
МАТЕМАТИКА И МАТЕМАТИЧЕСКО ОБРАЗОВАНИЕ, 2005

MATHEMATICS AND EDUCATION IN MATHEMATICS, 2005

Proceedings of the Thirty Fourth Spring Conference of

the Union of Bulgarian Mathematicians

Borovets, April 6–9, 2005
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*
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The measurability with respect to the group of the general simply isotropic similitudes
of sets of circles (elliptic and parabolic) is studied and also some formulas for the
density are given.

1. Introduction. The simply isotropic space I3
(1) is defined as a projective space

P3(R) with an absolute plane ω and two complex conjugate straight lines f1, f2 in ω with
a (real) intersection point F . All regular projectivities transforming the absolute figure
into itself form the 8-parametric group G8 of the general simply isotropic similitudes.
Passing on to affine coordinates (x, y, z) any similitude of G8 can be written in the form

(1)

x = c1 + c7(x cosϕ− y sinϕ),

y = c2 + c7(x sinϕ+ y cosϕ),

z = c3 + c4x+ c5y + c6z,

where c1, c2, c3, c4, c5, c6 6= 0, c7 > 0 and ϕ are real parameters. We emphasize that more

of the common material of the geometry of I
(1)
3 can be found in [3].

Using some basic concepts of the integral geometry in the sense of M. I. Stoka [4], G.

I. Drinfel’d [2], we study the measurability of sets of circles in I3
(1) with respect to G8.

2. Measurability of a set of circles of elliptic type. The conic k of one part in
the nonisotropic plane ε is called a circle of elliptic type if the infinite points of k coincide
with the intersection points of ε with f1 and f2 [3; p. 70]. We note the fact that any
nonisotropic plane ε, which is not a tangential plane of a sphere of parabolic type Σ and
ε ∩ Σ 6= ∅, intersects Σ in a circle k of elliptic type [3; p. 72] (Fig. 1.a)).

Now, let k be a circle of elliptic type defined by the equations
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Fig. 1

(2) k :
z = R(x2 + y2) + αx+ βy + γ,

z = ux+ vy + w,

where R 6= 0 and (α− u)2 + (β− v)2 − 4R(γ−w) > 0. Under the action of (1) the circle
k(R,α, β, γ, u, v, w) is transformed into the circle k(R,α, β, γ, u, v, w) according to

(3)

R = c6c
−1
7 R,

α = c−1
7 [−2c1c6c

−1
7 R+ (c6α+ c4) cosϕ− (c6β + c5) sinϕ],

β = c−1
7 [−2c2c6c

−1
7 R+ (c6α+ c4) sinϕ+ (c6β + c5) cosϕ],

γ = c−1
7 [(c21 + c22)c6c

−1
7 R+ c3c7 + c6c7γ − (c6α+ c4)(c1 cosϕ+ c2 sinϕ)+

+(c6β + c5)(c1 sinϕ− c2 cosϕ)],

u = c−1
7 [(c6u+ c4) cosϕ− (c6v + c5) sinϕ],

v = c−1
7 [(c6u+ c4) sinϕ+ (c6v + c5) cosϕ],

w = c−1
7 [c3c7 + c6c7w − (c6u+ c4)(c1 cosϕ+ c2 sinϕ)+

+(c6v + c5)(c1 sinϕ− c2 cosϕ)].
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The transformations (3) form the so-called associated group G8 of G8 [4; p. 34]. G8 is
isomorphic to G8 and the invariant density under G8 of the circles of elliptic type k, if it
exists, coincides with the invariant density under G8 of the points (R,α, β, γ, u, v, w) in
the set of parameters [4; p. 33]. The associated group G8 has the infinitesimal operators

Y1 = 2R
∂

∂α
+ α

∂

∂γ
+ u

∂

∂w
, Y2 = 2R

∂

∂β
+ β

∂

∂γ
+ v

∂

∂w
,

Y3 =
∂

∂γ
+

∂

∂w
, Y4 =

∂

∂α
+

∂

∂u
, Y5 =

∂

∂β
+

∂

∂v
,

Y6 = R
∂

∂R
+ α

∂

∂α
+ β

∂

∂β
+ γ

∂

∂γ
+ u

∂

∂u
+ v

∂

∂v
+ w

∂

∂w
,

Y7 = 2R
∂

∂R
+ α

∂

∂α
+ β

∂

∂β
+ u

∂

∂u
+ v

∂

∂v
,

Y8 = −β
∂

∂α
+ α

∂

∂β
− v

∂

∂u
+ u

∂

∂v
.

The integral invariant function f = f(R,α, β, γ, u, v, w) satisfies the system of R. Deltheil
[1; p. 28]

Y1(f) = 0, Y2(f) = 0, Y3(f) = 0, Y4(f) = 0, Y5(f) = 0,

Y6(f) + 7f = 0, Y7(f) + 4f = 0, Y8(f) = 0

and it has the form

f =
cR

[(α− u)2 + (β − v)2 − 4R(γ − w)]4
,

where c = const 6= 0.
Thus, we can state:

Theorem 1. A set of circles of elliptic type (2) is measurable with respect to the group

G8 and has the invariant density

(4) dk =
|R|dR ∧ dα ∧ dβ ∧ dγ ∧ du ∧ dv ∧ dw

[(α − u)2 + (β − v)2 − 4R(γ − w)]4
.

