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We consider the problem of finding bounds on the size of ternary and quaternary
equidistant constant weight codes. We present a computer realization of an algorithm
for solving the maximum clique problem. We use it for finding the exact values of
the maximum size for ternary and quaternary equidistant constant weight codes for
all open cases for n ≤ 10 are found.

1. Introduction. Let Zq denote the set {0, 1, . . . , q − 1} and let Zn
q be the set of

all n-tuples over Zq and Zn,w
q be the set of n-tuples over Zq of Hamming weight w.

A code is called equidistant if all the distances between distinct codewords are d. A
code is called constant weight if all the codewords have the same weight w. An (n, M, d)q

equidistant code is a code over Zq of length n, cardinality M and distance d.
Let Bq (n, d) denote the maximum number of codewords in an equidistant code over

Zq of length n and distance d (called an (n, M, d)q equidistant code) and Bq (n, d, w)
denote the maximum number of codewords in an equidistant constant weight code over
Zq of length n, distance d, and weight w (called an (n, M, d, w)q equidistant constant
weight code, ECWC). The study of these functions is a maximum clique problem.

Equidistant codes have been investigated in [5, 6, 8, 9, 11]. A few papers study
codes which are both equidistant and of constant weight. Some works published on this
topic are [4, 7, 12, 2, 1, 3] Tables of the best known bounds for ternary and quaternary
equidistant constant weight codes with parameters 2 ≤ w < n and 3 ≤ n ≤ 10 is
presented in [2, 3].

In this paper we consider bounds on Bq(n, d, w) for q = 3, 4. Upper and lower bounds
for ECWC are given in Section 2. The constructions of equidistant codes by computer
search and results on Bq(n, d, w) for q = 3, 4 are given in section 3. We find the exact
values of B3(n, d, w) and B4(n, d, w) for all open cases for n ≤ 10 and 2 ≤ w < n [2, 3].

2. General Bounds. The equidistant codes and ECWC are closely related as it is
shown by following theorem:

Theorem 1. [4] It is true that Bq (n, d) = 1 + Bq (n, d, d).

Some general bounds for equidistant codes and ECWC are given by the following
theorems:
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Theorem 2. (Delsarte) Bq(n, d) ≤ (q − 1)n + 1.

Theorem 3. It is true that Bq (n, n) = q, Bq (n, n, w) ≤ q, Bq (n, d, n) = Bq−1 (n, d)
Bq (n + 1, d, w) ≥ Bq (n, d, w) and Bq (n + 1, d, w + 1) ≥ Bq (n, d, w).

Theorem 4. (the Johnson bounds for ECWC) The maximum number of codewords

in a q-ary ECWC satisfy the inequalities:

Bq (n, d, w) ≤
n

n − w
Bq (n − 1, d, w) and Bq (n, d, w) ≤

n (q − 1)

w
Bq (n − 1, d, w − 1) .

Theorem 5. [4] For k = 1, 2, . . . , n, if P 2
k (w) > Pk (d)Pk (0) , then

Bq (n, d, w) ≤
P 2

k (0) − Pk(d)Pk(0)

P 2
k (w) − Pk(d)Pk(0)

.

Here Pk (x) is the Krawtchouk polynomial defined by

Pk (x) =
k

∑

i=0

(

x

i

)(

n − x

k − i

)

(−1)i(q − 1)k−i and Pk(0) =

(

n

k

)

(q − 1)k.

Theorem 6. [7] Bq (q + 1, q, q − 1) ≤
(

q2 + q
)

/2.

There exist the following families of special equidistant codes for q = 3, 4 and d = 3, 4.

Theorem 7. [1] B3 (n, 3) = 9 precisely when 3 ≤ q ≤ 9. Bq (n, 3) = q precisely when

q > 9. Codes with such parameters are unique (up to equivalence).

Theorem 8. [1] B4 (n, 4) = 16 precisely when 4 ≤ q ≤ 16 and 4 ≤ n ≤ 33. Bq (n, 4)
= q precisely when q > 16. Codes with such parameters are unique (up to equivalence).

3. Methods and results of finding ECWC. A simple graph G = (V ; E) is
a set of vertices V and set of unordered pairs of distinct elements of V called edges.
Not all graphs are simple. Sometimes a pair of vertices are connected by multiple edge
yielding a multigraph. Vertices connected to themselves by a edge called a loop, yeilding
a pseudograph. Finally, edges can also be given a direction yielding a directed graph
(or digraph). A graph having a weight, or number, associated with each edge is called
weighted graph.

A clique of graph is a set of vertices, any two of which are adjacent. Maximal clique is
a clique which vertices is not a subset of the vertices of a larger clique. Maximum clique
is the largest clique in the graph. Maximum-weight clique is a clique with maximum
weight.

