2}=p^{2}+q^{2} \tag{9}
\end{equation*}
$$

In other words, the lattic points on \mathbf{G}_{k} are distributed modulo c^{2}.
The rational lattice lines \mathbf{G}_{k} form a parallel family with the distance

$$
\begin{equation*}
d\left(\mathbf{G}_{k}, \mathbf{G}_{k+1}\right)=\frac{1}{c} \quad \forall k \in \mathrm{Z} \tag{10}
\end{equation*}
$$

The same is true for the parallel family of orthogonal rational lattice lines

$$
\begin{equation*}
\mathbf{G}_{k}^{\perp}: p x+q y=k \quad \forall k \in \mathrm{Z} \tag{11}
\end{equation*}
$$

All the above facts about \mathbf{G}_{k} are to carry over \mathbf{G}_{k}^{\perp}. So we obtain an orthogonal net 86

Fig. 1. $p-1, q=2, \operatorname{tg} \beta=-\frac{1}{2}, G_{k}: 2 x-1 y=k$
of coordinate lines of a new $x^{\prime}-y^{\prime}$-coordinate system. More detailed, $(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right)$ is a coordinate transformation $(x, y) \rightarrow\left(x^{*}, y^{*}\right) \rightarrow\left(x^{\prime}, y^{\prime}\right)$. Obviously, this is a composition consisting of the rotation

$$
\binom{x^{*}}{y^{*}}=\left(\begin{array}{cc}
\cos \beta & \sin \beta \\
-\sin \beta & \cos \beta
\end{array}\right)\binom{x}{y}
$$

and the stretching

$$
\binom{x^{\complement}}{y^{\complement}}=c \cdot\binom{x^{*}}{y^{*}}
$$

where $\sin \beta=-\frac{p}{c}, \cos \beta=\frac{q}{c}$.
So we have

$$
\binom{x^{©}}{y^{©}}=\left(\begin{array}{rr}
q & -p \tag{12}\\
p & q
\end{array}\right)\binom{x}{y}
$$

The unit measure on the x^{\prime}-axis is the same as that on y^{\prime}, namely $\frac{1}{c}$, and $k\left(\frac{1}{q}, 0\right)$ respectively $k\left(0,-\frac{1}{p}\right)$ is the intersection point of \mathbf{G}_{k} and the x-axis respectively the y-axis. Analogically, $k\left(\frac{1}{p}, 0\right)$ resp. $k\left(0, \frac{1}{q}\right)$ is the intersection point of \mathbf{G}_{k}^{\perp} and the x-axis resp. the y-axis. The Figure shows that the lattice Γ in the new $x^{\prime}-y^{\prime}$-coordinate system leads to a lattice constellation Γ^{\prime} which reflect the lattice structure of the total set $\mathbf{L}=\bigcup_{k \in \mathrm{Z}} \mathbf{L}_{k}$ of solutions for Diophant equations $q x-p y=k$ or $p x+q y=k^{\prime}$ accurately and applicably. For fixed $k, k^{\prime} \in \mathrm{Z}$ the solutions of $q x-p y=k$ as well as of $p x+q y=k^{\prime}$ are distributed on \mathbf{G}_{k} and $\mathbf{G}_{k^{\prime}}^{\perp}$ modulo c^{2}. So it is clear that it is sufficient, instead of \mathbf{L} only to look for all solutions from the square

$$
\begin{equation*}
\mathbf{Q}=\left\{\left(x^{\complement}, y^{©}\right) \in \mathrm{Z}^{2} \quad \mid 0 \leq x^{\prime}, y^{\prime} \leq c^{2}-1\right\} \tag{13}
\end{equation*}
$$

(or also for $1 \leq x^{\prime}, y^{\prime} \leq c^{2}$). The Figur shows the situation for $p=1, q=2$, also $c^{2}=5$. The solution situation on \mathbf{Q} has a two-fold periodic continuation on all squares in the x^{\prime} and y^{\prime}-direction (in the direction $(-q, p)$ and (p, q)). So the solution structur of \mathbf{L} has a quadratic partition on R^{2} and we have to ask only for solutions in \mathbf{Q}, which with respect to the $x^{\prime}-y^{\prime}$-coordinate system are the smallest non-negative solutions ($x^{\prime}, y^{\prime} \geq 0$).
3. Smallest or generating solutions in \mathbf{L}. There are problems for which are seeked such solutions.

Definition. Solutions $(x, y) \in \mathbf{L}$, which are located in the square \mathbf{Q}, are said to be smallest solutions with respect to the $x^{\prime}-y^{\prime}$-coordinate system.

Because the knowledge of such solutions already has as a consequence the knowledge of the total set \mathbf{L} of solutions, we can call them also generating solutions. How to find them analytically?

At first by (12) we transform the solutions $(x, y) \in \mathbf{L}_{k}$ of $q x--p y=k$ from (6) and (7) in the new coordinate representation $\left(x^{\prime}, y^{\prime}\right)$:

$$
\begin{equation*}
\left(x^{\complement}, y^{(C)}\right)=\left(k, c^{2} l-h(k)\right) \tag{14}
\end{equation*}
$$

Now we have to seek solutions $\left(x^{\prime}, y^{\prime}\right) \in \mathbf{Q}$, that means, we have to evaluate the conditions

$$
\begin{align*}
& 0 \leq x^{\prime}=k \leq c^{2}-1 \\
& 0 \leq y^{\prime} \leq c^{2}-1 \tag{15}
\end{align*}
$$