Remark 1. The orthogonal projection of the circle of elliptic type k on the coordinate
plane Oxy is the Euclidean circle (Fig. 1.a)).

(5) k̃ : R(x2 + y2) + (α− u)x+ (β − v)y + γ − w = 0, z = 0

with the center

O(−
α− u

2R
,−

β − v

2R
, 0)

and the radius

(6) r =
1

2|R|

√
(α− u)2 + (β − v)2 − 4R(γ − w).

The quantity r is called the radius of the circle of elliptic type k [3; p. 70].
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By (4) and (6) we have

(7) dk =
1

256r8|R|7
dR ∧ dα ∧ dβ ∧ dγ ∧ du ∧ dv ∧ dw.

Remark 2. The coordinate plane Oxy is an Euclidean plane and into Oxy the circles
k̃ defined by (5) have under the group G̃4 of the similitudes

x = c1 + c7(x cosϕ− y sinϕ)
y = c2 + c7(x sinϕ+ y cosϕ)

the invariant density [4; p. 167]

(8) dk̃ =
dx0 ∧ dy0 ∧ dγ0

r4
,

where

(9) x0 = −
α− u

2R
, y0 = −

β − v

2R
, γ0 =

γ − w

R
.

Differentiating (9), we have

(10)

1

2R
dα = −dx0 +

α− u

2R2
dR +

1

2R
du,

1

2R
dβ = −dy0 +

β − v

2R2
dR+

1

2R
dv,

1

R
dγ = dγ0 +

γ − w

R2
dR +

1

R
dw.

By exterior product of (10) and dR ∧ du ∧ dv ∧ dw we obtain

(11) dR ∧ dα ∧ dβ ∧ dγ ∧ du ∧ dv ∧ dw = 4R3dR ∧ du ∧ dv ∧ dw ∧ dx0 ∧ dy0 ∧ dγ0.

From (7), (8) and (11) it follows that

(12) dk =
1

64r4R4
dR ∧ du ∧ dv ∧ dw ∧ dk̃.

Remark 3. Denote by ψ the angle between both intersecting nonisotropic planes ε
and Oxy. Then we have [3; p. 17]

ψ = +
√
u2 + v2

and, therefore,

ψdψ = udu+ vdv.

From here it follows that

du ∧ dv =
ψ

u
dψ ∧ dv =

ψ

v
du ∧ dψ

and the formula of the density (12) becomes

(13)

dk =
ψ

64r4R4|u|
dR ∧ dψ ∧ dv ∧ dw ∧ k̃,

dk =
ψ

64r4R4|v|
dR ∧ du ∧ dψ ∧ dw ∧ k̃,

respectively.

We summarize the foregoing results in the following

99



Theorem 2. The density for the circles of the elliptic type (4) satisfies the relations

(7), (12) and (13).

3. Measurability of sets of circles of parabolic type. The conic k in the
isotropic plane ι is called a circle of the parabolic type if k touches the absolute plane ω
at the absolute point F [3; p. 70]. Any isotropic plane ι intersects a sphere of parabolic
type Σ in a circle k of parabolic type [3; p. 72] (Fig. 1.b)).

Let k be a circle of parabolic type defined by the equations

k :
z = R(x2 + y2) + αx+ βy + γ,

ux+ vy + 1 = 0,

where R 6= 0, and (u, v) 6= (0, 0). Now, the corresponding associated group G8 has the
infinitesimal operators

Y1 = −2R
∂

∂α
− α

∂

∂γ
+ u2 ∂

∂u
+ uv

∂

∂v
, Y2 = −2R

∂

∂β
− β

∂

∂γ
+ uv

∂

∂u
+ v2 ∂

∂v
,

Y3 =
∂

∂γ
, Y4 =

∂

∂α
, Y5 =

∂

∂β
, Y6 = R

∂

∂R
+ α

∂

∂α
+ β

∂

∂β
+ γ

∂

∂γ
,

Y7 = 2R
∂

∂R
+ α

∂

∂α
+ β

∂

∂β
+ u

∂

∂u
+ v

∂

∂v
, Y8 = −β

∂

∂α
+ α

∂

∂β
− v

∂

∂u
+ u

∂

∂v
.

It is easy to verify that the system of R. Deltheil

Y1(f) + 3uf = 0, Y2(f) + 3vf = 0, Y3(f) = 0, Y4(f) = 0,

Y5(f) = 0, Y6(f) + 4f = 0, Y7(f) + 6f = 0, Y8(f) = 0

has the solution

f(R,α, β, γ, u, v) = 0.

From here it follows

Theorem 3. Sets of circles of parabolic type are not measurable with respect to the

group G8.
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ИНТЕГРАЛНО-ГЕОМЕТРИЧНИ РЕЗУЛТАТИ ЗА МНОЖЕСТВА ОТ

СФЕРИ В ПРОСТО ИЗОТРОПНО ПРОСРТАНСТВО

Адриян В. Борисов, Маргарита Г. Спирова

Изследвана е измеримостта на множества сфери (елиптични и параболични) от-
носно групата на общите просто-изотропни подобности и са получени формули
за съответната гъстота.
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