Maximum-weigh clique problem:
– the vertices have weights, and one wants to find a clique with maximum weight;
– it is NP-hard;
– the clique is not necessarily a maximum clique of the underlying unweighted graph,

but it is certainly maximal.
A fast algorithm for solving this problem is given in [10], [13].
In this work we present a variant of this algorithm for ECWC.
We assume some order for the vertices V = v1, v2, . . . , vn. Sn that contain vn , then

cliques in Sn−1 that contain vn−1. Let S1 = {v1, v2, . . . , vi} ⊆ V . Considering cliques
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in V , we define the function c(i) to be the size of the maximum clique in the subgraph
induced by S1. Obviously, for every i = 1, . . . , n − 1 we have either c(i + 1) = c(i) or
c(i + 1) = c(i) + 1. Moreover, c(i + 1) = c(i) + 1 if there exists a clique in Si+1 of size
c(i) + 1 that includes vertex vi+1.

Then we calculate the values of c(i) starting from c(1) = 1 up, and stores the values
found. Then the algorithm is searching for a clique of size c(i) + 1 within Si+1, it
has formed a clique W and is considering adding vertex vj , it can prune the search if
| W | +c(j) ≤ c(i). As j is chosen to be the largest index in the set of vertices to
be considered, it follows that a clique of size c(i) + 1 that contains W cannot exist in
Si+1. Trivially, if it finds a clique of size c(i) + 1, it can prune the whole search and
start calculating c(i + 2). Table c[i] gives the largest clique includes the vertex vi. When
we are searching for all maximum cliques, we first determine the size of the maximum
cliques, and then starts the search again at the suitable position.

Let C be an (n, M, d, w)q ECWC. Our approach is based on the observation that an
(n, M, d, w) code C can be shortened to an (n − 1, M, d, w)q code C0. Conversely, if we
want to construct an (n, M, d, w)q code C, we only need to consider lengthening of the
(n−1, M, d, w)q code C0. The main problems we decide in this paper is code construction
of some (n, M, d, w)q ECWC.

This is a maximal clique problem and we use a computer realization of the described
algorithm. The search space will only be the vectors which are at a distance exactly
d from the code C0 and have exactly weight w. We will only have to care about the
distance between codewords and for their weights. In the ternary (quaternary) case we
can construct the graph whose vertices represent ternary (quaternary) vectors of length
n. We join two vertices by an edge if and only if the Hamming distance between the
vectors is exactly d and their weight is exactly w. Then what we are interested in is the
quantity Bq(n, d, w), the size of the largest clique in this graph.

The following theorem is derived from Theorem 4:

Theorem 9. Any (n, M, d, w) ECWC code C contains (n − 1, M ′, d, w) codes with

M ′ ≥ ⌈M
n − w

n
⌉ codewords.

The results for ternary and quaternary ECWC are obtained by a computer program
based on the method in [13]. We made our own realization for ECWC. The upper bounds
for ECWC which we use for our computer research are obtained from theorems presented
in Section 2. The exact values for ECWC over an alphabet of three and four elements
of length n ≤ 10 are displayed in Table 1 and Table 2. New results in the tables are
denoted by “⋆”. All open cases for ternary and quaternary ECWC of length n ≤ 10 from
[2, 3] are solved.

Table 1. Bounds on B3 (n, d, w) for 4 < w < 9 and n = 10

n w d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9 d = 10

10 5 8 8 7 ⋆12 ⋆8 4 2 2
6 8 8 7 ⋆14 ⋆8 5 3 2
7 8 8 8 ⋆12 ⋆9 5 3 2
8 8 8 8 ⋆15 ⋆10 5 2 2
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Table 2. Bounds on B4(n, d, w) for 8 ≥ n ≤ 10.
n w d = 3 d = 4 d = 5 d = 6 d = 7 d = 8 d = 9 d = 10

8 5 9 15 11 ⋆10 5 2
6 9 15 9 ⋆12 5 4
7 9 15 11 ⋆12 4 3

9 4 9 15 9 ⋆9 3 2
5 9 15 ⋆11 ⋆10 9 3 2
6 9 15 ⋆11 ⋆12 ⋆11 5 3
7 9 15 ⋆11 ⋆12 ⋆11 5 3
8 9 15 ⋆11 ⋆12 ⋆11 4 3

10 5 9 15 ⋆11 ⋆12 ⋆10 6 2 2
6 9 15 ⋆11 ⋆14 ⋆11 10 5 2
7 9 15 ⋆11 ⋆12 ⋆11 ⋆14 5 3
8 9 15 ⋆11 ⋆15 ⋆11 15 5 3
9 9 15 ⋆11 ⋆12 ⋆11 8 4 3
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НОВИ ЕКВИДИСТАНТНИ КОНСТАНТНО-ТЕГЛОВНИ КОДОВЕ
НАД АЗБУКА С ТРИ И ЧЕТИРИ ЕЛЕМЕНТА

Галина Т. Богданова, Тодор Й. Тодоров

Разглеждаме проблема за намиране на граници за обема на еквидистантни

константно-тегловни кодове над азбука с три и четири елемента. За решава-

нето на този проблем се използва алгоритъм за намиране на максимално клика

в граф. Намерени са точни стойности за максималния обем на еквидистантни

константно-тегловни кодове над азбука с три и четири елемента за всички отво-

рени случаи при n ≤ 10.
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