Because y^{\prime} modulo c^{2} is uniquly determined, from (15) it follows that $y_{*}^{\prime}=y^{\prime}(k)$ with respect to \mathbf{Q} is a well-defined integer-valued function of integer variables*. By (14) the same is true for $l=l(k)$. According to (15) for $k=0,1, \ldots$, for $c^{2}-1$ we have

$$
0 \leq c^{2} l(k)-h(k) \leq c^{2}-1 \quad \text { or } \quad 0 \leq l(k)-\frac{h(k)}{c^{2}} \leq 1-\frac{1}{c^{2}}
$$

Because of $c^{2}=p^{2}+q^{2} \geq 2$, it follows now that $\frac{1}{2} \leq 1-\frac{1}{c^{2}}<1$ and, therefore,

[^1]$\frac{h(k)}{c^{2}} \leq l(k) \leq 1+\frac{h(k)}{c^{2}}$.
That means
a) $l(k)=\left[1+\frac{h(k)}{c^{2}}\right]=1+\left[\frac{h(k)}{c^{2}}\right]$ if $c^{2} \mid h(k)$
b) $\quad l(k)=0$ if $c^{2} \mid h(k)$.

Whereas a) is clear, b) follows from (7) and $\frac{h(k)}{k}=\frac{q-c^{2} q^{\varphi(p)-1}}{p} \in \mathrm{Z}$.
This leads to $\frac{k}{c^{2}} \in \mathrm{Z}$, respectively $k=\nu \cdot c^{2}, \nu \in \mathrm{Z}$. So the first inequality (15) in case b) is:

$$
0 \leq k=\nu \cdot c^{2} \leq c^{2}-1, \nu \in \mathrm{Z}
$$

This is possible only for $\nu=0$, i.e. only for $k=0$ and because of (8) for $h(k)=$ $h(0)=0$.

Proposition 2. With respect to the $x^{\prime}-y^{\prime}$-coordinate system the smallest solutions $\left(x^{\prime}, y^{\prime}\right) \in \mathbf{Q}$ of $q x-p y=k$ will be obtained by (14) for

$$
l=l(k)= \begin{cases}1+\left[\frac{h(k)}{c^{2}}\right] & \text { for } 1 \leq k \leq c^{2}-1 \tag{16}\\ 0 & \text { for } k=0\end{cases}
$$

Theorem. The vectors $(q,-p)$ and (p, q) of the Diophantine equation $q x-p y=k$ span the square \mathbf{Q}. Then the smallest or also generating solutions $(x, y) \in \mathbf{Q}$ of this Diopahntine equation are given by

$$
\begin{equation*}
(x, y)=\frac{k}{c^{2}} \cdot(q,-p)+\left(1-\left\{\frac{h(k)}{c^{2}}\right\}\right) \cdot(p, q) \text { for } k=1,2, \ldots, c^{2}-1 \tag{17}
\end{equation*}
$$

$(x, y)=(0,0)$ for $k=0$, where $h(k)$ is given by (7) and $\{a\}:=a-[a]$.
Remark 1. Because of the periodic behaviour of the solutions in \mathbf{L} in the directions $(q,-p)$ and (p, q), we need only that part of \mathbf{Q} which is defined by (13). Formula (17) would give for $k=0$ resp. $k=c^{2}$ the solution points (p, q) resp. $(p+q, q-p)$ on the boundary of \mathbf{Q}. But we need only $k=0$ and, therefore, $(x, y)=(0,0)$.

Remark 2. The Diophantine equation $p x+q y=k^{\prime}$ behaves in a way "orthogonal" to $q x-p y=k$ as we can observe geometrically also by $\mathbf{G}_{k^{\prime}}^{\perp} \perp \mathbf{G}_{k}$. So our results for $q x-p y=k$ are applicable also for $p x+q y=k^{\prime}$ as far as we rotate the coordinate system by 90°.

Concluding remark. The general solution and the generating solutions of a Diophant equation we have found on Eulers φ-function. Then, the advantage is an explicitely established and closed form of the solutions, different from the well-known recursive form, if we use the Euclidean algorithm or the expansion into a continued fraction.

REFERENCES

[1] T. M. Apostol. Introduction to Analytic Number Theory. New York, Springer, 1976.
[2] P. Bundschuh. Einführung in die Zahlentheorie. Berlin, Heidelberg, New York, Springer 1991 (2. Aufl.).
[3] I. M. Winogradow. Elemente der Zahlentheorie. Berlin, VEB Deutscher Verlag der Wissenschaften, 1955.

ЕКСПЛИЦИТНИ ЗАТВОРЕНИ РЕШЕНИЯ НА ДИОФАНТОВИ УРАВНЕНИЯ И РЕШЕТЪЧНИ СТРУКТУРИ ЗА ТЯХ

Мартин Белгер, Херберт Кестнер

Посредством Ойлеровата φ-теорема намираме експлицитно и в затворена форма решенията (x, y) на Диофантовите уравнения $q x-p y=k$. За $k=0, \pm 1, \pm 2, \ldots$ множеството \mathbf{L} от тези решения може да се интерпретира като определена точкова решетка Z^{2}. В този смисъл \mathbf{L} е една двукратна периодична структура по модул $c^{2}=p^{2}+q^{2}$. Следователно, в подходящо място решенията в \mathbf{L} могат да се разглеждат като елементарни или породени в определен смисъл от най-малки решения.

[^0]: ${ }^{*}$ Key words: Diophantine equations, Euler's φ-theorem, Euler's function, lattice structure. 2000 Mathematics Subject Classification: 11D04, 11P21.

[^1]: ${ }^{*}$ For $0 \leq y^{\prime} \leq c^{2}-1, k \in \mathrm{Z}$ is $y^{\prime}=y^{\prime}(k)$ a integer-valued number-theoretical function of the period c^{2}.

